Title
Compact Spreader Schemes

Permalink
https://escholarship.org/uc/item/2ss5p9hk

Journal
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 768(Dec. 21 2014)

Authors
Placidi, M.
Jung, J.-Y.
Ratti, A.
et al.

Publication Date
2014-12-21
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.
COMPACT SPREADER SCHEMES
M. Placidi, J-Y. Jung, A. Ratti and C. Sun
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.

This paper describes beam distribution schemes adopting a novel implementation based on
low amplitude vertical deflections combined with horizontal ones generated by Lambertson-
type septum magnets. This scheme offers substantial compactness in the longitudinal layouts
of the beam lines and increased flexibility for beam delivery of multiple beam lines on a
shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide
the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center
(SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern
schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility
when compared to FKs, which, in turn, offer more modest financial involvements both in
construction and operation. Both solutions represent an ideal approach for the design of
compact beam distribution systems resulting in space and cost savings while preserving
flexibility and beam quality.

INTRODUCTION
Modern Linac-based Free Electron Laser (FEL) systems are often equipped with multiple beam lines which
require a beam switchyard (BSY) to distribute electron bunches from the Linac to individual FELs. The BSY
design is challenging, as it requires not only to preserve beam quality and provide flexible bunch repetition rate,
but also to meet the physical constraint of the facility site. In this paper we present designs of compact Beam
Switchyard (BSY) systems. Fast Switching Devices (FSD) like Fast Kickers (FK) or RF Deflectors (RFD) initiate
a low-amplitude vertical splitting. Septum magnets installed downstream as the vertical separation between the
trajectories matches the magnet apertures provide the first horizontal deflections. The resulting schemes represent
an ideal solution for the design of compact beam distribution systems resulting in space and cost savings while
preserving flexibility and beam quality in a variety of Beam Switch Yard topologies.

Transverse deflecting RF structures, originally proposed at SLAC [1] and at the Thomas Jefferson National
Accelerator Facility (TJNAF) [2] as tools for beam separation, space phase diagnostics and bunch length
measurements [3,4], have subsequently found additional applications as fast switching devices in beam
distribution systems for multiple beam lines layouts [5,6]. The adoption of transverse RF deflectors allows
distributing electron bunches with on-demand repetition rates in each line, well above the few hundred kHz limit
likely represented by fast kickers. In addition, the steady state nature of the CW transverse fields provides higher
deflection stability and shot-to-shot reproducibility as compared to those achievable with fast kickers where the
deflecting pulses are created at every bunch passage. Beam distribution schemes adopting cascading RF deflectors
have been discussed in [7] and complement this paper.
Conversely, the technology associated with stripline- and ferrite-based Fast Kickers is well developed and their
use represents a more attractive solution from the financial investment point of view.

Issues related to Machine Protection also play an important role in the choice between the two options.

THE INITIAL SPLITTING MODULE
Stability and reproducibility criteria require the deflections from the fast switching devices to be of the order of
1-mrad or less. A BSY layout based on reduced amplitude initial horizontal deflections would involve very long
beam lines to provide clearance to the downstream deflecting and focusing elements.
Schemes involving an initial splitting in the vertical direction further combined with horizontal deflections
provided by properly designed Lambertson-type septum magnets (LSM) located at a short distance downstream
offer instead options for substantial reductions in the longitudinal extent of the beam lines. The LSM thin septum
accepts a contained vertical separation between the trajectories allowing the magnet to be installed at a relatively
short distance from the fast switching devices, resulting in a more compact longitudinal footprint of the BSY
layout.
In the basic splitting module scheme shown in Figures 1 and 2 an initial section produces three vertical trajectories selectively deflected by the LSMs. Two-way and three-way Lambertson magnet options can be adopted depending on the chosen BSY topology.

Fig. 1: Elevation of the basic module of the initial vertical splitting scheme. A Fast Switching Device (FSD) vertically splits an incoming bunch train into three trajectories with a small amplitude angle $\pm \theta_F$. The initial slopes, enhanced by the vertically defocusing quadrupole Q1, are compensated at the entrance of the LSM downstream.

Fig. 2: Top view of the basic module of the initial vertical splitting scheme showing the role of two- or a three-way LSM installed at a relatively short distance from the FSD.

