Title
Stargate: Energy Management Techniques

Permalink
https://escholarship.org/uc/item/2sm2502f

Authors
Vijay Raghunathan
Mani Srivastava
Trevor Pering
et al.

Publication Date
2004
Stargate: Energy Management Techniques

Vijay Raghunathan, Mani Srivastava, Trevor Pering†, Roy Want†
Networked and Embedded Systems Lab (NESL)
†Ubiquity SRP, Intel Research

Introduction: Emergence of numerous rapidly evolving sensor node platforms

Problem Description: Platform specific energy management is crucial for long battery lifetime

Proposed Solution: System level energy management techniques and support for the Stargate

Computation Subsystem
- **PXA255** provides two shutdown modes (Idle, Sleep)
 - Core consumes 45mW in 33MHz Idle mode, 0.15mW in Sleep mode
- **Dynamic voltage and frequency scaling supported**
 - Results in a super-linear decrease in power consumption
 - 411 mW at 400 MHz, 178 mW at 200 MHz

Communication Subsystem
- **Communication subsystem supports Mote, Bluetooth, 802.11**
 - Each has vastly different performance / power characteristics.
 - Mote is efficient for sending very little data, 802.11 for bulk data transfer
 - Radio hierarchy offers 10x power reduction potential in various scenarios
- **Supports remote wakeup over Bluetooth channel**
 - Enables on-demand, event driven power management
- **Mote based wakeup mechanism**
 - Provides energy scalable computation/communication capability

Support for Energy Management
- **Power gating provided for the Bluetooth and 802.11 radios**
 - Overcomes inefficiencies in shutdown modes of the radios
 - Decreases shutdown mode power of 802.11 card from 250mW to 1mW
 - Increases wakeup latency since radio needs to be powered up first
- **Gas gauge permits measurement of battery voltage and current**
 - Enables battery state aware energy management

Power Breakdown and Observations
- **Power consumption ranges from 15mW to 1700 mW**
- **Flash writes are a bottleneck causing power inefficient operation**
- **802.11 often an overkill**
