Title
RATE CONSTANTS OF C1OX OF ATMOSPHERIC INTEREST

Permalink
https://escholarship.org/uc/item/2s6947hc

Author
Watson, R.T.

Publication Date
1974-05-01
RATE CONSTANTS OF ClO_x OF ATMOSPHERIC INTEREST

R. T. Watson

May 1974

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
The Chapman mechanism1 for the production and destruction of ozone has been shown to be inadequate to explain the observed vertical ozone column concentrations in the stratosphere2. Catalytic cycles which destroy ozone, based on \(\text{HO}_x \) and \(\text{NO}_x \)3 and more recently \(\text{ClO}_x \)4, have been proposed to account for the large discrepancy between the observed and calculated concentrations. Accurate values for the rate constants of reactions involving ground state atomic chlorine (\(^2\text{P}_{3/2} \)) and the oxides of chlorine, (\text{ClO}, \text{ClOO} and \text{OClO}) are required as a function of temperature, in order to perform model calculations which would estimate the perturbation upon the ozone column concentration due to the injection of chlorine containing species into the stratosphere, i.e. \(\text{Cl}_2 \text{HCl} \), and freons (i.e. \(\text{CFC}_3 \), \(\text{CF}_2\text{Cl}_2 \)).

This compilation of the rate data critically reviews the published data and forwards with a minimum of explanation a set of preferred values for either the rate constant at 298K and/or (whenever possible) the Arrhenius expression. Rate data exists for most of the reactions which are thought to be of importance in the stratosphere, but unfortunately most of it was obtained at 298K, and consequently estimates must be made as to the temperature dependence of the rate constants. Certain reactions are more important in the chemistry of the stratosphere than others, i.e. \(\text{Cl} + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2 \); \(\text{O} + \text{ClO} \rightarrow \text{Cl} + \text{O}_2 \); \(\text{NO} + \text{ClO} \rightarrow \text{NO}_2 + \text{Cl} \);
Cl + CH₄ → CH₃ + HCl and HO + HCl → H₂O + Cl; and of these, the first three have only been studied at 298K. However, due to the rapidity of these reactions at 298K (all $> 1.7 \times 10^{-11}$ cm3/molecule$^{-1}$s$^{-1}$) it is unlikely that any of them have an activation energy greater than 2.1 kJ mol$^{-1}$ (0.5 kcal mol$^{-1}$). Consequently, this means that the rate constants for all three reactions are known to within a factor of 2 at all stratospheric temperatures. The other two reactions have both received recent investigation and their rate constants as a function of temperature are now reasonably well established.

Many of the early published results have recently been shown to be erroneous due to misinterpretation of experimental data indirectly resulting from insufficient sensitivity in the detection apparatus. Thus the modeller must be discriminating in his choice of rate constants and absorption cross-sections, and consequently the writer feels that a brief review of the experimental techniques used to obtain the results reported in this compilation is justified.

Calorimetric Probe

The calorimetric probe method of monitoring chlorine atoms has been used in one study reported, and was calibrated to determine absolute atom concentrations by use of the ClNO titration reaction. This technique is both insensitive ([Cl] $\sim 3 \times 10^{14} - 3 \times 10^{15}$ atom cm$^{-3}$) and non-specific and thus of limited use.

Emission Spectroscopy

Several studies of third order reactions have been performed by monitoring the concentration of ground state $^2P_{3/2}$ chlorine atoms via the Cl$_2^*$ (3Π$^-$$_{ou^+} \rightarrow 1^+$$_{g^+}$) afterglow. The recombination of $^2P_{3/2}$ chlorine...
atoms, and the subsequent fate of the $^3Π_{out}$ state of molecular chlorine can be written:\(^{12}\)

\[
\text{Cl}(^2P_{3/2}) + \text{Cl}(^2P_{3/2}) + M + \text{Cl}_2(^3Π_{out}) + M
\]

\[
\text{Cl}_2(^3Π_{out}) \rightarrow \text{Cl}_2(^1Σ^+_g) + h\nu (> 500\text{nm})
\]

\[
\text{Cl}(^2P_{3/2}) + \text{Cl}_2(^3Π_{out}) \rightarrow \text{Cl}_2(\text{non-radiative}) + \text{Cl}(^2P_{3/2})
\]

It has been shown that $I_\lambda = I_\lambda^0[\text{Cl}]^{n_\lambda}$, where I_λ represents the emission intensity at wavelength λ\(^{12}\). n_λ was shown to vary with λ, (i.e. $n_{520\text{ nm}} = 1.7(M=\text{Ar})$ and $n_{920\text{ nm}} = 1.0(M=\text{Ar})$) and not have a constant value of 2 as had been earlier reported\(^9\). Therefore, when using this technique to monitor relative Cl atom concentrations, care must be taken to use the correct value for n_λ. Results for some early work which used this method\(^7\) must be slightly modified (the reported rate constants are probably low by $\sim 2/n_\lambda = 15\%$) as n_λ was taken to be 2, rather than 1.7 as later determined. This method of monitoring Cl atom concentrations is moderately insensitive, but useful when $[\text{Cl}]$ is $10^{14} - 10^{16}$ atom cm$^{-3}$. Due to the rapidity of the Cl + ClNO \rightarrow NO + Cl$_2$ reaction\(^{13}\), ClNO can be used to titrate Cl atoms. The critical extinction of the red Cl$_2^*$ afterglow is one method for determining the titration end-point, and this was recently used in a series of Cl + RH reactions\(^{14}\), where $[\text{Cl}]_0 \geq 5 \times 10^{12}$ atom cm$^{-3}$. Under low pressure discharge flow conditions, the extent to which Cl atoms are removed between the ClNO inlet and the observation point at which Cl$_2^*$ is monitored due to the Cl + Cl + M + Cl$_2$ + M and the Cl + NO + M \rightarrow ClNO + M reactions can be calculated, but is normally negligible. The heterogeneous wall removal of atomic chlorine can be inhibited by coating the reactor surfaces with H$_3$PO$_4$.
Ultraviolet Spectrophotometry

The technique of monitoring both stable and labile species by UV absorption spectroscopy has been used in conjunction with discharge flow (ClO, OCIO, O₃)¹⁵-¹⁸; flash photolysis (ClO, OCIO, Cl₂O, ClNO)¹⁹-²⁵ and molecular modulation²⁶,²⁷ systems. The absolute concentrations of these species can be monitored as a function of reaction time by following the optical absorption of the species and using the experimentally determined values for the absorption cross sections. Although the absorption cross sections are fairly high (ClO 277.2 nm = 7.2 x 10⁻¹⁸ cm² molecule⁻¹(15); OCIO 351.5 nm = 1.14 x 10⁻¹⁷ cm² molecule⁻¹(15); O₃ 260.4 nm = 1.10 x 10⁻¹⁷ cm² molecule⁻¹(28); all to base e), this method for following these species is still relatively insensitive compared to molecular beam mass spectrometry. The discharge flow systems used multireflection absorption cells where a typical optical pathlength was 20 cm, resulting in a limit of sensitivity for ClO, OCIO and O₃ of ~ 10⁻¹³ molecule cm⁻³. The molecular modulation technique was two orders of magnitude more sensitive, using an optical pathlength of 400 cm and measuring modulation amplitudes of 10⁻³ - 10⁻⁵. Thus, concentration modulations of ~ 10¹¹ molecules cm⁻³ could be observed for ClO and ClOO.

The first study of reactions (1) (Cl + O₃ → ClO + O₂)¹⁵ and (2) (Cl + OCIO → 2 ClO)¹⁵ could only report lower limits for k₁ and k₂ at 300K due to limited detection sensitivity. When studies of the O + OCIO → ClO + O₂¹⁸,¹⁹, and NO + OCIO → NO₂ + ClO¹⁶ reactions were performed, several elementary processes were occurring simultaneously, and due to the fact that the rapidity of reaction (2) was not fully realised,
its role in the overall mechanism of these reactions was not appreciated. This resulted in the value for k_{31} ($O + OC1O$) being overestimated by two orders of magnitude. Rate constants for reactions 14 ($O + ClO \rightarrow Cl + O_2$) and 15 ($NO + ClO \rightarrow NO_2 + Cl$), which are of utmost importance in the stratosphere, were obtained by indirect methods whereby the $O(3P)$ and NO (in separate experiments) competitively reacted with ClO and $OC1O$. The autocatalytic nature of the reaction mechanisms was not known and consequently the published values for $k_{14}^{18,19}$ and k_{15}^{16} must be rejected. The reaction mechanism for the $X + OC1O$ reaction can be written, ($X = O, NO$)

$$X + OC1O \xrightarrow{\text{slow}} XO + ClO; \ k \approx 5 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

$$X + ClO \xrightarrow{\text{fast}} XO + Cl; \ k > 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

$$Cl + OC1O \xrightarrow{\text{fast}} ClO + ClO; \ k = 5.9 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