Vertical splitting

A Fast Switching Device, either a bipolar kicker or an RFD, vertically splits an incoming bunch train into three trajectories, two deflected and one straight. The small amplitude deflections are enhanced by the vertically
defocusing quadrupole \(Q_1 \) while the \(Q_2 \) location defines the trajectories separation \(\Delta y \). A Twin Septum Corrector Magnet (TSCM) or \(Q_2 \) compensate the slopes \(\Delta y' \) at the LSM entrance. The scheme consists of a telescopic arrangement of elements governed by the vertical transfer matrix from the FSD to the LSM with the constraints:

\[
R_{12}^y = \frac{\Delta y}{\theta_F}, \quad R_{22}^y = 0. \tag{1}
\]

Solving (1) with the compact arrangement condition

\[
l_1 + l_2 = \min \tag{2}
\]

gives, in thin lens approximation:

\[
l_{1,2} = l = -f_1 + \sqrt{f_1(f_1 + R_{12}^y)}, \quad f_2 = \frac{2f_1 + l}{f_1 + l} \tag{3}
\]

where \(f_1 \) and \(f_2 \) are the \(Q_1 \) and \(Q_2 \) focal lengths.

A numerical example for \(R_{12}^y = 15.0 \text{-mm/mrad} \) and a conservative \(f_1 = 1.48 \text{-m} \) gives \(l = 3.46 \text{-m} \) and \(f_2 = 4.34 \text{-m} \). The quoted focal lengths are consistent with a 0.6-T \(B_{\text{tip}} \) value at 4-GeV beam energy for 0.15-m long standard quadrupoles with 20-mm and 60-mm respective bore diameters offering comfortable apertures for the local trajectory separation.

Horizontal Deflection: Dedicated Magnets

LSM magnets provide the first horizontal deflections. A typical two-way LSM is shown in Figure 3 in upright configuration. In this design, originally conceived for the three-way RFD deflecting scheme of the Next Generation Light Source (NGLS) project at the Lawrence Berkeley National Lab, the zero-field passage has a relatively large internal diameter to accommodate two un-deflected trajectories while the other one is right deflected to create the first branch of the spreader. A 2-mm thin septum separates the deflecting gap from the field-free region.

![Upright LSM](image)

Fig. 3: Cross section of a two-way upright LSM magnet. The top trajectory (green) is deflected to the right while the two others travel un-deflected in the field-free channel.

A Poisson’s simulation for the LSM of Figure 3 anticipates (Figure 4) a residual field in the field-free region with components

\[
B_{x}^{\text{res}} = 0.74 G, \quad B_{y}^{\text{res}} = 2.4 G. \tag{4}
\]

The 0.33-T design figure of the main deflecting field and the \(<2.5\text{-G} \) residual B-field in the field-free region provide 25-mrad and about 20-\(\mu \)rad deflections respectively for a 4-GeV beam. A parameter list for the two-way LSM is given in Table 1.

*Arguments supporting slope compensations are developed in a subsection below.
Fig. 4: Poisson simulation of the field strengths for the magnetic circuit of Figure 3. A 2-mm thin septum contains the residual B-field down to 0.8x10^{-3} the main one.

Table 1: Parameter list for a two-way LSM.

<table>
<thead>
<tr>
<th>Two-way Lambertson Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet type</td>
<td>Window frame</td>
</tr>
<tr>
<td>Deflection</td>
<td>mrad 25.0</td>
</tr>
<tr>
<td>Energy</td>
<td>GeV 4.0</td>
</tr>
<tr>
<td>Incoming beam sep.</td>
<td>mm ±15.0</td>
</tr>
<tr>
<td>Field strength</td>
<td>T 0.330</td>
</tr>
<tr>
<td>Eff. Length</td>
<td>m 1.0</td>
</tr>
<tr>
<td>Septum</td>
<td>mm 2.0</td>
</tr>
<tr>
<td>Defl. Gap height</td>
<td>mm 12.0</td>
</tr>
<tr>
<td>Main B-field</td>
<td>T 0.33</td>
</tr>
<tr>
<td>Residual B-field</td>
<td>G ~3</td>
</tr>
<tr>
<td>Coils</td>
<td>2 x 10 turns</td>
</tr>
<tr>
<td>Magnet Current</td>
<td>A 158.0</td>
</tr>
<tr>
<td>Magnet Power</td>
<td>kW 1.27</td>
</tr>
</tbody>
</table>

In compact beam distribution schemes it is sometimes useful to concentrate two horizontal opposite deflections in a single LSM still leaving the option for an un-deflected trajectory. A design of a three-way LSM, with a central zero-field region separating two deflecting gaps, is shown in Figure 5. The cylindrical vacuum pipe is installed in a rectangular cross section passage for easier yoke construction.

Fig. 5: Cross section of a three-way “asymmetric” LSM. The magnet can provide opposite deflection differing by up a factor of two while keeping the residual field below 0.6-G. Dimensions are in mm.
In a basic scheme the same amplitude opposite B-fields fully compensate the residual field in the central passage. A more flexible solution is proposed with the present “asymmetric deflection” design where different amplitude deflections are available. The 0.7-m long magnet provides up to 5- and 10-mrad opposite deflections to a 4-GeV beam. The Poisson-simulated magnet properties (Figure 6) anticipate a ~0.6-G residual field in the central passage and a 0.7x10^{-3} radial non-homogeneity of the main deflecting fields. Table 2 gives a parameter list for the three-way LSM sketched in Figure 5.

