Title
Observation of CP violation in $B_0 \rightarrow K^+\pi^-$ and $B_0 \rightarrow \pi^+\pi^-$

Permalink
https://escholarship.org/uc/item/2t2849xb

Journal
Physical Review Letters, 99(2)

ISSN
0031-9007

Authors
Aubert, B
Bona, M
Boutigny, D
et al.

Publication Date
2007-07-12

DOI
10.1103/PhysRevLett.99.021603

License
CC BY 4.0

Peer reviewed
Observation of CP Violation in $B^0 \to K^+ \pi^-$ and $B^0 \to \pi^+ \pi^-$

0031-9007/07/99(2)/021603(7)

© 2007 The American Physical Society

(BaBar Collaboration)

1Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3Università di Bari, Dipartimento di Fisica e INFN, I-70126 Bari, Italy
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6University of Birmingham, Birmingham, B15 2TT, United Kingdom
7Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
10Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12University of California at Irvine, Irvine, California 92697, USA
13University of California at Los Angeles, Los Angeles, California 90024, USA
14University of California at Riverside, Riverside, California 92521, USA
15University of California at San Diego, La Jolla, California 92093, USA
16University of California at Santa Barbara, Santa Barbara, California 93106, USA
17University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
18California Institute of Technology, Pasadena, California 91125, USA
19University of Cincinnati, Cincinnati, Ohio 45221, USA
20University of Colorado, Boulder, Colorado 80309, USA
21Colorado State University, Fort Collins, Colorado 80523, USA
22Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
23Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
24Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91120 Palaiseau, France
25University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
26Università di Ferrara, Dipartimento di Fisica e INFN, I-44100 Ferrara, Italy
27Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy

021603-2
We report observations of CP violation in the decays $B^0 \rightarrow K^+ \pi^-$ and $B^0 \rightarrow \pi^+ \pi^-$ in a sample of $383 \times 10^6 \ Y(4S) \rightarrow BB$ events. We find $4372 \pm 82 \ B^0 \rightarrow K^+ \pi^-$ decays and measure the direct CP-violating charge asymmetry $A_{K\pi} = -0.107 \pm 0.018\text{(stat)} \pm 0.007\text{(syst)}$, which excludes the CP-conserving hypothesis with a significance of 5.5 standard deviations. In the same sample, we find
The prediction of large CP-violating effects in the B-meson system [1] has been confirmed in recent years by the BABAR and Belle Collaborations, both in the interference of B decays to charmonium final states with and without $B^0\bar{B}^0$ mixing [2] and directly in the interference between the decay amplitudes in $B^0 \to K^+\pi^-$ [3–5]. All measurements of CP violation to date are in agreement with indirect predictions from global standard-model (SM) fits [6] based on measurements of the magnitudes of the elements of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [7] and place important constraints [8] on the flavor structure of SM extensions.

The proper-time evolution of the asymmetry between B^0 and \bar{B}^0 decays to $\pi^+\pi^-$ is characterized by sine and cosine terms with amplitudes $S_{\pi\pi}$, which arises from interference between decays with or without B^0,\bar{B}^0 mixing, and $C_{\pi\pi}$, which is due to interference between the $b \to u \pip$ and the higher-order $b \to d \pip$ “penguin” decay amplitudes. Similarly, the direct CP-violating asymmetry $A_{K\pi}$ between the $B^0 \to K^+\pi^-$ and $\bar{B}^0 \to K^+\pi^-$ decay rates arises from interference between $b \to u$ tree and $b \to d$ penguin amplitudes. Negligible contributions to these asymmetry parameters would also enter from CP violation purely in $B^0-\bar{B}^0$ mixing, which has been determined to be very small [9]. The quantity $\sin2\alpha_{\text{eff}} = S_{\pi\pi}/\sqrt{1-C_{\pi\pi}^2}$ can be related to $\alpha = \arg[-V_{td}V_{tb}^*/V_{td}V_{tb}^*]$ through a model-independent analysis that uses the isospin-related decays $B^\pm \to \pi^\pm\pi^0$ and $B^0 \to \pi^0\pi^0$ [10]. Contributions from new particles could affect the asymmetries in these modes primarily through additional penguin B-decay amplitudes.

Previous evidence of direct CP violation in $B^0 \to K^+\pi^-$ has been reported by BABAR [3] and Belle [4]; additional measurements of $A_{K\pi}$ have also been reported by the CDF [11] and CLEO [12] Collaborations. The Belle Collaboration recently reported [13] an observation of both time-dependent and direct CP violation in $B^0 \to \pi^+\pi^-$ decays using a sample of $535 \times 10^6 BB$ pairs, while our previous measurement [14] on a sample of $227 \times 10^6 BB$ pairs was statistically consistent with no CP violation. In this Letter, we present measurements of $A_{K\pi}$, $S_{\pi\pi}$, and $C_{\pi\pi}$ in a sample of $383 \times 10^6 BB$ pairs using an improved analysis technique with significantly increased sensitivity compared to our previous measurements.