The bimolecular self-disproportionation of ClO radicals has been studied in a wide variety of chemical systems using UV spectrophotometry in conjunction with discharge flow15,17,56, flash photolysis19,23,24,25 and molecular modulation26 experiments, however, the results are at variance with each other. The low pressure discharge flow technique has conclusively shown, both by direct (using atomic resonance absorption)29 and indirect evidence that, Cl atoms are generated from the decay of ClO radicals, but not 100% efficiently. This technique has been used to show that the reaction is overall 2nd order and has an activation of $\sim 10 \text{ kJ mol}^{-1}$ ($\sim 2.4 \text{ kcal mol}^{-1}$). Results using the high pressure flash photolysis experiment record that there is no generation of Cl atoms, and that the overall decay is strictly 2nd-order (with possibly no
activation energy). The third technique of molecular modulation spectroscopy yielded results that indicated that the ClO radical decayed by both overall 2nd and 3rd order processes, producing atomic chlorine in the former. Thus, any results used to compute the following important equilibrium constants from these results must be used with caution. The discharge flow results indicate the possibility of two primary decay reactions, but the experimental decay data cannot differentiate between the pathways and measures the overall rate of decay. Also, the measured activation energy refers to the overall activation energy for ClO decay.

\[
\begin{align*}
\text{ClO} + \text{ClO} & \overset{k_{24}}{\underset{k_6}{\rightleftharpoons}} \text{ClOO} + \text{Cl} ; \quad K_1^* = k_{24}/k_6 \\
\text{Cl} + \text{O}_2 + \text{M} & \overset{k_3}{\rightarrow} \text{ClOO} + \text{M} ; \quad K_2^* = k_3/k_{30}
\end{align*}
\]

Mass Spectrometry

The discharge flow technique has been used in conjunction with mass spectrometry for several studies reported in this compilation. Many of the preferred rate constants were measured using a system which utilized efficient collision free sampling between the flow tube and the ion source of the mass spectrometer. The ion currents of both labile and stable species were shown to be linearly proportional to the concentrations of their flow tube precursors and could be calibrated on an absolute basis. Typical limits of sensitivity, with a signal to noise ratio of unity, were, ClO (m/e 51) = \(1.5 \times 10^9\) molecule cm\(^{-3}\); OC1O (m/e 67) = \(5.0 \times 10^8\) molecule cm\(^{-3}\); O\(_3\) (m/e 48) = \(2.0 \times 10^9\) molecule cm\(^{-3}\). Therefore, it can be seen that this technique is \(\approx 4\) orders of magnitude more sensitive than UV absorption spectrophotometry for monitoring ClO and
OC10 and as such is well suited to study the kinetics of fast reactions. The preferred values of the rate constants obtained using this technique used pseudo first order conditions, whereby, complicating 1st and 2nd order secondary reactions were eliminated. Reactions due to trace concentrations of active impurities produced in the microwave discharge (i.e. NO, O, H) were carefully eliminated utilizing the discharge bypass technique and/or by chemical scavenging.

The mass spectrometric study of the Cl + CH4 reaction used a similar but somewhat less efficient, and less sensitive sampling system than the above. However, the study was performed using pseudo 1st order conditions whereby, if there had been any secondary reaction between the atomic chlorine and the product methyl radicals it would not have affected the reported rate constant.

Time of flight mass spectrometry has been used to determine the overall reaction rate and stoichiometry for the O + Cl2 reaction. Both atomic oxygen and molecular chlorine were monitored and this technique yielded results in good agreement with those obtained using chemiluminescence to monitor O atoms.

Resonance Fluorescence

The technique of atomic resonance fluorescence is both highly specific and sensitive, and thus, well suited to the study of rapid reactions. Both discharge flow and flash photolysis experiments have monitored the fluorescent flux of the Cl 4s4p3/2 - 3p52p3/2 transition at 138.0 nm. The results of the discharge flow experiments showed that the fluorescent flux was linearly proportional to the concentration of 2p3/2 chlorine atoms when [Cl, 2p3/2] ≤ 10^12 atom cm\(^{-3}\).
This is in slight contrast to the flash photolysis results which show that when the chlorine atom concentration is in the range of $10^{11} - 10^{12}$ atom cm$^{-3}$, the fluorescent flux is not linearly proportional to the atom concentration, but obeys the following: $I_F \propto [\text{Cl}]^{0.9}$. The paper did not report the nature of the relationship between I_F and $[\text{Cl}, \overset{2p}{3/2}]$ when the latter was $\leq 10^{11}$ atom cm$^{-3}$, but it would be expected that I_F was linearly dependant upon the atom concentration in this region35. The lower limit for detection of $\overset{2p}{3/2}$ Cl atoms using the discharge flow system was reported to $\geq 5 \times 10^{10}$ atom cm$^{-3}$(13), but later after system modification this value was reduced to $\geq 3 \times 10^9$ atom cm$^{-3}$(5).

Kinetic studies involving $\overset{3p}{0}$ atoms have been performed using the discharge flow technique5. The fluorescent emission used to monitor the concentration of $\overset{3p}{0}$ atoms was that produced by the $\overset{3s}{0} \rightarrow \overset{2p}{4} \overset{3p}{0}$ transition at λ 130.6 nm. The limit of detection was reported to be $\sim 4 \times 10^9$ atom cm$^{-3}$, and from this value to $\leq 10^{12}$ atom cm$^{-3}$ the intensity of fluorescence was found to be linearly proportional to the atom concentration.

Hydroxyl radicals have been monitored in a discharge flow system using the emission produced at 309 nm, the band head of the $\overset{2\Pi}{2} (0-0)$ transition36. Hydroxyl radical concentrations $\leq 10^{10}$ radical cm$^{-3}$ can be detected, thus, allowing reaction conditions to be chosen whereby the problem of the bimolecular disproportionation of HO radicals is eliminated. Under these conditions, where $[\text{HO}] \overset{0}{\leq} 10^{12}$ radical cm$^{-3}$, the only process removing HO radicals, besides its interaction with the added reagent, is the heterogeneous 1st order wall removal. However, if the reaction is performed using pseudo first order conditions and the fixed observation point technique (as was the case) then 1st order reactions
such as wall recombination do not need to be considered in the analysis of the decay data.37,38

It is apparent that the technique of atomic and molecular resonance fluorescence allows even the most rapid reactions to be performed under psuedo first order conditions, whereby, the problem of complicating secondary reactions can be successfully eliminated. The technique becomes insensitive at high absorber concentrations (> \(10^{12}\) particle cm\(^{-3}\)), although the lamp design and operating conditions control the range in which the intensity of the fluorescent flux is linear (or nearly) with atom concentration. The technique of atomic resonance fluorescence is powerful in that it can be used to directly observe in a quantative manner trace concentrations of both, (a) impurity atoms produced either photolytically or in a microwave discharge, and (b) atoms produced in the course of a reaction. This can be achieved by alteration of the chemical composition of the discharge lamp.

Calibration of the fluorescent flux intensity is normally achieved by producing known concentrations of atoms, either photolytically or by use of a stoichiometric reaction and observing the fluorescent flux produced. Even though this procedure may/or may not be to within an accuracy of 10\%, it introduces no error into the rate constants reported in this compilation as all studies were performed under psuedo first order conditions, whereby, the concentration of the species being monitored was always significantly (a factor of \(> 5\)) lower than the un-monitored species, therefore, only relative atom concentrations were required.
Resonance Absorption

This technique has been infrequently used in the studies to be reported in this compilation. It is typically about two orders of magnitude less sensitive than resonance fluorescence, and thus of limited use in the study of rapid bimolecular reactions \((k > 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})\), where pseudo 1st order conditions are required to eliminate complicating secondary reactions. Hydroxyl radicals have been monitored using this technique in a flash photolysis study of the \(\text{HO} + \text{HCl}\) reaction\(^{39}\). The only other studies to use this technique were; (a) an investigation of the stoichiometry of the \(\text{Cl} + \text{ClNO}\) reaction, in which a lower limit was reported for the rate constant\(^{40}\), and (b) an investigation of the reaction products of the bimolecular disproportionation of \(\text{ClO}\) radicals at low total pressure (\(~ 1\text{-}5 \text{ torr})\(^{29}\). Both studies were performed in a discharge flow apparatus and monitored the concentration of \(^2P_{3/2}\) chlorine atoms at \(\lambda 138.0 \text{ nm}\) (Cl 4s \(^4P_{3/2} - 3 \text{p}^5 \, ^2P_{3/2}\)). The lower limit of detection was \(\geq 2 \times 10^{12} \text{ atom cm}^{-3}\). Nitric oxide was also monitored in the former study\(^{40}\) at \(\lambda 180 \text{ nm}\) (1-0 transition of \(\text{NO}, \varepsilon - D \, ^2l^+ - X \, ^2\Pi_{1/2}\)), in which the lower limit of sensitivity was reported to be \(\geq 2 \times 10^{13} \text{ molecule cm}^{-3}\).

Calibration of the emitting lamp, which is normally achieved in a similar manner to that for fluorescent experiments, could be eliminated if the f value of the electronic transition were known, and if the lamp were totally unreversed with pure Doppler broadened lines. However, the latter criterion is difficult to achieve and often the f values are unknown. When kinetic experiments are performed under second order
conditions, or the stoichiometry of a reaction is being measured, then the absolute concentration of the species being monitored is required, and any calibration inaccuracies will be reflected in the accuracy of the final result. Absorption experiments suffer to a greater extent than fluorescent experiments to drift in the lamp output, but are able to measure higher concentrations, which in some systems is essential.

Electron Paramagnetic Resonance Spectrometry

Two kinetic studies have used e.p.r. in conjunction with the discharge flow technique. The decay of ground state (3P) oxygen atoms in the presence of excess HCl was monitored by following the intensity of their e.p.r. spectrum. The production of $^2P_{3/2}$ chlorine atoms was observed in a qualitative manner.