![Diagram of three-way LSM with B-field distributions and residual field](Diagram.png)

Fig. 6: Poisson simulation for the three-way LSM cut at the vertical symmetry plane. The B-field distributions in the two deflecting gaps are plotted together with the associated residual field in the zero-field channel.

Table 2: Parameter list for a three-way LSM.

<table>
<thead>
<tr>
<th>Three-way Lambertson Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet type</td>
<td>Twin window frame</td>
</tr>
<tr>
<td>Deflection</td>
<td>mrad</td>
</tr>
<tr>
<td>Energy</td>
<td>GeV</td>
</tr>
<tr>
<td>Incoming beam sep.</td>
<td>mm</td>
</tr>
<tr>
<td>Field strength</td>
<td>Tm</td>
</tr>
<tr>
<td>Eff. Length</td>
<td>m</td>
</tr>
<tr>
<td>Septum</td>
<td>mm</td>
</tr>
<tr>
<td>Defl. Gap height</td>
<td>mm</td>
</tr>
<tr>
<td>Main B-field</td>
<td>T</td>
</tr>
<tr>
<td>Residual B-field</td>
<td>G</td>
</tr>
<tr>
<td>Coils</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>A</td>
</tr>
<tr>
<td>Power</td>
<td>kW</td>
</tr>
</tbody>
</table>

The Twin Septum Magnet (TSM) shown in Figure 7 is a simplified version of the three-way LSM that can be used to provide simultaneous opposite deflections to two incoming trajectories. The two deflecting gaps are separated by a thicker septum than in the LSM and provide opposite sign B-fields. A Poisson simulated TSM performance suggests an 8-mm septum thickness in the 2x0.19-T equal B-fields configuration, and 6-mm in the non-equal deflection case of Figure 5, to contain the field in the septum around 1.3-T. With the shown geometry the incoming beam separation is in the range of 18- to 20-mm. A parameter list for the TSM is given in Table 3.
Fig. 7: Cross section of a Twin Septum Magnet (TSM) providing equal amplitude opposite deflection. Optional non-equal deflections are possible requiring smaller septum thickness. Dimensions in mm.

Table 3: Parameter list for a two-way TSM.

<table>
<thead>
<tr>
<th>TSM Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet type</td>
<td>Twin window frame</td>
</tr>
<tr>
<td>Deflection mrad</td>
<td>±10.0</td>
</tr>
<tr>
<td>Energy GeV</td>
<td>4.0</td>
</tr>
<tr>
<td>Incoming beam sep. mm</td>
<td>±10.0</td>
</tr>
<tr>
<td>Field strength Tm</td>
<td>0.133</td>
</tr>
<tr>
<td>Eff. Length m</td>
<td>0.70</td>
</tr>
<tr>
<td>Septum mm</td>
<td>8.0</td>
</tr>
<tr>
<td>Defl. Gap height mm</td>
<td>12.0</td>
</tr>
<tr>
<td>Main B-field T</td>
<td>0.19</td>
</tr>
<tr>
<td>Coils 2 x 10 turns</td>
<td></td>
</tr>
<tr>
<td>Current A</td>
<td>184.0</td>
</tr>
<tr>
<td>Power kW</td>
<td>1.2</td>
</tr>
</tbody>
</table>

A Poisson simulation for the TSM anticipates a B-field constant across the gaps width with coefficients

\[G_1 = 1.1 \times 10^{-2} \text{G/mm}, \quad S_2 = 1.0 \times 10^{-2} \text{G/mm}^2. \] (5)

SLOPE COMPENSATION

In a vertical initial splitting scheme it is essential to foresee early compensation of the vertical slopes of the trajectories deflected by the FSDs to avoid the development of large offsets along the beam path and the use of wide aperture correctors downstream. Slope compensations can be achieved in different ways.