In the BABAR detector [15], charged particles are detected and their momenta measured by a combination of a five-layer silicon vertex tracker and a 40-layer drift chamber (DCH) that covers 92% of the solid angle in the Y(4S) center-of-mass (c.m.) frame, both operating in a 1.5-T solenoidal magnetic field. Discrimination among charged pions, kaons, and protons is provided by a combination of an internally reflecting ring-imaging Cherenkov detector (DIRC), which covers 84% of the c.m. solid angle in the central region of the BABAR detector and has a 91% reconstruction efficiency for pions and kaons with momenta above 1.5 GeV/c, and the ionization (dE/dx) measurements in the DCH. Electrons are explicitly removed based on a comparison of the track momentum and the associated energy deposition in a CsI(Tl) electromagnetic calorimeter and with additional information from dE/dx and DIRC Cherenkov angle (θ_C) measurements.

The analysis method retains many features of our previous $B^0 \to K^+\pi^-$ and $B^0 \to \pi^+\pi^-$ CP-violation measurements [3,14]. We reconstruct candidate decays $B_{rec} \to h^+h^-$ $(h^\pm = \pi^\pm, K^\pm)$ from pairs of oppositely charged tracks in the polar-angle range $0.35 < \theta_{lab} < 2.40$ that are consistent with originating from a common decay point. The remaining particles are examined to infer (flavor tag) whether the other B meson in the event (B_{tag}) decayed as a B^0 or \bar{B}^0. We perform an unbinned extended maximum-likelihood (ML) fit simultaneously for the CP-violating asymmetries and the signal and background yields and parameters. The fit uses particle-identification, kinematic, event-shape, B_{tag} flavor, and Δt information, where Δt is the difference between the B_{rec} and B_{tag} decay times. The yields for the $K\pi$ final state are parametrized as $n_{K\pi} = n_{K\pi}(1+\frac{A_{K\pi}}{\sqrt{2}})^2$, and the decay-rate distribution $f_+ (f_-)$ for $B_{rec} \to \pi^+\pi^-$ and $B_{tag} = B^0(\bar{B}^0)$ is given by

$$f_{\pm}(\Delta t) = \frac{e^{-\Delta t/\tau}}{4\tau} \left[1 \pm \sqrt{1-C_{\pi\pi}^2}\sin(\Delta m_d \Delta t)\right] \pm C_{\pi\pi} \cos(\Delta m_d \Delta t),$$

(1)

where τ is the neutral B lifetime and Δm_d is the $B^0-\bar{B}^0$ mixing frequency, both fixed to their world averages [9].

The most significant improvement in sensitivity compared to our previous analysis comes from a 35% increase in the B_{rec} reconstruction efficiency that results from using dE/dx as a discriminating variable in the ML fit for the first time. The dE/dx measurements are used both to complement the discriminating power of θ_C for charged particles within the DIRC acceptance and as a standalone means of particle identification for tracks that have no DIRC information and were not included in our previous measurements. The dE/dx calibration takes into account variations in the mean value and resolution of dE/dx with respect to changes in the DCH running conditions over time and each track’s charge, polar and azimuthal angles,
and the number of ionization samples. The calibration is performed with large (>10^8) high-purity samples of protons from Λ → pπ^−, pions and kaons from D^+ → D^0π^+ (D^0 → K^-π^+) and additional samples of pions from π^- → π^-π^+νπ^- decays and from K_S^0 → π^+π^- decays that occur in the vicinity of the interaction region.

We require at least one of the tracks in the B_{ec} decay candidate to have θ_C measured with at least six signal photons; for such tracks, the value of θ_C must agree within 4 standard deviations (σ) with either the pion or the kaon hypothesis. Thus, protons with six or more signal photons are removed, while proton-pion and proton-kaon combinations are possible for background candidates where one of the tracks has no usable θ_C measurement. We construct θ_C probability-density functions (PDFs) for the pion and kaon hypotheses and dE/dx PDFs for the pions, kaons, and proton hypotheses, separately for each charge. The K−π separations provided by θ_C and dE/dx are complementary: for θ_C, it varies from 2.5σ at 4.5 GeV/c to 13σ at 1.5 GeV/c [3], while for dE/dx it varies from less than 1.0σ at 1.5 GeV/c to 1.9σ at 4.5 GeV/c (Fig. 1).