In a study of the HO + HCl system, absolute concentrations of both Cl($^2P_{3/2}$) and HO($^2\Pi$) were required in order to analyse the kinetic data. Absolute concentrations were obtained by double integration of their spectra, and by using published e.p.r. transition probabilities. Consequently, an error in the calibration would lead to an error in the value of the calculated rate constant. The lower limit for detection of HO radicals was reported to be 2.5×10^{11} molecule cm$^{-3}$. The sensitivity of this technique for monitoring atoms is similar to that of atomic resonance absorption.

Infrared Spectroscopy

Infrared spectroscopy has been used with the molecular modulation technique to identify the ClOO free radical as an intermediate in the photolysis of Cl$_2$/O$_2$ mixtures, and to obtain a value for a product of rate constants. Kinetic data obtained from this system must be
analysed in terms of a large complexity of interacting reactions. Thus, the reported rate constants rely upon the analysis using the correct matrix of reactions, and simplifying assumptions. However, as I.R. absorption cross sections are normally lower than UV absorption cross sections the technique is rarely used for kinetic experiments, except with the molecular modulation technique which uses long optical path lengths and is capable of measuring small modulation amplitudes ($10^{-4} - 10^{-5}$).

Miscellaneous Techniques

Some early studies were performed whereby reaction mechanisms and rate constants were determined from somewhat limited and indirect experimental data such as: pressure change as a function of extent of reaction41,42; the chemical analysis of unreacted reagents43 or reaction products44 from a competitive study with a known reference rate constant. These studies involved complex kinetic schemes and the results must be regarded as inferior to the more recent direct determinations.

Errors and Uncertainty Limits

The difficulty in assigning reliability limits to the rate data is that the preferred value is normally a single measurement. Although several reactions have been studied more often, many of the determinations can be eliminated due to their indirectness (subject to an accumulation of errors) or incorrect data analysis. Besides the error limit placed on the reported rate constant by the original workers, it is difficult for the writer to arbitrarily increase this error limit. However, a few comments on systematic errors are included to show that ±25% is probably the upper limit to place on single value determinations. Five recent
investigations of the $O(3P) + NO_2$ reaction have been performed using a wide variety of techniques, and the reported rate constants were all within 10% of each other, which strongly suggests that systematic errors are not normally significant. Most of the preferred values which was obtained from single measurements were performed using the discharge flow technique.

Discharge Flow

The fundamental measurements in a discharge flow system are: P_T, total flow tube pressure; T, temperature; A, cross-sectional area of the flow tube; and f_i, the flow rates of both carrier and reagent gases. It is possible that errors in these measurements could accumulate and cause an error of 10% in the measured rate constants. Systematic errors may also arise if, (1) the gas flow profile is laminar, rather than plug, and (2) axial diffusion is significant. As the rate of radial diffusion increases, the flow velocity profile tends towards that of plug flow, but the problem of back diffusion increases. A recent paper has calculated the magnitude of the possible errors introduced into the determination of rate constants if the flow velocity profile is laminar, and plug flow has been assumed. The magnitude of the error is dependant upon the type of observation technique used; flow tube dimensions, total pressure, and the first order rate constant. Calculations were performed to show that the errors caused by this effect were always less than 10% in agreement with earlier views that the errors caused in assuming plug flow were small. In flow systems with numerous inlet jets, the formation of laminar flow is unlikely due to the jets acting as centers of turbulence. The effect of back diffusion is to under-
estimate the true rate constant, and the following expression shows the relationship between the true \((k)\) and measured \((k')\) rate constants:

\[
k = k' \left(1 + \frac{k' D}{U^2}\right)
\]

\(k, k'\) are 1st order rate constants

\(U = \) flow velocity

\(D = \) diffusion coefficient

The magnitude of the errors introduced by neglecting back diffusion can be seen to be greatest under slow flow conditions, but are still normally < 10%. The last two effects both underestimate the true rate constant and so it is conceivable, but unlikely that they may add to lead to an error of ~25%.

Flash Photolysis

The fundamental measurements in a flash photolysis system are: \(t\), time; \(T\), temperature; and \(P_i\), the reagent and diluent gas pressures. The largest systematic errors present in early flash photolysis systems stemmed from (1) the pressure measurements, and (2) complicating secondary reactions which limited the accuracy of the data analysis. Since the advent of accurate low pressure capacitance manometers, the accuracy of pressure measurements has improved considerably and the errors are now \(\leq (1-3)\%\). Previous discussion has shown that modern detection techniques, such as atomic resonance fluorescence, have led towards the elimination of secondary reactions in most chemical systems. Diffusion of species out of the reaction zone can be accurately determined and should not lead to an error in the data analysis of > 5%. Consequently, it is felt that systematic errors should not exceed 10% in total.

Units

Rate constants for bimolecular reactions are expressed in units of \(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\), and those for termolecular reactions in \(\text{cm}^6 \text{ molecule}^{-1}\).
The expression used for a rate constant as a function of temperature is \(k = A \exp(-C/T) \) where \(C = E/R \), \(E \) being the "activation energy", and \(R \) the gas constant. To obtain \(E \) in \(\text{kJ mol}^{-1} \), multiply \(C \) by 0.008314 and to obtain \(E \) in \(\text{kcal mol}^{-1} \), multiply \(C \) by 0.001987. Absorption cross sections are given in units of \(\text{cm}^2 \) molecule\(^{-1}\).

Numbered Reactions

The numbered rate constants referred to in the introduction are keyed to the Table of Contents. Tables 1A and 1B list the reactions studied under the various techniques used. An asterisk denotes a study in which the result is used by the writer to forward a preferred value.

Acknowledgements

I am indebted to M.A.A. Clyne for many discussions on the chemistry of \(\text{ClO}_x \), and to H. S. Johnston for his useful advice.

This work was supported by the Climatic Impact Assessment Program by means of an interagency agreement between the Department of U.S. Transportation and the Atomic Energy Commission.
<table>
<thead>
<tr>
<th>Calorimetric Probe</th>
<th>Emission Spectroscopy</th>
<th>Ultraviolet Spectroscopy</th>
<th>Mass Spectrometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{13}(Cl+Cl+Ar)$; $d.F^6$</td>
<td>$k_3(Cl+O_2+M)$; $d.F^{11}$;</td>
<td>$k_1(Cl+O_3)$; $d.F^{15}$;</td>
<td>$k_1(Cl+O_3)^*; d.F^{30}$;</td>
</tr>
<tr>
<td></td>
<td>$k_3(Cl+O_2+M)$; $d.F^{15}$;</td>
<td>$k_2(Cl+OC10)$; $F.p^{21}$;</td>
<td>$k_2(Cl+OC10)$; $d.F^{5}$;</td>
</tr>
<tr>
<td></td>
<td>$k_8(Cl+NO+N_2)^*; d.F^7$;</td>
<td>$k_2(Cl+OC10)$; $d.F^{15}$;</td>
<td>$k_4(Cl+CH_4)^*; d.F^{14}$;</td>
</tr>
<tr>
<td></td>
<td>$k_9(Cl+NO+O_2)^*; d.F^7$;</td>
<td>$k_3(Cl+O_2+M)$; $F.p^{22}$;</td>
<td>$k_14(O+C10)^*; d.F^{5}$;</td>
</tr>
<tr>
<td></td>
<td>$k_{11}(Cl+NO_2+M)^*; d.F^{10}$;</td>
<td>$k_5(Cl+C100)$; $m.m^{26}$;</td>
<td>$k_{14}(O+C10)$; $d.F^{55}$;</td>
</tr>
<tr>
<td></td>
<td>$k_{12}(Cl+ClNO_2)$; $d.F^{10}$;</td>
<td>$k_6(Cl+C100)$; mm^{26};</td>
<td>$k_{15}(NO+C10)^*; d.F^{30}$;</td>
</tr>
<tr>
<td></td>
<td>$k_{13}(Cl+Cl+Ar)^*; d.F^8$;</td>
<td>$k_5/k_6; F.p^{22}$;</td>
<td>$k_{16}(C10+C0); d.F^{17}$;</td>
</tr>
<tr>
<td></td>
<td>$k_{13}(Cl+Cl+Ar); d.F^9$;</td>
<td>$k_7(Cl+Cl_2O)^*; F.p^{20}$;</td>
<td>$k_{17}(C10+O_3)^*; d.F^{29}$;</td>
</tr>
<tr>
<td></td>
<td>$k_{27}(O+Cl_2)^*; d.F^{32}$;</td>
<td>$k_7(Cl+Cl_2O); F.p^{23}$;</td>
<td>$k_{18}(C10+H_2); d.F^{17}$;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$k_{14}(O+C10); F.p^{19}$;</td>
<td>$k_{19}(C10+CH_4); d.F^{17}$;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$k_{14}(O+C10); d.F^{18}$;</td>
<td>$k_{20}(C10+C_2H_4); d.F^{17}$;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$k_{15}(NO+C10); F.p^{16}$;</td>
<td>$k_{21}(C10+C_2H_2); d.F^{17}$;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$k_{16}(C10+CO); mm^{27}$;</td>
<td>$k_{22}(C10+N_2O); d.F^{17}$;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$k_{16}(C10+CO)^*; d.F^{17}$;</td>
<td>$k_{23}(C10+NH_3); d.F^{17}$;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$k_{17}(C10+O_3)^*; d.F^{15}$;</td>
<td>$k_{24}(C10+C10); d.F^{29}$;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$k_{18}(C10+H_2); d.F^{17}$;</td>
<td>$k_{25}(C10+C10); d.F^{29}$;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$k_{19}(C10+CH_4); d.F^{17}$;</td>
<td>$k_{26}(C10+C10+M)$; $m.m^{57}$;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$k_{20}(C10+C_2H_4); d.F^{17}$;</td>
<td>$k_{27}(O+Cl_2)^*; d.F^{31}$;</td>
</tr>
<tr>
<td>Calorimetric Probe</td>
<td>Emission Spectroscopy</td>
<td>Ultraviolet Spectroscopy</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k_{21}(\text{ClO}+\text{C}_2\text{H}_2)$; d.F17</td>
<td></td>
<td></td>
<td>$k_{29}(\text{O}+\text{HCl})$; s.r58;</td>
</tr>
<tr>
<td>$k_{22}(\text{ClO}+\text{N}_2\text{O})$; d.F17</td>
<td></td>
<td></td>
<td>$k_{31}(\text{O}+\text{OC}1\text{O})$; d.F5;</td>
</tr>
<tr>
<td>$k_{23}(\text{ClO}+\text{NH}_3)$; d.F17</td>
<td></td>
<td></td>
<td>$k_{32}(\text{NO}+\text{OC}1\text{O})$; d.F30;</td>
</tr>
<tr>
<td>$k(25^*+25') (\text{ClO}+\text{ClO})$; F.p24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k(25+25') (\text{ClO}+\text{ClO})$; F.p25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k(25+25') (\text{ClO}+\text{ClO})$; F.p23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k(25+25') (\text{ClO}+\text{ClO})$; d.F18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k(25+25') (\text{ClO}+\text{ClO})$; d.F15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k(25^') (\text{ClO}+\text{ClO})$; mm. 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k(25+25') (\text{ClO}+\text{ClO})$; d.F19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k(25+25') (\text{ClO}+\text{ClO})$; F.p56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$k_{33}(\text{N}+\text{OC}1\text{O})$; d.F59;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$k_{34}(\text{H}+\text{OC}1\text{O})$; d.F5;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$k_{35}(\text{O}+\text{Cl}_2\text{O})$; d.F55;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$k_{28}(\text{HO}+\text{HCl})$; F60;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$k_{29}(\text{O}+\text{HCl})$; s.r58;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1A (Continued)

<table>
<thead>
<tr>
<th>Calorimetric Probe</th>
<th>Emission Spectroscopy</th>
<th>Ultraviolet Spectroscopy</th>
<th>Mass Spectrometry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$k_{(25+25')} (\mathrm{ClO}+\mathrm{ClO}^*)$;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$d.F^{17}$;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$k_{26} (\mathrm{ClO}+\mathrm{ClO}+\mathrm{M}); m.m^{26}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$k_{26} (\mathrm{ClO}+\mathrm{ClO}+\mathrm{M}); d.F^{17}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$k_{31} (O+\mathrm{ClO}); F.p^{21}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$k_{31} (O+\mathrm{ClO}); d.F^{18}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$k_{32} (NO+\mathrm{ClO}); d.F^{16}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resonance Fluorescence</td>
<td>Resonance Absorption</td>
<td>E.P.R.</td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>$k_2(Cl+OC10)^*$; d.F5;</td>
<td>$k_{10}(Cl+ClNO); d.F^{40}$;</td>
<td></td>
<td>$k_4(Cl+CH_4); S.C^{44}$;</td>
</tr>
<tr>
<td>$k_4(Cl+CH_4)^*$; F.p34;</td>
<td>$k_{28}(HO+HCl)^*; F.p^{39}$;</td>
<td></td>
<td>$k_4(Cl+CH_4); S.C^{43}$;</td>
</tr>
<tr>
<td>$k_{10}(Cl+ClNO)^*$; d.F33;</td>
<td></td>
<td></td>
<td>$k_{28}(HO+HCl)^*; d.F^{46}$;</td>
</tr>
<tr>
<td>$k_{14}(O+ClO)^*; d.F^{5}$;</td>
<td></td>
<td></td>
<td>$k_{29}(O+HCl); d.F^{45}$;</td>
</tr>
<tr>
<td>$k_{31}(O+OC10)^*; d.F^{5}$;</td>
<td></td>
<td></td>
<td>$k_{10}(Cl+ClNO); S.C^{42}$;</td>
</tr>
<tr>
<td>$k_{28}(HO+HCl)^*; d.F^{36}$;</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d.F = discharge flow

F.p = flash photolysis

s.r. = stirred reactor

S.C. = static cell

F = flame
I. Reactions of Ground State \(^2P_{3/2} \) Chlorine Atoms.

(1) \(\text{Cl}^\left(^2P_{3/2} \right) + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2 \)

(2) \(\text{Cl}^\left(^2P_{3/2} \right) + \text{OCIO} \rightarrow 2 \text{ClO} \)

(3) \(\text{Cl}^\left(^2P_{3/2} \right) + \text{O}_2 + \text{M} \rightarrow \text{ClOO} + \text{M} \)

(4) \(\text{Cl}^\left(^2P_{3/2} \right) + \text{CH}_4 \rightarrow \text{CH}_3 + \text{HCl} \)

(5) \(\text{Cl}^\left(^2P_{3/2} \right) + \text{ClOO} \rightarrow \text{Cl}_2 + \text{O}_2 \)

(6) \(\text{Cl}^\left(^2P_{3/2} \right) + \text{ClOO} \rightarrow 2 \text{ClO} \).

(7) \(\text{Cl}^\left(^2P_{3/2} \right) + \text{Cl}_2\text{O} \rightarrow \text{Cl}_2 + \text{ClO} \)

(8) \(\text{Cl}^\left(^2P_{3/2} \right) + \text{NO} + \text{N}_2 \rightarrow \text{ClNO} + \text{N}_2 \)

(9) \(\text{Cl}^\left(^2P_{3/2} \right) + \text{NO} + \text{O}_2 \rightarrow \text{ClNO} + \text{O}_2 \)

(10) \(\text{Cl}^\left(^2P_{3/2} \right) + \text{ClNO} \rightarrow \text{Cl}_2 + \text{NO} \)

(11) \(\text{Cl}^\left(^2P_{3/2} \right) + \text{NO}_2 + \text{M} \rightarrow \text{ClNO}_2 + \text{M} \)

(12) \(\text{Cl}^\left(^2P_{3/2} \right) + \text{ClNO}_2 \rightarrow \text{Cl}_2 + \text{NO}_2 \)

(13) \(\text{Cl}^\left(^2P_{3/2} \right) + \text{Cl}^\left(^2P_{3/2} \right) + \text{Ar} \rightarrow \text{Cl}_2 + \text{Ar} \)

II. Reactions Producing Ground State \(^2P_{3/2} \) Chlorine Atoms, and/or Involving ClO Radicals.

(14) \(\text{O}^\left(^3P \right) + \text{ClO} \rightarrow \text{Cl}^\left(^2P_{3/2} \right) + \text{O}_2^* \left(^1\Delta, ^1\Sigma \right) \)

(15) \(\text{NO}^\left(^2\Pi \right) + \text{ClO} \rightarrow \text{NO}_2 + \text{Cl}^\left(^2P_{3/2} \right) \)

(16) \(\text{ClO} + \text{CO} \rightarrow \text{CO}_2 + \text{Cl}^\left(^2P_{3/2} \right) \)

(17) \(\text{ClO} + \text{O}_3 \rightarrow \text{ClOO} + \text{O}_2 \)

\[\rightarrow \text{OCIO} + \text{O}_2 \]

(18) \(\text{ClO} + \text{H}_2 \rightarrow \text{Products} \)
(19) $\text{ClO} + \text{CH}_4 \rightarrow \text{Products}$

(20) $\text{ClO} + \text{C}_2\text{H}_4 \rightarrow \text{Products}$

(21) $\text{ClO} + \text{C}_2\text{H}_2 \rightarrow \text{Products}$

(22) $\text{ClO} + \text{N}_2\text{O} \rightarrow \text{Products}$

(23) $\text{ClO} + \text{NH}_3 \rightarrow \text{Products}$

(24) $\text{ClO} + \text{ClO} \rightarrow \text{Cl} + \text{OClO}$

(25) $\text{ClO} + \text{ClO} \rightarrow \text{Cl} + \text{ClOO} \rightarrow \text{Cl}_2 + \text{O}_2$

(26) $\text{ClO} + \text{ClO} + \text{M} \rightarrow \text{Cl}_2 + \text{O}_2 + \text{M}$

(27) $\text{O} + \text{Cl}_2 \rightarrow \text{ClO} + \text{Cl}$

(28) $\text{OH} + \text{HCl} + \text{H}_2\text{O} \rightarrow \text{Cl}$

(29) $\text{O} + \text{HCl} \rightarrow \text{OH} + \text{Cl}$

(30) $\text{ClOO} + \text{M} \rightarrow \text{Cl} + \text{O}_2 + \text{M}$

III. Reactions of OClO and Cl_2O which Involve ClO Radicals.

(31) $\text{O} + \text{OCIO} \rightarrow \text{ClO} + \text{O}_2$

(32) $\text{NO} + \text{OCIO} \rightarrow \text{NO}_2 + \text{ClO}$

(33) $\text{N} + \text{OCIO} \rightarrow \text{NO} + \text{ClO}$

(34) $\text{H} + \text{OCIO} \rightarrow \text{OH} + \text{ClO}$

(35) $\text{O} + \text{Cl}_2\text{O} \rightarrow \text{ClO} + \text{ClO}$

IV. Optical Absorption Cross-Sections

(36) $\text{Cl}_2 + \text{hv} \rightarrow 2 \text{Cl}$

(37) $\text{HCl} + \text{hv} \rightarrow \text{H} + \text{Cl}$
(38) ClOO + hν → ClO + O(^1D, ^3P)

(39) ClO + hν → Cl(^2P_{3/2})
+ O(^1D, ^3P)

(40) OCIO + hν → ClO + O(^1D, ^3P)

ClNO + hν → Cl + NO

Cl₂O + hν → ClO + Cl

CFCl₃ + hν (120 < λ < 200 nm)

CF₂Cl₂ + hν (120 < λ < 200 nm)
I. **Reactions of Ground State \(^{2}P_{3/2}\) Chlorine Atoms.**

Cl\(^{2}P_{3/2}\) Reactions:

1. \[
\text{Cl}^{(2}P_{3/2}) + O_3 \xrightarrow{k_1} \text{ClO}^{(2}I\rangle + O_2
\]

*Clyne and Watson, 1974\(^{30}\). \((1.85 \pm 0.36) \times 10^{-11}\) \(300\) K (a)

Clyne and Coxon\(^{15}\), 1968. \(> 6.7 \times 10^{-13}\) \(300\) K

(a) Preferred value. Obtained using pseudo 1st order conditions.

2. \[
\text{Cl}^{(2}P_{3/2}) + \text{OCIO} \xrightarrow{k_2} 2 \text{ClO}^{(2}I\rangle
\]

*Bemand, Clyne and Watson\(^{5}\); \((5.9 \pm 0.9) \times 10^{-11}\) x 1973.

Bemand, Clyne and Watson\(^{5}\), 1973. \((6.1 \pm 0.9) \times 10^{-11}\) 298 K (b)

Bemand, Clyne and Watson\(^{5}\), 1973. \((5.9 \pm 0.9) \times 10^{-11}\) 298 K (b)

Basco and Dogra\(^{19}\), 1971a. \((8.5 \pm 1.2) \times 10^{-12}\) 300 K

Clyne and Coxon\(^{15}\), 1968. \(> 1.0 \times 10^{-12}\) 300 K

(b) The preferred value was obtained by combining the results of three separate sets of experimental determinations, using different techniques.

3. \[
\text{Cl} + O_2 + M \xrightarrow{k_3} \text{ClOO} + M
\]

Stedman in "Clyne and Coxon\(^{11}\), 1968.

Clyne and Coxon\(^{15}\), 1968. \(< 5.6 \times 10^{-33}\) 300 K

Nicholas and Norrish\(^{22}\), 1968. \(1.7 \times 10^{-33}\) 300 K (c)

(c) The authors used several kinetic assumptions in their calculations, which if incorrect would lead to their value for \(k_3\) to have been underestimated.

Preferred value.
(4) \[
\text{Cl}(^{2}P_{3/2}) + \text{CH}_4 \rightarrow \text{CH}_3 + \text{HCl}
\]

\[
5.1 \times 10^{-11} \times
\exp(-1790\pm37/T) \quad (300-686)\text{K} \quad (d)
\]

(1.3\pm0.1) \times 10^{-13} \quad 300 \text{K}

Davis, Braun and Bass, 1970.

\[
(1.5\pm0.1) \times 10^{-13} \quad 298 \text{K} \quad (d)
\]

\[
4 \times 10^{-11} \times
\exp(-1940/T) \quad (193-593)\text{K} \quad (e)
\]

\[
4.6 \times 10^{-11} \times
\exp(-1920/T) \quad (293-488)\text{K} \quad (e)
\]

(d) The preferred value is based on the average value of \(k_4\) at 298K, and the activation energy reported by Clyne and Walker. Therefore,

\[
k_4^* = (5.6\pm0.9) \times 10^{-11} \times \exp(-1790\pm37/T)
\]

\[
k_4^*(300) = (1.4\pm0.1) \times 10^{-13}
\]

(e) These values were not considered as they were determined relative to \(k(\text{Cl}+\text{H}_2)\) and differ by a factor of 2 from the other results at 298K.

(5) \[
\text{Cl}(^{2}P_{3/2}) + \text{ClOO} \rightarrow \text{Cl}_2 + \text{O}_2
\]

Johnston, Morris and Van den Bogaerde, 1969.

\[
1.56 \times 10^{-10}
\quad 298 \text{K} \quad (f)
\]

Johnston, Morris and Van den Bogaerde, 1969.

\[
k_5/k_6 = 108
\quad 298 \text{K} \quad (g)
\]

Nicholas and Norrish, 1968.

\[
k_5/k_6 = 15
\quad (g)
\]

(f) This value was obtained from the analysis of a complex reaction system, and is dependent upon the value used for \(\Delta H_f\text{ClOO}\), which is not well established.

(g) These two values are markedly different. The value of 15 is in agreement with a value that can be derived from a study by Porter and Wright (1953).
(6) \[\text{Cl}(2\text{P}_{3/2}) + \text{ClO}_2 \rightarrow \text{ClO} + 2 \text{Cl} \]

Johnston, Morris and Van den Bogaerde\(^{26}\), 1969.

(h) This value was obtained from the analysis of complex reaction scheme, and was obtained relative to \(k_5\). Therefore, both \(k_5\) and the ratio \(k_5/k_6\) have to be accurately known to obtain a value for \(k_6\). Although the ratio \(k_5/k_6\) was not dependent upon the value of \(\Delta H_f \text{ClO}_2\), the kinetic analysis for \(k_5\) required \(\Delta H_f \text{ClO}_2\) to be known.

(7) \[\text{Cl}(2\text{P}_{3/2}) + \text{Cl}_2\text{O} \rightarrow \text{Cl}_2 + \text{ClO} \]

*Basco and Dogra\(^{20}\), 1971b. \[6.8 \times 10^{-13} \quad 300 \text{ K} \]

Edgecombe, Norrish and Thrush\(^{23}\), 1957.

(8) \[\text{Cl}(2\text{P}_{3/2}) + \text{NO} + \text{N}_2 \rightarrow \text{ClNO} + \text{N}_2 \]

Clark, Clyne and Stedman\(^{7}\), \(9.7\pm1.4\) \times 10\(^{-32}\) \quad 293 K \quad (i)

Clark, Clyne and Stedman\(^{7}\), \(E_a(M=\text{Ar})=-(4.6\pm.4)\text{kJ mol}^{-1}\) \quad 471 K

Ashmore and Spencer\(^{41}\), 1959. \(2.1\pm0.6\) \times 10\(^{-32}\) \quad 471 K

(i) Clyne and Stedman (1968), reported that this value may be too low due to a systematic error in their method of monitoring [Cl], as it has been shown that the intensity of the chlorine afterglow is not always proportional to [Cl]\(^2\). Therefore, \(k_8\) and \(k_9\) have probably been underestimated by ~15\%, and this leads to a preferred value for \(k_8^*\) of \((1.1\pm0.2) \times 10^{-31}\).

(9) \[\text{Cl}(2\text{P}_{3/2}) + \text{NO} + \text{O}_2 \rightarrow \text{ClNO} + \text{O}_2 \]

Clark, Clyne and Stedman\(^{7}\), \((1.1\pm1.4) \times 10^{-31}\) \quad 293 K

1966.

See note (i) above. The preferred value for \(k_9^*\) is \((1.3\pm0.3) \times 10^{-31}\).
(10) \[\text{Cl}^{(2P_{3/2})} + \text{ClNO} \rightarrow \text{NO} + \text{Cl}_2 \]

*Clyne and Cruse\(^{33}\), 1972. \((3.0\pm0.5) \times 10^{-11}\) 298 K (j)

Clyne, Cruse and Watson\(^{40}\), \(\geq 8 \times 10^{-12}\) 298 K

Burns and Dainton\(^{42}\), 1952. \((1.9\pm1.0) \times 10^{-11} \times \exp(-533\pm160/T)\)

(j) This direct determination of \(k_{10}\) at 298K is preferred to the study of Burns and Dainton, where several systematic errors were likely.

(11) \[\text{Cl}^{(2P_{3/2})} + \text{NO}_2 + M \rightarrow \text{ClNO}_2 + M \]

*Clyne and White\(^{10}\), 1974. \(7.2 \times 10^{-31}\) 298 K (k)

(k) Provisional data, subject to revision

(12) \[\text{Cl}^{(2P_{3/2})} + \text{ClNO}_2 \rightarrow \text{Cl}_2 + \text{NO}_2 \]

Clyne and White\(^{10}\), 1974. \(k_{12}/k_{11} > 1\) 298 K (l)

(l) \(k_{12}\) is greater than the second order component of \(k_{11}\) at low pressure (1 torr). Therefore, \(k_{12} > > 3 \times 10^{-14}\).

(13) \[\text{Cl}^{(2P_{3/2})} + \text{Cl}^{(2P_{3/2})} + \text{Ar} \rightarrow \text{Cl}_2 + \text{Ar} \]

Clyne and Stedman\(^{8}\), 1968. \(5.6 \times 10^{-34} \times \exp(910\pm350/T)\) \((195-500)K\) (m)

\((1.2\pm0.1) \times 10^{-32}\) 298 K

Hutton and Wright\(^{9}\), 1965. \((1.2\pm0.2) \times 10^{-32}\) 298 K (m)

Bader and Ogryzlo\(^{6}\), 1964. \(1.1 \times 10^{-32}\) 313 K (m)

*Lloyd,\(^{61}\) review. \(6.0 \times 10^{-34} \times \exp(-900\pm250/T)\) \((200-500)K\)

(m) All three determinations of \(k_{13}\) are in agreement (±10%) at 298K. The efficiency of \(N_2\) as a third body should not be too dissimilar from \(Ar\).
II. Reactions producing ground state \((^{2}P_{3/2}) \) Chlorine atoms, and/or involving ClO radicals.

\[
(14) \quad \text{O}^{(3}P\text{)} + \text{ClO} \xrightarrow{k_{14}} \text{Cl}(^{2}P_{3/2}) + \text{O}_{2}(^{3}\Sigma,^{1}\Pi) \\
\]

*Bemand, Clyne and Watson, 5 (5.3\pm0.8) \times 10^{-11} 298 K (n)

Bemand, Clyne and Watson 5, (5.7\pm2.3) \times 10^{-11} 298 K (o)

Basco and Dogra 19, 1971a. 1.2 \times 10^{-11} 300 K

Clyne and Coxon 18, 1966a. > 1.0 \times 10^{-11} 300 K

Freeman and Phillips 55, > 1.3 \times 10^{-11} 300 K 1968.

(n) This value is preferred due to the direct nature and the high specific sensitivity of the study, which utilized atomic resonance fluorescence to monitor atomic oxygen.

(o) This value was obtained using molecular beam mass spectrometry and is in good agreement with the preferred value.

\[
(15) \quad \text{NO}(^{2}\Pi) + \text{ClO}(^{2}\Pi) \xrightarrow{k_{15}} \text{NO}_{2} + \text{Cl}(^{2}P_{3/2}) \\
\]

*Clyne and Watson 30, 1974. (1.7\pm0.2) \times 10^{-11} 298 K (p)

Coxon 16, 1968. > 3 \times 10^{-13} 300 K

(p) A direct determination of the rate constant, the value was reported in "Bemand, Clyne and Watson (1973)" - to be published by Clyne and Watson in J.C.S. Faraday I.

\[
(16) \quad \text{ClO}(^{2}\Pi) + \text{CO} \xrightarrow{k_{16}} \text{CO}_{2} + \text{Cl}(^{2}P_{3/2}) \\
\]

*Walker 17, 1972. 1.7 \times 10^{-15} 587 K

Harker 27, 1972. 1.4 \times 10^{-15} 300 K (q)

(q) This value is rejected due to its indirect determination from a complex reaction scheme.
(17) \[
\begin{align*}
\frac{\text{ClO} + O_2}{k_{17}} & \rightarrow \text{OCIO} + O_2 \\
\frac{-k_{17}}{\text{ClO} + O_2} & \rightarrow \text{CIOO} + O_2
\end{align*}
\]

Clyne and Coxon15, 1968. \(\leq 5 \times 10^{-15} \) 300 K
Clyne, McKenny, Watson29, 1974. \(\leq 5 \times 10^{-15} \) 298 K (r)

(r) Provisional data subject to revision. The rate constants reported do not differentiate between the two reaction paths.

(18) \[
\text{ClO} + H_2 \xrightarrow{k_{18}} \text{Products}
\]

Walker17, 1972. \(\leq 8 \times 10^{-16} \) 670 K (s)
Clyne and Coxon15, 1968. \(\leq 5 \times 10^{-16} \) 300 K

(19) \[
\text{ClO} + \text{CH}_4 \xrightarrow{k_{19}} \text{Products}
\]

Walker17, 1972. \(\leq 4 \times 10^{-15} \) 670 K (s)

(20) \[
\text{ClO} + \text{C}_2\text{H}_4 \xrightarrow{k_{20}} \text{Products}
\]

Walker17, 1972. \(\leq 5 \times 10^{-16} \) 670 K (s)

(21) \[
\text{ClO} + \text{C}_2\text{H}_2 \xrightarrow{k_{21}} \text{Products}
\]

Walker17, 1972. \(\leq 5 \times 10^{-16} \) 670 K (s)

(22) \[
\text{ClO} + \text{N}_2\text{O} \xrightarrow{k_{22}} \text{Products}
\]

Walker17, 1972. \(\leq 7 \times 10^{-16} \) 587 K (s)

(23) \[
\text{ClO} + \text{NH}_3 \xrightarrow{k_{23}} \text{Products}
\]

Walker17, 1972. \(\leq 5 \times 10^{-16} \) 670 K (s)

(s) These values were directly determined using the discharge flow technique coupled to UV absorption spectrophotometry and/or a line of sight mass spectrometer.
(24) \[\text{Clyne, McKenny and Watson}^{29}, 1974. \]

\[\text{ClO} + \text{ClO} \rightarrow \text{Cl}(^{2}P_{3/2}) + \text{OCIO} \]

\[k_{24} \leq 3.2 \times 10^{-15} \text{ at 298 K} \quad (t) \]

(t) This is a provisional experimental upper limit. Using the thermodynamic values reported at the end of this compilation in conjunction with the preferred value for \(k_{2}(\text{Cl} + \text{OCIO} \rightarrow 2 \text{ ClO}) \), the following can be calculated. \(\log_{10} k_{24} = 16.95 \pm 0.55 \). The limits are due to the uncertainty in the value of \(\Delta H_{f}^{298} \text{ OCIO} \).

(25) \[\text{ClO} + \text{ClO} \rightarrow \text{Cl}_{2} + \text{O}_{2} \rightarrow \text{Cl} + \text{ClOO} \]

\[k_{25,3} \text{ at } 300 \text{ K} \quad \text{Porter and Wright}^{24}, 1953. \]

\[1.52 \times 10^{-13} \times \text{exp}(0 \pm 325/T) \quad \text{293-433 K} \quad (u) \]

\[1.93 \times 10^{-13} \quad \text{300 K} \quad (u)/v \]

\[3.39 \times 10^{-13} \quad \text{300 K} \quad (u)/w \]

Lipscomb, Norrish and Thrush\(^{25}\), 1956.

\[6.57 \times 10^{-14} \quad \text{300 K} \quad (u) \]

Edgecombe, Norrish and Thrush\(^{23}\), 1957.

*Clyne and Coxon\(^{18}\), 1966.

\[2.33 \times 10^{-14} \quad \text{300 K} \quad (u) \]

*Clyne and Coxon\(^{15}\), 1968.

\[(1.2 \pm 0.3) \times 10^{-12} \times \text{exp}(-1260 \pm 150/T) \quad (294-495) K \quad (u) \]

Clyne and Coxon\(^{15}\), 1968.

\[(1.0 \pm 0.3) \times 10^{-12} \times \text{exp}(-1215 \pm 160/T) \quad (294-495) K \quad (x) \]

Johnston, Morris and Van den Bogaerde\(^{26}\), 1969.

\[1.26 \times 10^{-14} \quad \text{298 K} \quad (u)/y \]

*Clyne and White\(^{56}\), 1971.

\[(1.3 \pm 0.1) \times 10^{-12} \times \text{exp}(-1150 \pm 50/T) \quad (273-710) K \quad (u)/x \]

**Basco and Dogra\(^{19,20}\), 1971a,b.

\[4.4 \times 10^{-14} \quad \text{300 K} \]

*Walker\(^{17}\), 1972.

\[(1.9 \pm 0.6) \times 10^{-12} \times \text{exp}(-1300 \pm 120/T) \quad (u) \]

*Clyne, McKenny and Watson\(^{29}\), 1974.
(u) Clyne and Coxon's (1968) value for the absorption cross section was used to calculate k_{25}.

(v) k_{25} was reported to be flash energy dependent, due to the reaction mechanism being misinterpreted. Low flash energy.

(w) high flash energy.

(x) Clyne and White (1971) reanalysed the data to allow for any third order decay of ClO.

(y) This value was derived by combining their value of k_6 with the thermodynamic value of $K_{eq} = k_6/k_{25}$. However, neither k_6 nor K_{eq} is accurately known. $K_{eq} = 227$ (Johnston et. al.) - see below on the thermodynamic values of ClO and ClOO.

(z) This is the only published study not to use an optical spectroscopic method.

The preferred value for k_{25} at 298 K is:

(a) $\left(2.4 \pm 0.4\right) \times 10^{-14}$ (low pressure)

(b) $\left(4.4 \times 10^{-14}\right)$ (high pressure)

The activation energy (for the overall process, which cannot be described by one simple initial step) is:

(a) $\left(10.3 \pm 1.0\right)$ kJ mol$^{-1}$ (low pressure)

\[
\begin{align*}
\text{ClO} + \text{ClO} + \text{M} & \rightarrow \text{Cl}_2 + \text{O}_2 + \text{M} \\
& \quad \left(26\right)
\end{align*}
\]

Johnston, Morris and Van den Bogaerde, 1969.

- 1.0×10^{-31} (O$_2$) 298 K (A)
- 6.6×10^{-32} (Ar) 298 K (A)

Wu, 1970.

- $k_{26}/k_{25} = 1.1 \times 10^{-17}$ (B)

- $(2.0 \pm 2.0) \times 10^{-32}$ (Ar) 298 K (C)

(A) This value of k_{26} is defined as: $-d\left[\text{ClO}\right]/dt = k_{26}[\text{ClO}]^2 [\text{M}]$.

(B) This value is only accurate to within a factor of two.

(C) This value was derived using data from; Clyne and Coxon (1968); Clyne and White (1971) and Walker (1972). The slope of $-d\left[\text{ClO}\right]/dt$ versus [M], was positive but within the error limits of being zero.

This value for K_2 was incorrectly calculated, and the thermodynamic values for ClO and ClOO have recently been shown to be erroneous. K_2 can be shown to be equal to either 109 ($\Delta H_f \text{ClOO} = 86$ kJ mol$^{-1}$) or 661 ($\Delta H_f \text{ClOO} = 96.0$ kJ mol$^{-1}$). Thus, if $K_2 = 109$, then $k_{25} = 2e = 2.6 \times 10^{-14} \text{ cm}^{-3} \text{ molecule}^{-1} \text{ s}^{-1}$.

(27) $k_{27} \frac{O + Cl_2}{^2P_{3/2}} ClO + Cl(2P_{3/2})$

Clyne and Coxon32, 1966b. $(9.3 \pm 2.2) \times 10^{-12} \times$

$\exp(-1560 \pm 50/T)$ (174-396)K (D)

5.1×10^{-14} 300 K

Niki and Weinstock31, 1967. $(7.5 \pm 0.6) \times 10^{-14}$ 300 K (D)

(D) These two studies, both performed using the discharge flow technique, but with different detection techniques, are in fair agreement at 300 K. Therefore, the preferred value would be an average of the two at 300 K, and equal to 6.3×10^{-14}.

(28) $k_{28} \frac{HO + HCl}{^2P_{3/2}} H_2O + Cl(2P_{3/2})$

Takacs and Glass46, 1973. $(6.4 \pm 1.5) \times 10^{-13}$ 295 K (E)

$2.0 \times 10^{-12} \times$

$\exp(-313/T)$ (225-460)K

6.9×10^{-13} 295 K (E)

Smith and Zellner39, 1974.

$4.1 \times 10^{-12} \times$

$\exp(-500/T)$ (210-460)K

7.5×10^{-13} 295 K (E)

Wilson, O'Donovan, and Fristrom60, 1969.

1.3×10^{-11} (1920-1940)K (E')

Wong and Belles58, 1972. Estimated $E_a = 21$ kJ mol$^{-1}$a

(E) There is good agreement between these three groups of workers at 295K, and the preferred value at this temperature is an average of the three, and equal to $(6.9 \pm 0.6) \times 10^{-13}$. The preferred Arrhenius expression for the (220-300)K temperature range is:

$$k_{28}^* = 2.8 \times 10^{-12} \exp(-400 \pm 100/T)$$

This yields values which are the average of references (36) and (39).

(E') This value is greater than would be predicted at 1920 K from the Arrhenius expressions of references (36) and (39).

(F) This value for the activation energy was estimated from the production of H_2O in the $O + HCl$ study.
(29) \[\text{O} + \text{HCl} \xrightarrow{k_{29}} \text{OH} + \text{Cl}^{(2}\text{P}_{3/2}) \]

Balakhnin, Egorov and Intezarova\(^{45}\), 1971.

Balakhnin, Egorov and Intezarova\(^{45}\), 1971.

(1.75 \pm 0.6) \times 10^{-12} \times
\exp(-2260/T) \quad (295-371)K \quad (G)

Wong and Belles\(^{58}\), 1972.

Wong and Belles\(^{58}\), 1972.

(1.9 \pm 0.27) \times 10^{-11} \times
\exp(-3584 \pm 70/T) \quad (356-628)K \quad (G)

(G) These two results are at variance with each other and thus no preferred value is given.

(30) \[\text{ClO} + \text{M} \xrightarrow{k_{30}} \text{Cl}^{(2}\text{P}_{3/2}) + \text{O}_2 + \text{M} \]

There is no experimental determination of \(k_{30}\), but a value can be calculated from the thermodynamic value of \(K_2^* = k_{30}/k_3\), and from the experimental value of \(k_3\). However, neither \(K_2^*\) nor \(k_3\) are particularly well known. The value for \(\Delta H_{f298} \text{ClO}\) is possibly not better known than \((91 \pm 5) \text{kJ mol}^{-1}\)\(^{(59)}\). However, if \(\Delta H_{f298} \text{ClO}\) is 84.2 kJ mol\(^{-1}\), as has been reported\(^{(76)}\), then the following values for \(K_2^*\) can be calculated. This does not mean that the writer believes that this is the best value for \(\Delta H_f \text{ClO}\), but this value is a lower limit and calculations using this value will predict the maximum possible ratio of \([\text{ClO}]\) to \([\text{Cl}]\).

<table>
<thead>
<tr>
<th>Elevation</th>
<th>T(K)</th>
<th>(K_2^*) (atm(^{-1}))</th>
<th>(k_{30}) (a)</th>
<th>(k_{30}) (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>298</td>
<td>9.3</td>
<td>1.5 \times 10^{-15}</td>
<td>4.5 \times 10^{-15}</td>
</tr>
<tr>
<td>18</td>
<td>216.7</td>
<td>3007</td>
<td>6.3 \times 10^{-18}</td>
<td>1.9 \times 10^{-17}</td>
</tr>
<tr>
<td>23</td>
<td>219.6</td>
<td>2279</td>
<td>8.2 \times 10^{-18}</td>
<td>2.5 \times 10^{-17}</td>
</tr>
<tr>
<td>28</td>
<td>224.5</td>
<td>1439</td>
<td>1.3 \times 10^{-17}</td>
<td>3.9 \times 10^{-17}</td>
</tr>
<tr>
<td>33</td>
<td>231.1</td>
<td>823</td>
<td>2.2 \times 10^{-17}</td>
<td>6.6 \times 10^{-17}</td>
</tr>
<tr>
<td>38</td>
<td>244.8</td>
<td>279</td>
<td>6.0 \times 10^{-17}</td>
<td>1.8 \times 10^{-16}</td>
</tr>
<tr>
<td>43</td>
<td>258.6</td>
<td>105</td>
<td>1.5 \times 10^{-16}</td>
<td>4.6 \times 10^{-16}</td>
</tr>
<tr>
<td>48</td>
<td>270.7</td>
<td>49</td>
<td>3.1 \times 10^{-16}</td>
<td>9.5 \times 10^{-16}</td>
</tr>
</tbody>
</table>

(a) \(k_3\) was taken to be temperature independent and equal to \(5.6 \times 10^{-34}\). Reference 11.

(b) \(k_3\) was taken to be temperature independent and equal to \(1.7 \times 10^{-33}\). Reference 22.
Reactions of OClO and Cl2O which involve ClO radicals

(31) \(\text{O}(^3P) + \text{OClO} \xrightarrow{k_{31}} \text{ClO} + \text{O}_2 \)

*Bemand, Clyne and Watson\(^5\), \((5.4 \pm 1.2) \times 10^{-13}\) \(298 \text{ K}\) (H)

Basco and Dogra\(^21\), 1971 \(5.0 \times 10^{-11}\) \(300 \text{ K}\)

Clyne and Coxon\(^18\), 1966a. \(> 4.0 \times 10^{-11}\) \(300 \text{ K}\)

(H) This value was determined from two separate direct studies.

(a) mass spectrometry: \(- (4.7 \pm 1.6) \times 10^{-13}\)

(b) atomic resonance fluorescence: \(- (6.3 \pm 1.9) \times 10^{-13}\)

(32) \(\text{NO} + \text{OClO} \xrightarrow{k_{32}} \text{NO}_2 + \text{ClO} \)

*Bemand, Clyne and Watson\(^5\), \((3.4 \pm 0.5) \times 10^{-13}\) \(298 \text{ K}\)

Coxon,\(^16\) 1968. \(> 8.5 \times 10^{-13}\) \(300 \text{ K}\)

(33) \(\text{N}(^4S) + \text{OClO} \xrightarrow{k_{33}} \text{NO} + \text{ClO} \)

Watson\(^59\), 1973. \(< 6 \times 10^{-13}\) \(298 \text{ K}\) (I)

(I) A preliminary experimental value, no detailed results.

(34) \(\text{H}(^2S) + \text{OClO} \xrightarrow{k_{34}} \text{OH} + \text{ClO} \)

*Bemand, Clyne and Watson\(^5\), \((5.7 \pm 1.2) \times 10^{-11}\) \(298 \text{ K}\)

(35) \(\text{O} + \text{Cl}_2\text{O} \xrightarrow{k_{35}} \text{ClO} + \text{ClO} \)

*Freeman and Phillips\(^55\), \((1.4 \pm 0.2) \times 10^{-11}\) \(300 \text{ K}\)
IV Optical Absorption Cross Sections

Cl₂ + hν → 2 Cl (Seery and Britton62, 1964).

