Metacognitive Judgments, Study-Time Allocation and Inferences: The Effect of Multimedia Discrepancies

Candice Burkett (cburkett@memphis.edu)
Department of Psychology, Institute for Intelligent Systems, University of Memphis
400 Innovation Drive, Memphis, TN 38152 USA

Roger Azevedo (roger.azevedo@mcgill.ca)
Department of Educational and Counselling Psychology,
Laboratory for the Study of Metacognition and Advanced Learning Technologies, McGill University
3700 McTavish, Montreal, QC H3A 1Y2 Canada

Abstract
This study investigated undergraduate students’ metacognitive judgments while learning about complex science topics using multimedia material (text and graph). A within-subjects design was used to examine the effect of discrepancies on study-time allocation, metacognitive judgments and inference generation. There were three types of discrepancies: none, text (between two ideas in the text) and text and graph (between the text and graph). Forty (N=40) participants completed 12 trials where they were asked to provide 6 judgments: Ease of Learning judgments (EOLs), immediate and delayed Judgments of Learning (JOLs) for both text and graph and Retrospective Confidence Judgments (RCJs). Participants provided significantly lower JOLs for content that contained discrepancies but RCJs remained high across conditions. Discrepancies did not influence study-time allocation, but did significantly influence inference scores. Overall, results suggest that participants may be aware of discrepancies, but lack the control strategies needed to overcome them.

Keywords: metacognitive judgments; self-regulated learning; metacognitive monitoring; control strategies; discrepancy detection; multimedia

Introduction
In comparison to other developed countries, the United States has been consistently outperformed in science international assessments (PISA, 2006; TIMSS, 2007). With projected university undergraduate enrollment in the United States on the rise (Planty et al., 2009), it is important that students begin to master the skills necessary to succeed in school at an early age. It is, therefore, becoming increasingly important that students become proficient in the most effective ways to increase, maintain, and demonstrate knowledge in a variety of difficult domains including Biology, Physics, Chemistry, and Physical Science. One way for students to become more proficient in these domains is to effectively use certain metacognitive processes in order to better self-regulate their learning.

Research has shown that the key to successful regulation of learning depends on the use of certain metacognitive processes related to planning (e.g., activation of prior knowledge), monitoring (e.g., judgments of learning), and the selection of appropriate learning strategies (e.g., coordination of informational sources) (Azevedo & Witherspoon, 2009; Azevedo, Witherspoon, Chauncey, & Burkett, 2010; Winne & Hadwin, 2008; Zimmerman & Schunk, 2011). Research has further indicated that metacognitive monitoring and judgments are extremely important in determining students’ metacognitive control strategies such as study time allocation. Specifically, it is important that students are able to accurately judge to what degree they understand the information they are studying in order to effectively control their learning (Dunlosky, Hertzog, Kennedy, & Thiede, 2005; Dunlosky & Metcalfe, 2009; Metcalfe, 2009; Metcalfe & Finn, 2008).

Metacognitive Monitoring and Control
Metacognitive monitoring research traditionally emphasizes the importance of making judgments about one’s own learning. This field of research often focuses on three types of judgments: Ease of Learning judgments (EOLs), Judgments of Learning (JOLs) and Retrospective Confidence Judgments (RCJs).

Ease of Learning (EOL) judgments call for learners to evaluate how easy or difficult information will be to learn. These judgments typically take place prior to study or learning. EOLs can be used as a measure of predicted task difficulty and are associated with the planning phase of self-regulated learning (e.g., determining how much time to allocate to studying) (Pintrich, 2000). Furthermore, there has been evidence to indicate that EOLs are related to metacognitive control, specifically to study choice (Thiede, Anderson & Therriault, 2003).

Judgments of Learning (JOLs) are one of the most frequently studied metacognitive judgments in current literature. These judgments are made by asking participants to rate their level of understanding about a specific set of material. JOLs can be made at any point during learning, but are often made at strategic points (e.g., after reading a specific amount of material or at the end of a learning session). Typically, research in this field has been geared toward understanding the processes behind these judgments, methods for improving the judgment accuracy, and the relationship between these judgments and the control of
learning processes. For example, in an attempt to determine a better method to increase judgment accuracy, Nelson and Dunlosky (1991) introduced the idea of delayed JOLs. Results from this study indicate that the relative accuracy was considerably higher for delayed JOLs and that this increase could be achieved within a relatively small amount of time (30 seconds) between the stimuli presentation and subsequent judgment. The results of this study have been replicated numerous times in a variety of settings with different groups of participants and, therefore, have become increasingly well known (see Dunlosky & Metcalfe, 2009).

Another judgment frequently studied in metacognitive research is the Retrospective Confidence Judgment (RCJ). When asked to provide a RCJ, participants are typically asked how confident they are that they answered items correctly on a learning measure, usually a test. As with other monitoring processes, learners’ judgments are often inaccurate when compared with their level of performance (Dunlosky & Metcalfe, 2009).

The extensive literature base that supports the strong relationship between metacognitive monitoring and control has begun to answer some questions about self-regulated learning (Azevedo, Moos, Johnson, & Chauncey, 2010; Winne & Hadwin, 2008). Specifically, in an attempt to further explain the relationship between the two processes, Metcalfe and Kornell (2005) have proposed the region of proximal learning framework (Metcalfe, 2009). This framework suggests that, when studying material of varying difficulty, learners’ perseverance is based on their perceived rate of learning. According to this model, when learners perceive that their rate of learning has reached zero (indicating that they are no longer actively learning) they will cease their study of the material. Therefore, according to this framework, learners will spend the most time studying items with judgments indicating a moderate level of difficulty.

Inferences and Comprehension Regulation

Frequently, learners make an inference by combining information that is present in learning materials with information that is found elsewhere in the text or with their prior knowledge in order to better understand the target concept. Inference generation can often be particularly difficult when reading texts for which the learner has little prior knowledge (Graesser et al., 2007). Furthermore, combining information can be particularly difficult when the information is contradictory (Otero & Kintsch, 1992). Research geared toward understanding learners’ comprehension regulation has often utilized texts containing such contradictions or discrepancies. This line of research indicates that learners’ are often unable to detect even simple discrepancies in text and are frequently unsure of how to deal with the discrepancies when they do detect them (Britton & Eisenhart, 1993; Otero & Campanario, 1990; Otero & Kintsch, 1992).

Current Study

The current study focused on multimedia content delivered through multiple representations (i.e., text and graph), and utilized a within-subjects design to examine how type of discrepancy (no discrepancy, text discrepancy, and text and graph discrepancy) affects metacognitive judgments, allocation of study-time, and the generation of inferences. For this study, a text discrepancy is defined as discrepant information about a particular concept addressed in two separate sentences in a single text about a particular topic (e.g., Microorganisms). A text and graph discrepancy, on the other hand, is defined as discrepant information about a particular concept addressed both in the text and the graph about a particular topic (e.g., Transpiration). Each discrepancy, whether in the text only or between the text and the graph, was related to the content related to the inference question for that topic.

Method

Participants

Forty (N=40) undergraduate students from a public university in the mid-south region of the United States took part in this study and were paid $20 for their participation.

Materials

The researchers developed 12 content slides about 12 different science topics (one topic per slide) across four science domains (Chemistry, Physics, Biology and Physical Science). Each slide contained text and a corresponding graph that illustrated a particular concept discussed in the text. For each slide, the researchers included content from college text books from four science domains (Chemistry, Physics, Biology and Physical Science) (Getis, Getis, & fellmann, 2009; Halliday, Resnick, & Walker, 2008; Hoefnagels, 2009; Masterson & Hurley, 2006; Tillery, 2007).

For text containing no discrepancies or a discrepancy between the text and graph, the text was taken directly from the textbook with no modifications. For text containing a discrepancy in the text, the text was altered slightly in order to include discrepant material. In many cases, the original text was only altered by changing one word in a sentence to make information found within the text contradictory. Each graph that accompanied the text was created by the researchers in order to ensure that all graphs had consistent features (e.g., font, line color and background color). Slides were counterbalanced and equally divided among the three discrepancy types. The content was presented using the computer-based Automated Testing System (ATS) (Lehman, D’Mello, & Person, 2008) (See Figure 1).

Experimental Procedure

The experimental procedure for the study included 3 phases: 1) collection (participants filled out informed consent and demographic information), 2) testing (participants were given two tests to assess different aspects of their prior
knowledge) and 3) experimental session in which the participants provided several metacognitive judgments (i.e., EOL, JOL and RCJ), read text and inspected graphs, and provided answers to 12 science inference questions.

The participants were given 20 minutes total to complete both a test of science knowledge basic graph comprehension test (10 minutes per test). To begin the experimental session, participants were shown a video that provided experimental instructions as well as demonstrated how to navigate the ATS system. The session consisted of 12 trials, for each of which participants were presented with an open-ended inference question based on the specific content they were about to view. Participants were asked to make an Ease of Learning (EOL) judgment by selecting the appropriate multiple-choice option in the ATS system that corresponded to a 0-100% scale that increased in increments of 20 percent (i.e., 0%, 20%, 40%, 60%, 80%, 100%). A judgment of 0% indicated that participants predicted the question would be very difficult to answer, whereas a judgment of 100% indicated that participants predicted the question would be very easy to answer.

Participants were then presented with a content slide about a single topic that contained three paragraphs of textual material and a corresponding graph. For each topic (e.g., Atoms) all three paragraphs and graph were presented simultaneously. Once participants read the paragraphs and inspected the diagram, they were asked to make an immediate Judgment of Learning about textual material (IT JOL) using the ATS system as previously described. For this and for all subsequent JOLs, a response of 0% indicated that the participant judged they did not understand the material at all, whereas a response of 100% indicated a judgment that they completely understood the material.

Participants were also asked to make an immediate Judgment of Learning about the graph that was presented with the text (IG JOL) using the ATS system as previously described. Once participants provided their immediate judgments, the system then displayed a screen with an image of a stop sign for 30 seconds. After the delay, participants were asked to make delayed judgments about both the text (DT JOL) and graph (DG JOL) that was previously presented. These judgments followed the same format as the judgments of learning described above.

At the end of each of the 12 trials, participants were also asked to provide a response to the inference question presented initially and were given as much time as needed to respond to the question. They were then asked to make a Retrospective Confidence Judgment (RCJ) by selecting the appropriate multiple-choice option in the ATS system that corresponded to a 50-100 percentage scale increasing in increments of 10 percent. A judgment of 50% confidence indicated that a participant simply guessed at the answer (indicating that participants believed they have a 50/50 shot at getting their answer correct), whereas a judgment of 100% indicated that a participant was completely confident in their response. This procedure was repeated for the remaining number of slides that were presented (a total of 12 trials). Following the completion of the experimental session, the participants were debriefed and paid $20 for their participation in the study.

Scoring Responses

Open-ended responses were scored using a thematic coding method in which the researchers identified specific units of analysis found within target material (Jackson & Trochim, 2002; Ryan & Bernard, 2000). Each participant’s responses to the 12 inference questions were graded by calculating a percentage of the identified units of analyses that were present in their response. The primary coder scored all 480 answers and a secondary coder scored a random selection of 25% (i.e., 120) responses. The inter-rater reliability for the raters was found to be substantial at Kappa=0.77 (p<0.001). Any disagreements between the researchers were settled through discussion.

Results

Metacognitive Judgments

In order to determine if there were differences among participants metacognitive judgments a series of one-way repeated measures ANOVAs were conducted on each of the recorded judgments for each type of discrepancy (none, text, and text and graph). Results indicated that participants’ EOL judgments were not significantly different $F (1.60, 38) = 0.07, p = 0.89$ (See Table 1). Results further indicated that participants’ RCJ judgments were not significantly different $F (2, 38) = 2.50, p = 0.09$

<table>
<thead>
<tr>
<th>None</th>
<th>Text</th>
<th>Graph</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(SD)</td>
<td>M(SD)</td>
<td>M(SD)</td>
<td>F</td>
</tr>
<tr>
<td>EOL</td>
<td>0.68 (0.18)</td>
<td>0.67 (0.20)</td>
<td>0.67 (0.19)</td>
</tr>
<tr>
<td>IT</td>
<td>0.76 (0.14)</td>
<td>0.67 (0.19)</td>
<td>0.71 (0.17)</td>
</tr>
<tr>
<td>IG JOL</td>
<td>0.72 (0.16)</td>
<td>0.66 (0.20)</td>
<td>0.63 (0.19)</td>
</tr>
<tr>
<td>DT JOL</td>
<td>0.75 (0.14)</td>
<td>0.68 (0.19)</td>
<td>0.72 (0.17)</td>
</tr>
<tr>
<td>DG JOL</td>
<td>0.70 (0.17)</td>
<td>0.66 (0.21)</td>
<td>0.62 (0.19)</td>
</tr>
<tr>
<td>RCJ</td>
<td>0.86 (0.08)</td>
<td>0.84 (0.10)</td>
<td>0.85 (0.08)</td>
</tr>
</tbody>
</table>

Table 1. Means, standard deviations and ANOVA results for six metacognitive judgments, by condition.
With regard to Judgments of Learning, results indicated participants’ immediate text JOLs were significantly different $F(2, 38) = 10.58, p < .001$, $\eta^2=0.33$. A Bonferroni pairwise comparison revealed immediate text JOLs were significantly higher for content that contained no discrepancies ($M=0.76, SD=0.13$) than either text ($M=0.67, SD=0.17$) or text and graph discrepancies ($M=0.71, SD=0.13$) (See Table 1 and Figure 1).

Results indicated that participants’ immediate graph JOLs were also significantly different $F(2, 38) = 9.86, p < .001$, $\eta^2=0.35$. A Bonferroni pairwise comparison revealed that immediate graph JOLs were significantly higher for content that contained no discrepancies ($M=0.75, SD=0.14$) than either text ($M=0.66, SD=0.20$) or text and graph discrepancies ($M=0.63, SD=0.19$) (See Table 1 and Figure 1).

Additionally, results indicated that participants’ delayed text JOLs were significantly different $F(2, 38) = 6.37, p < .01$, $\eta^2=0.20$. A Bonferroni pairwise comparison revealed delayed text JOLs were significantly higher for content that contained no discrepancies ($M=0.75, SD=0.14$) than text discrepancies ($M=0.68, SD=0.19$). Delayed text JOLs were not significantly different for the no discrepancy condition and the text and graph condition ($M=0.72, SD=0.17$) (See Table 1 and Figure 2). Delayed text JOLs were also not significantly different between the text discrepancy content and the text and graph discrepancy content.

Results further indicated that participants’ delayed graph JOLs were significantly different $F(2, 38) = 8.07, p < .001$, $\eta^2=0.29$. A Bonferroni pairwise comparison revealed delayed graph JOLs were significantly higher for content that contained no discrepancies ($M=0.70, SD=0.17$) than text and graph discrepancies ($M=0.62, SD=0.19$). Results indicate no significant difference for delayed graph JOLs between the no discrepancy content and the text discrepancy content ($M=0.66, SD=0.21$) (See Table 1 and Figure 2).

Overall, the results indicate that neither EOL judgments nor RCJ judgments were affected by discrepancy type. However, participant JOLS (i.e., immediate text and graph and delayed text and graph JOLs) were affected by discrepancy type. Both immediate JOLs (text and graph) were significantly higher for material containing no discrepancies than for material containing either type of discrepancy (text or text and graph). However, results were different for delayed JOLs. Delayed text JOLs were significantly higher for material that contained no discrepancy than material that contained discrepancies in the text only. They were not, however, significantly different when compared to either material with no discrepancies or discrepancies between the text and the graph. The opposite was found for delayed graph JOLs. Delayed graph JOLs were significantly higher for material that contained no discrepancy than material that contained discrepancies between the text and graph. However, delayed graph JOLs were not significantly different when compared to either material with no discrepancies or discrepancies only in the text.

Study-Time Allocation
In order to determine if type of discrepancy (none, text, and text and graph) affected participants’ study-time during multimedia learning a one-way repeated measures ANOVA was conducted. Results indicated that there was no significant difference, $F(2, 38) = 0.45, p = 0.64$, among participants’ study time for material with no discrepancy ($M=128.34, SD=63.76$), text discrepancy ($M=129.08, SD=53.61$), or text and graph discrepancy ($M=123.29, SD=50.90$).

Responses to Inference Questions
In order to determine if type of discrepancy (none, text, and text and graph) impacted participants’ answers to the inference questions a one-way repeated measures ANOVA was conducted. Results indicated that there was a significant
difference among participants’ response scores $F(2, 38) = 4.11, p < .05, \eta^2=0.10$. A Bonferroni pairwise comparison revealed response scores were significantly higher for content that contained no discrepancies ($M=0.46, SD=0.20$) than text discrepancies ($M=0.37, SD =0.23$). Response scores were not significantly different between the no discrepancy content and the text and graph content ($M=0.41, SD=0.19$). Response scores were also not significantly different between the text discrepancy content and the text and graph discrepancy content (See Figure 3).

![Figure 3](image_url)

Type of Discrepancy

Figure 3. Mean response score by type of discrepancy (none, text and text and graph). Participant responses were scored on a 0-100 percentage scale.

Overall, these results suggest that when there is any type of discrepancy in the multimedia content participants immediately judge their understanding to be lower, but seem to have difficulties judging what specific aspect (i.e., text or graph) of the content is related to their lack of understanding. However, after a delay, participants seem to have made a judgment about what aspect of the content they believe is responsible for their understanding deficit. However, despite discrepancies in the material and participants’ difference in judgments, there was no significant difference in their allocation of study-time. This, combined with low overall scores on inference responses ($M=0.41$) indicates that participants may lack the prior knowledge or the control strategies (in this case allocation of study-time) to overcome discrepancies in the material. Furthermore, because discrepancies in the text (as opposed to discrepancies between the text and the graph) have a stronger influence on participants’ generation of inferences results indicate that participants’ have more difficulty overcoming discrepancies found within the text.

Conclusion

This study sought to explore the relationships between metacognitive monitoring and control during multimedia learning. This research has generated numerous unanswered questions about the accuracy of metacognitive judgments during multimedia learning and how they are related to study-time allocation and accuracy to inference questions. Most of the literature has examined metacognitive judgments in word-pair recall tasks. This study extends current research by examining several metacognitive judgments, using multimedia science materials, and also including both immediate and delayed JOLs for both text and graphs, all within one experimental session. Overall, the results of this study have far reaching implications for both existing models of metacognition and metacomprehension (e.g., Metcalfe, 2009) and theories of multimedia learning (e.g., Mayer, 2009). Specifically, this study has begun to examine a neglected area of metacognitive judgments with complex multimedia science materials.

Some results of the current study, however, require further investigation. Specifically, future studies should investigate whether this phenomenon is primarily due to a lack of prior knowledge, a lack of control strategies or a combination of these factors by including a measure of strategy monitoring. The use of on-line trace methodologies such as concurrent think-alouds could potentially provide additional evidence regarding the role and nature of the underlying cognitive and metacognitive processes (e.g., Azevedo et al., 2010). In addition, future studies should take into account the impact of participants’ epistemological beliefs (i.e., benefit of texts and diagrams to learning) and should investigate effects on other control strategies in addition to study-time allocation.

Our current and future research focuses on using multi-method approaches, using eye-tracking and other on-line trace methodologies and learning outcomes (e.g., Azevedo et al., 2011). In particular, we will examine how gaze behaviors, fixations, and regressions, are related to and indicative of the role of attention, number of fixations on relevant and irrelevant parts of the text and diagrams and discrepancies, and how discrepancies are resolved based on gaze behavior.

Acknowledgments

This study was supported by funding from the National Science Foundation awarded to the second author.

References

Advancing the science of learning with metacognitive tools. In M.S. Khine & I.M. Saleh (Eds.) New science of learning: computers, cognition, and collaboration in education (pp. 252-247). Amsterdam: Springer.

Lehman, B., D’Mello, S.K., & Person, N. (2008). All alone with your emotions: An analysis of student emotions during effortful problem solving activities. Workshop on emotional and cognitive issues in ITS held in conjunction with ninth international conference on intelligent tutoring systems, Montreal, Canada.