Each B candidate is characterized by the energy difference ∆E = (q_Y · q_B/√q_Y) − √q_Y/2, which also provides additional discriminating power between the four possible final states (π^−π^+, K^-π^-π^+, K^-π^-π^+ and K^-π^-K^-) and the beam-energy-substituted mass m_{ES} = [(s/2 + p_Y · p_B)/E_Y − p_B^2]^{1/2} [15]. Here q_Y and q_B are the four-momenta of the Y(4S) and the B candidate, respectively, s = (q_Y)^2 is the square of the c.m. energy, p_Y and p_B are the laboratory-momenta of the Y(4S) and the B, respectively, and E_Y = q_Y is the laboratory energy of the Y(4S). For signal events, the m_{ES} and ∆E PDFs are Gaussian functions with widths of 2.6 MeV/c^2 and 29 MeV, respectively. For the background, m_{ES} is parametrized with an empirical threshold function [16], and ∆E is parametrized with a second-order polynomial. We require 5.2 < m_{ES} < 5.3 GeV/c^2 and |∆E| < 0.150 GeV.

The background arises predominantly from random combinations of tracks in e^+e^- → q̄q (q = u, d, s, c) and τ^+τ^- jetlike continuum events. We define the angle θ_l in the c.m. frame between the sphericity axes [17] of the B candidate and of all remaining charged and neutral particles in the event. For background events, |cosθ_l| peaks sharply near 1, while for B decays the distribution is nearly flat. We require |cosθ_l| < 0.9, which removes approximately 64% of uū, d̄d, and s̄s, 52% of c̄c, and 84% of τ^+τ^- background. Contamination from e^+e^- → τ^+τ^- production is reduced to 2% of the total background by requiring the ratio of the second to zeroth Fox-Wolfram moments [18] to be less than 0.7, which has a negligible effect on the signal efficiency. The overall gain in signal reconstruction efficiency is 52% compared to our previous analysis. Additional continuum-background suppression in the fit is accomplished by the Fisher discriminant F described in Ref. [19]. We have studied the backgrounds from higher-multiplicity B decays and find them to be negligible, particularly due to their good separation from signal in ∆E.

The B_{tag} flavor is determined with a neural-net algorithm [20] that assigns the event to one of seven mutually exclusive tagging categories. The figure of merit for the tagging quality, measured in a data sample B_{flav} of fully reconstructed B^0 decays to D^o→π^+ρ^−(a_1^−) or J/ψK^{*0} is the effective efficiency Q = ∑j ∫|ε_j| (1 − 2ω_j)_2^2 = 0.305 ± 0.003, where ε_k and ω_k are the efficiencies and mistag probabilities for events in tagging category k. Separate values of ε_k and ω_k for each background category are determined in the ML fit.

The time difference ∆t = ∆z/βγc, where βγ = 0.56 is the known boost of the Y(4S), is obtained by measuring the distance ∆z along the beam (z) axis between the B_{ec} and B_{tag} decay vertices. We require |∆t| < 20 ps and σ_{∆t} < 2.5 ps, where σ_{∆t} is the ∆t uncertainty estimated separately for each event. The resolution function for signal candidates is a sum of three Gaussians [20] with parameters determined from a fit to the full B_{flav} sample. The background ∆t distribution, common to all tagging categories, is modeled as a sum of three Gaussian functions with parameters determined in the final fit.

The likelihood for candidate j tagged in category k is obtained by summing the product of event yield n_{i,j}, tagging efficiency ε_{i,k}, and probability P_{i,k} over all possible signal and background hypotheses i. We treat separately the cases where both or only one track has a θ_C measurement. The extended likelihood function for tagging category k is

\[L_k = \exp\left(-\sum_{i} n_{i} \epsilon_{i,k} \right) \prod_{j} \left[\sum_{i} n_{i} \epsilon_{i,k} P_{i,k}(\vec{x}_j; \vec{\alpha}_i) \right]. \]

The probabilities P_{i,k} are evaluated as a product of PDFs for each of the independent variables \(\vec{x}_i = \{ m_{ES}, \Delta E, \mathcal{F}, dE/dx, \theta_C, \Delta t \} \), with parameters \(\vec{\alpha}_i \). We use separate θ_C and dE/dx PDFs for positively and negatively.
charged tracks. The Δt PDF for signal $\pi^+\pi^-$ decays is given by Eq. (1) modified to include the mistag probabilities for each tagging category and convolved with the signal resolution function. The Δt PDFs for signal $K\pi$ and background $K\pi$, πp, and $K p$ combinations take into account the correlation between the charge of the kaon or proton and the B_{tag} flavor; for signal $K\pi$, $B^0\bar{B}^0$ mixing is also taken into account. The total likelihood L is the product of likelihoods for each tagging category and has 117 free parameters.

Fitting the final sample of 309 540 events, we find $n_{\pi\pi} = 1139 \pm 49$, $n_{K\pi} = 4372 \pm 82$, $n_{KK} = 10 \pm 17$, where all errors are statistical only, and measure the following asymmetries:

$$\mathcal{A}_{K\pi} = -0.107 \pm 0.018(\text{stat})^{+0.007}_{-0.004}(\text{syst}),$$

$$S_{\pi\pi} = -0.60 \pm 0.11(\text{stat}) \pm 0.03(\text{syst}),$$

$$C_{\pi\pi} = -0.21 \pm 0.09(\text{stat}) \pm 0.02(\text{syst}).$$

Here $\mathcal{A}_{K\pi}$ is the fitted value of the $K^+\pi^-$ event-yield asymmetry $\mathcal{A}_{K\pi}^{\text{raw}}$ shifted by $+0.005^{+0.006}_{-0.003}$ to account for a bias that arises from the difference between the cross sections of K^+ and K^- hadronic interactions within the BABAR detector. We determine this bias from a detailed Monte Carlo simulation based on GEANT4 [21] version 7.1; it is independently verified with a calculation based on the known material composition of the BABAR detector [15] and the cross sections and material properties tabulated in Ref. [9]. The corrected $K^+\pi^-$ event-yield asymmetry in the background, where no observable CP violation is expected, is consistent with zero: $-0.006 \pm 0.004(\text{stat})^{+0.006}_{-0.003}(\text{syst})$.

A contour plot of the $(S_{\pi\pi}, C_{\pi\pi})$ confidence levels is shown in Fig. 2. The correlation between $S_{\pi\pi}$ and $C_{\pi\pi}$ is -0.07. Performing a fit that excludes Δt and using an event-weighting technique [22], in Fig. 3 we show the distributions of Δt for signal $\pi^+\pi^-$ events with B_{tag} tagged as B^0 or \bar{B}^0, and the asymmetry as a function of Δt, overlaid with the PDF curves that represent the result of the full fit.

To validate our results, we perform a number of consistency checks and systematic-error studies similar to those reported in Refs. [3,14]. For $\mathcal{A}_{K\pi}$, the dominant source of systematic uncertainty is the bias due to kaon hadronic interactions. We find that the systematic errors due to potentially imperfect understanding of the DIRC and DCH particle-identification performance are small for $\mathcal{A}_{K\pi}$ (0.002), $S_{\pi\pi}$ (0.007), and $C_{\pi\pi}$ (0.006). The dominant sources of systematic uncertainty on $S_{\pi\pi}$ are the signal Δt model (0.020) and flavor-tagging parameters (0.015), while for $C_{\pi\pi}$ the dominant uncertainties arise from tagging

![FIG. 2 (color online). $S_{\pi\pi}$ and $C_{\pi\pi}$: the central values, errors, and confidence-level (C.L.) contours for 1 C.L. = 0.317 (1σ), 4.55×10^{-2} (2σ), 2.70×10^{-3} (3σ), 6.33×10^{-5} (4σ), 5.73×10^{-7} (5σ), and 1.97×10^{-9} (6σ), calculated from the square root of the change in the value of $-2\ln L$ compared with its value at the minimum. The systematic errors are included.](image)

![FIG. 3 (color online). The background-subtracted distributions of the decay-time difference Δt in signal $B \to \pi^+\pi^-$ events. The points with errors show the events where B_{tag} is identified as (a) B^0 or (b) \bar{B}^0. The asymmetry, defined as $(n_{\bar{B}^0}^c - n_{B^0}^c)/(n_{\bar{B}^0}^c + n_{B^0}^c)$, for signal events in each Δt bin, is shown in (c). The solid curves are the projection of the fit.](image)
(0.014) and the potential effect [23] of doubly CKM-suppressed decays of the B_{tag} meson (0.016). As a final cross-check, we perform a fit allowing the mixing frequency and lifetime to vary simultaneously with $S_{\pi\pi}$ and $C_{\pi\pi}$. We find $\Delta m_{s} = 0.506 \pm 0.017$ ps$^{-1}$ and $\tau_{B^{0}} = 1.523 \pm 0.026$ ps, where the errors are statistical only, consistent with the world-average values, and the resulting shifts in the CP parameters are negligible. The total systematic uncertainties are calculated by summing all individual contributions in quadrature.

In summary, we observe direct CP violation in the decay $B^{0} \to K^{+}\pi^{-}$ with a statistical significance of 5.5σ and CP violation in the time distribution of $B^{0} \to \pi^{+}\pi^{-}$ decays with a significance of 5.4σ. We also determine that the mixing-induced CP-violating asymmetry $S_{\pi\pi}$ is nonzero with a significance of 5.1σ or greater for any value of $C_{\pi\pi}$. All results are consistent with, and supersede, our previously published measurements [3,14].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

*Deceased.
†Also with Università della Basilicata, Potenza, Italy.
‡Also with Università della Basilicata, Potenza, Italy.
§Also with IPPP, Physics Department, Durham University, Durham DH1 3LE, United Kingdom.
[5] The use of charge-conjugate modes is implied throughout this Letter unless otherwise noted.