Cl₂ + hν → Cl(\(^2\)P\(_{1/2}\)) + Cl(\(^2\)P\(_{3/2}\)); \(\lambda < 483.0\) nm

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{-21} \times \sigma) (cm(^2) molecule(^{-1}))</th>
<th>(\lambda) (nm)</th>
<th>(10^{-21} \times \sigma) (cm(^2) molecule(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>0.8</td>
<td>350</td>
<td>189</td>
</tr>
<tr>
<td>250</td>
<td>1.2</td>
<td>360</td>
<td>131</td>
</tr>
<tr>
<td>260</td>
<td>2.3</td>
<td>370</td>
<td>83</td>
</tr>
<tr>
<td>270</td>
<td>8.8</td>
<td>380</td>
<td>49</td>
</tr>
<tr>
<td>280</td>
<td>27</td>
<td>390</td>
<td>33</td>
</tr>
<tr>
<td>290</td>
<td>65</td>
<td>400</td>
<td>19</td>
</tr>
<tr>
<td>300</td>
<td>120</td>
<td>410</td>
<td>13</td>
</tr>
<tr>
<td>310</td>
<td>185</td>
<td>420</td>
<td>9.9</td>
</tr>
<tr>
<td>320</td>
<td>236</td>
<td>430</td>
<td>7.3</td>
</tr>
<tr>
<td>330</td>
<td>256</td>
<td>440</td>
<td>5.3</td>
</tr>
<tr>
<td>340</td>
<td>236</td>
<td>450</td>
<td>3.4</td>
</tr>
</tbody>
</table>

(a) The authors62 reported that each measurement was only accurate to within \(\pm 2.0 \times 10^{-21}\) cm\(^2\) molecule\(^{-1}\).
The Absorption Spectrum of HCl

See figure 1.

$$\text{HCl}(^1\Sigma^+) + h\nu \rightarrow \text{H}(^2S_{1/2}) + \text{Cl}(^2P_{3/2})$$
$$\rightarrow \text{H}(^2S_{3/2}) + \text{Cl}(^2P_{1/2})$$

<table>
<thead>
<tr>
<th>λ(nm)</th>
<th>$10^{-20} \sigma$ (cm2 molecule$^{-1}$)</th>
<th>λ(nm)</th>
<th>$10^{-20} \sigma$ (cm2 molecule$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>206.8</td>
<td>0.72</td>
<td>172.9</td>
<td>105</td>
</tr>
<tr>
<td>203.5</td>
<td>1.6</td>
<td>171.3</td>
<td>129</td>
</tr>
<tr>
<td>201.2</td>
<td>1.9</td>
<td>166.9</td>
<td>186</td>
</tr>
<tr>
<td>199.0</td>
<td>2.8</td>
<td>163.0</td>
<td>224</td>
</tr>
<tr>
<td>195.1</td>
<td>5.5</td>
<td>159.7</td>
<td>269</td>
</tr>
<tr>
<td>193.1</td>
<td>7.8</td>
<td>157.9</td>
<td>275</td>
</tr>
<tr>
<td>191.3</td>
<td>9.9</td>
<td>155.3</td>
<td>332</td>
</tr>
<tr>
<td>189.1</td>
<td>14.1</td>
<td>152.4</td>
<td>334</td>
</tr>
<tr>
<td>188.4</td>
<td>21.4</td>
<td>149.5</td>
<td>298</td>
</tr>
<tr>
<td>183.0</td>
<td>31.6</td>
<td>146.3</td>
<td>275</td>
</tr>
<tr>
<td>181.1</td>
<td>41.7</td>
<td>145.6</td>
<td>224</td>
</tr>
<tr>
<td>179.2</td>
<td>57.5</td>
<td>141.3</td>
<td>166</td>
</tr>
<tr>
<td>177.4</td>
<td>64.5</td>
<td>139.4</td>
<td>132</td>
</tr>
</tbody>
</table>

Also the spectrum has been reported by Myer and Samson 75, 1970.
(38) The Absorption Spectrum of ClOO

\[\text{ClOO} + \text{hv} \rightarrow \text{ClO} \left(^2\Pi_{3/2} \right) + \text{O} \left(^1\text{D} \right) \]

\[\lambda < (267.9 \pm 3.0) \text{nm} \]

Johnston, Morris and Van den Bogaerde\(^{26}\), 1969*. See figure 1. (a)

<table>
<thead>
<tr>
<th>(\lambda (\text{nm}))</th>
<th>(10^{-18} \times \sigma \text{(ClOO)} ; \text{cm}^2 ; \text{molecule}^{-1})</th>
<th>(\lambda (\text{nm}))</th>
<th>(10^{-18} \times \sigma \text{(ClOO)} ; \text{cm}^2 ; \text{molecule}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>2.6</td>
<td>255</td>
<td>12.4</td>
</tr>
<tr>
<td>230</td>
<td>4.9</td>
<td>260</td>
<td>10.0</td>
</tr>
<tr>
<td>235</td>
<td>7.8</td>
<td>265</td>
<td>7.3</td>
</tr>
<tr>
<td>240</td>
<td>10.5</td>
<td>270</td>
<td>5.1</td>
</tr>
<tr>
<td>245</td>
<td>12.7</td>
<td>275</td>
<td>3.4</td>
</tr>
<tr>
<td>250</td>
<td>13.3</td>
<td>280</td>
<td>2.3</td>
</tr>
</tbody>
</table>

(a) The spectral band width was 1.3 nm.
The Absorption Spectrum of ClO

\[\text{ClO}(^{2}\Pi_{3/2}, 1.2) + h\nu \rightarrow \text{Cl}(^{2}P_{3/2}) + \text{O}(^{3}D) \]

\[\lambda < 263.0 \text{ nm } (\text{ClO}(^{2}\Pi_{3/2})) \]

\[\lambda < 265.0 \text{ nm } (\text{ClO}(^{2}\Pi_{1/2})) \]

\[\text{ClO}(^{2}\Pi) \xrightarrow{h\nu} \text{Cl}(^{2}P_{3/2}) + \text{O}(^{3}P) \]

ClO is known to predissociate to \(\text{Cl}(^{2}P_{3/2}) + \text{O}(^{3}P) \) at wavelengths > 280 nm. Durie and Ramsay, 1958 reported that the 7.0 band is totally predissociated.

Johnston, Morris and Van den Bogaerde, 1969*. See figure 1. (b)

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(10^{-18} \times \sigma(\text{ClO})) cm(^2) molecule(^{-1})</th>
<th>(\lambda) (nm)</th>
<th>(10^{-18} \times \sigma(\text{ClO})) cm(^2) molecule(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>0.64</td>
<td>255</td>
<td>4.5</td>
</tr>
<tr>
<td>230</td>
<td>0.85</td>
<td>260</td>
<td>5.3</td>
</tr>
<tr>
<td>235</td>
<td>1.3</td>
<td>265</td>
<td>5.7</td>
</tr>
<tr>
<td>240</td>
<td>1.9</td>
<td>270</td>
<td>5.6</td>
</tr>
<tr>
<td>245</td>
<td>2.7</td>
<td>275</td>
<td>4.9</td>
</tr>
<tr>
<td>250</td>
<td>3.6</td>
<td>280</td>
<td>4.7</td>
</tr>
</tbody>
</table>

(b) The spectral band width was 1.3 nm, and these values were placed on an absolute basis using Clyne and Coxon's 1968 value for (ClO at 255.7 nm.)
Porter and Wright64, 1950.

<table>
<thead>
<tr>
<th>λnm 10^{18} x $σ$(C1O) cm2 molecule$^{-1}$</th>
<th>λnm 10^{18} x $σ$(C1O) cm2 molecule$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>263.63 1.4</td>
<td>274.95 5.8</td>
</tr>
<tr>
<td>264.06 1.4</td>
<td>277.16 7.2</td>
</tr>
<tr>
<td>264.58 2.2</td>
<td>279.60 5.8</td>
</tr>
<tr>
<td>265.25 3.6</td>
<td>282.24 5.8</td>
</tr>
<tr>
<td>266.10 3.6</td>
<td>285.18 4.3</td>
</tr>
<tr>
<td>267.12 3.6</td>
<td>288.40 3.6</td>
</tr>
<tr>
<td>268.25 3.6</td>
<td>291.80 3.6</td>
</tr>
<tr>
<td>269.50 4.3</td>
<td>295.43 2.2</td>
</tr>
<tr>
<td>271.11 5.0</td>
<td>299.30 1.4</td>
</tr>
<tr>
<td>272.94 5.0</td>
<td>303.45 0.7</td>
</tr>
</tbody>
</table>

(c) These values represent the absorption cross sections at the band heads. The value at 277.16 nm was equated to that reported by Clyne and Coxon15, 1968.
(40) Other Absorption Processes

(i) \(\text{OCIO} + h\nu \rightarrow \text{ClO} \left(^2\Pi \right) + \text{O} \left(^1\text{D} \right) \)

\(\rightarrow \)

\(\text{ClO} \left(^2\Pi \right) + \text{O} \left(^3\text{P} \right) \)

\(\lambda_a < 276 \pm 3 \text{ nm (continuum)} \)

\(\lambda_b < 375.3 \text{ nm (predissociation)} \)

Finkelnburg and Schumacker\(^66\), 1931.

Urey and Johnston\(^67\), 1931.

Goodeve and Stein\(^68\), 1929.

Coon and Ortiz\(^69\), 1957.

Coon, DeWames and Loyd\(^70\), 1962.

\(\varepsilon(351.5 \text{ nm}) = 1.14 \times 10^{-17} \text{ cm}^2 \text{ molecule}^{-1} \). (Clyne and Coxon\(^15\), 1968.

(ii) \(\text{ClNO} \rightarrow \text{Cl} + \text{NO} \)

Continuous spectrum from \((-630 - < 200)\text{ nm}\)

Goodeve and Katz\(^71\), 1939.

(iii) \(\text{Cl}_2\text{O} \rightarrow \text{ClO} + \text{Cl} \)

Continuous absorption from \((850-220)\text{ nm}\). See "Photochemistry", Calvert & Pitts, p. 232\(^72\).

(iv) The absorption coefficients for \(\text{CFC}_3\) and \(\text{CF}_2\text{Cl}_2\) (freons) have been measured between 200 nm and 120 nm. Doucet, Sauvagea, and Sandorfy, 1973\(^73\).
References

33. See Reference 13.

49. Kaufman, F., Progress in Reaction Kinetics, 1, 1, 1961

76. Domalski, E. S., Garvin, D., and Wagman, D. D., CIAP Monograph I Appendix, Chapter 5.
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.