Rolled LSMs

An LSM rotated around the beam direction (Figure 8) introduces a vertical steering via the horizontal component of the main B-field. The amount of rotation depends on the required steering amplitude and is usually in the range of a few degrees. The roll direction defines the sign of the compensation steering. From the cyclotron equation

\[p = \beta E/c = eB \rho \] (6)

the development of the trajectory deflections along the integrated field strengths at a given beam energy \(E \) reads, in practical units (relativistic case, \(\beta = 1 \)):
where \(\theta_{x,y} \) are the LSM deflections associated to the \(B_{x,y} \) components of the main field assumed constant along the magnet effective length \(L_m \). The roll angle \(\alpha \) is then

\[
\alpha = \tan^{-1}\left(\frac{B_x}{B_y} \right) = \tan^{-1}\left(\frac{\Delta y}{\Delta x} \right).
\] (8)

\[\theta = \pm 2 \text{ mrad} @ 4.0 \text{ GeV}\]
\[B = 0.109 \text{T}\]
\[B_{\text{res}} = 1 \text{G}\]
\[\text{Coils: } 2 \times 6 \text{ turns}\]
\[I = 80 \text{A}\]
\[L_m = 0.25 \text{m}\]

Fig. 8: Vertical steering from a rotated LSM.

To provide the same deflection as an upright LSM, the rolled LSM must have the same vertical B-field component and its excitation is retuned according to

\[
B_{0}^{\text{roll}} = \frac{B_{0}^{\text{up}}}{\cos \alpha}.
\] (9)

Septum Corrector Magnets

Septum-type Corrector Magnets (SCM) can be used to selectively compensate the slopes of trajectories spatially very close to each other, when their separation prevents the use of standard, single beam correctors. In this case the steering direction lies in the same plane of the incoming trajectories so the septum thickness and the beams separation are set by the size of the coil conductor, differently from the LSM case. The following examples deal with trajectory separation and steering direction in the vertical plane.

The septum corrector sketched in Figure 9 vertically steers the incoming line-2 parallel to the un-deflected line-1. The 5-mm septum thickness imposes a ~16 mm separation between the incoming trajectories.

Fig. 9: Cross section of a compact SCM corrector for the vertical steering of line 2. Dimensions are in mm.
The Poisson simulation of Figure 10 anticipates a ~1-G residual field in the central region and a 0.1-T main B-field in the deflecting gaps with a 6-polar coefficient

\[S_y \approx 2.8 \text{G/mm}^2. \]

(5′)

Fig. 10: Poisson simulation for the SCM vertical corrector. Shown is one quarter of the symmetric structure.

A twin septum corrector (TSCM) can be used to compensate the vertical slopes of the two trajectories at the exit of the vertically focusing Q2 in the scheme of Figure 1, if the latter is part of a FODO system. A sketch of a TSCM magnet in “divergent” configuration is shown in Figure 11. Opposite sign B-fields provide independent converging or diverging vertical deflections to line-1 and line-3 and fully compensate the residual field in the central gap.

Fig. 11: Cross section of a compact TSCM corrector. Opposite sign B-fields provide converging or diverging vertical deflections and compensate the residual field in the central gap. Dimensions are in mm.

The Poisson simulation in Figure 12 anticipates the behavior of the main and residual horizontal B-fields characterized by the coefficients

\[G_{y_{\text{main}}} = 213.2 \ \text{G/mm}, \quad S_{y_{\text{main}}} = -6.1 \ \text{G/mm}^2 \]

\[G_{y_{\text{res}}} = 0.28 \ \text{G/mm}. \]

(5″)
Fig. 12: Poisson simulation for one quarter of the symmetric structure of the TSCM corrector.

BSY TOPOLOGIES

Several BSY topologies can be realized combining the initial vertical splitting from Fast Deflecting Switches with dedicated deflecting elements like the “two- or “three-way” LSMs and the TSM. Examples of possible BSY layouts are sketched in Figure 13. Figure 13a) shows a possible evolution of the original right-side oriented scheme of the NGLS Spreader involving two and three-way LSMs. In Figure 13b) “three-way” LSMs and TSMs combine into a layout symmetric to the central line.

Fig. 13: Examples of BSY layouts involving initial vertical splitting from Fast Switching Devices (FSD) followed by horizontal deflections from combinations of Two- and Three-way Lambertson Septum Magnets (LSM).
SUMMARY

Compact beam spreader schemes combining vertical, small amplitude initial deflections from fast kickers or RF deflectors with horizontally bending Lambertson-type septum magnets offer several advantages in the design of compact beam distribution systems requiring flexibility and beam quality. The intrinsic nature of the CW RF D option is expected to offer higher deflection stability and reproducibility as compared to those from fast kicker technology and does not suffer from limitations in bunch repetition rates. Fast kicker solutions offer a much lower financial investment, both in construction and operation, when dealing with repetition rates in a few hundred kHz range. In both cases BSY layouts adopting vertical initial splitting schemes can feed multiple beam lines in very compact beam distribution schemes.

ACKNOWLEDGMENTS

The authors wish to thank P. J. Emma and J. M. Byrd for sharing many useful discussions, as well as D. S. Robin for support with beam dynamic issues and transport studies for the NGLS Project. The NGLS management encouraged and funded this study. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES