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Performance Characterization of High-Level
Programming Models for GPU Graph Analytics

Yuduo Wu, Yangzihao Wang, Yuechao Pan, Carl Yang, and John D. Owens
Electrical and Computer Engineering, University of California, Davis, CA 95616

{yudwu, yzhwang, ychpan, ctcyang, jowens}@ucdavis.edu

Abstract— We identify several factors that are critical to
high-performance GPU graph analytics: efficient building block
operators, synchronization and data movement, workload dis-
tribution and load balancing, and memory access patterns.
We analyze the impact of these critical factors through three
GPU graph analytic frameworks, Gunrock, MapGraph, and
VertexAPI2. We also examine their effect on different workloads:
four common graph primitives from multiple graph application
domains, evaluated through real-world and synthetic graphs. We
show that efficient building block operators enable more powerful
operations for fast information propagation and result in fewer
device kernel invocations, less data movement, and fewer global
synchronizations, and thus are key focus areas for efficient large-
scale graph analytics on the GPU.

I. INTRODUCTION

Large-scale graph structures with millions or billions of
vertices and edges are rapidly created by modern applications.
Graph analytics are essential components of big-data analytics
for many high-performance computing and commercial appli-
cations across domains from social network analysis, financial
services, scientific simulations, and biological networks to tar-
geted advertising. The demands of diverse graph applications
have led to numerous efforts on speeding up graph primitives
via parallelization architectures. A number of shared-memory
or distributed CPU graph frameworks focusing on efficiency
have emerged in recent years [1–5]. Other work [6] improves
programmability by capturing commonly appearing operations
in graph primitives with the motivation of delivering a set of
more intuitive operators to help implement graph primitives
faster than low-level or other frameworks. These graph analytic
frameworks allow programmers to concentrate on expressing
primitives, because the framework takes care of automatically
scaling the computations on parallel architectures.

Graphics processing units (GPUs) are power-efficient and
high-memory-bandwidth processors that can exploit paral-
lelism in computationally demanding applications. GPUs have
proved to be extremely effective at accelerating operations
on traditional vector- or matrix-based data structures, which
exhibit massive parallelism, regular memory access patterns,
few synchronizations, and a straightforward mapping to par-
allel hardware. Unfortunately, mapping irregular graph prim-
itives to parallel hardware is non-trivial due to the data-
dependent control flow and unpredictable memory access
patterns [7]. Recent low-level hardwired implementations [8–
11] have demonstrated the strong computational power of
modern GPUs in bandwidth-hungry graph analytics. For more
general real-world graph analytics, developers need high-level
programmable frameworks to implement various types of com-
plex graph applications on the GPU without sacrificing much

performance. Programming models are key design choices that
impact both expressivity and performance. Most GPU+graph
programming models today mirror CPU programming models:
for instance, Medusa [12] uses Pregel’s message passing
model, and VertexAPI2 [13], MapGraph [14], and CuSha [15]
use and modify PowerGraph’s Gather-Apply-Scatter (GAS)
model. A more recent framework, Gunrock [7], uses a GPU-
specific data-centric model focused on operations of a subset
of vertices and/or edges.

Efficient and scalable mechanisms to schedule workloads
on parallel computation resources are imperative. The un-
predictable control flows and memory divergence on GPU
introduced by irregular graph topologies need sophisticated
strategies to ensure efficiency. And yet, unlike CPU graph
frameworks, little is known about the behavior of high-level
GPU frameworks across a broad set of graph applications. A
thorough investigation of graph framework performance on a
single GPU can provide insights and potential tuning and op-
timizations to accelerate a class of irregular applications with
further benefit to future graph analytic frameworks on multi-
GPUs and GPU clusters. Our contributions are as follows:

1) We identify main factors that are critical to ef-
ficient high-level GPU graph analytic frameworks
and present a performance characterization of three
existing frameworks on the GPU—VertexAPI2, Map-
Graph, and Gunrock—by exploring the implementa-
tion space of different categories of graph primitives
and their sensitivity to diverse topologies.

2) We present a detailed experimental evaluation of
topology sensitivity and identify the key properties
of graphs and their impact on the performance of
modern GPU graph analytic frameworks.

3) We investigate the effect of design choices and primi-
tives used by the three high-level GPU graph analytic
frameworks above and key design aspects for more
efficient graph analytics on the GPU.

The rest of this paper is organized as follows: Section II
reviews related work for graph application characterizations.
Section III first provides the necessary background on graph
analytics using high-level frameworks, then reviews several
common graph primitives used in this work as case studies. In
Section IV, we discuss the two existing graph programming
models and introduce three implementations on the GPU.
Section V defines the methodology and performance metrics
used to investigate the programming models. Detailed empir-
ical studies are provided in Section VI. Section VII discusses
potential ways to further improve graph analytic abstractions.
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II. RELATED WORK

Developing and evaluating graph primitives on GPU is a
hot recent topic. Xu et al. [16] studied 12 graph applications
in order to identify bottlenecks that limit GPU performance.
They show that graph applications tend to need frequent kernel
invocations and make ineffective use of caches compared to
non-graph applications. Pannotia [17] is a suite of several spe-
cific GPGPU graph applications implemented in OpenCL used
to characterize the low-level behavior of SIMD architectures,
including cache hit ratios, execution time breakdown, speedups
over CPU version execution, and SIMT lane utilization. O’Neil
et al. [18] presented the first simulator-based characterization,
which focused on the issue of underutilized execution cycles
due to irregular graph codes and addressed the effectiveness of
graph-specific optimizations. Burtscher et al. [19] defined two
measures of irregularity—control-flow irregularity (CFI) and
memory-access irregularity (MAI)—to evaluate irregular GPU
kernels. Their contributions can be summarized as: a) Irregu-
larity varies across different applications and datasets; b) Com-
mon performance bottlenecks include underutilized execution
cycles, branch divergence, load imbalance, synchronization
overhead, memory coalescing, L2/DRAM latency, and DRAM
bandwidth; c) Improvements in memory locality/coalescing
and fine-grained load balancing can improve performance.
Yang and Chien [20] studied different ensembles of parallel
graph computations, and concluded that graph computation
behaviors form an extremely broad space.

Previous graph processing workload characterizations are
dominated by architectural-level behavior and simulation-
based analysis. However, the high-level abstractions for graph
analytics on GPU-based frameworks, and their impact on
graph workloads, have not been investigated in detail. What
remains unclear is how to map these low-level optimizations
and performance bottlenecks to different high-level design
choices in order to find best programming model and a
set of general principles for computing graph analytics on
the GPU. Previous characterization work is also limited to
individual graph primitives implemented on their own rather
than examining state-of-the-art general-purpose graph analytic
frameworks. Unlike previous benchmarking efforts, we focus
more on the performance and characteristics of high-level
programming models for graph analytics on GPUs.

III. PRELIMINARIES & BACKGROUND

A. Selection of Graph Topologies

The performance of graph primitives is highly data-
dependent, as we describe in more detail in Sec. VI-A. We
explore how topology impacts the overall performance using
the following metrics. The eccentricity ✏(v) is the greatest
geodesic distance between a vertex v and any other vertex
in the graph. The radius of a graph is the minimum graph
eccentricity r = min ✏(v) and in contrast, the diameter of
a graph is the length of the maximum over shortest paths
between any pair of vertices d = max ✏(v). The magnitude of
algebraic connectivity reflects the well-connectedness of the
overall graph. For traversal-based graph primitives, traversal
depth (number of iterations) is directly proportional to the
eccentricity and connectivity. The vertex degree implies the
number of edges connected to a vertex. The average number

of degrees of a graph and its degree distribution determine
the amount of parallelism; an unbalanced degree distribution
can significantly impact load balancing during the traversal.
Real-world graph topologies usually fall into two categories:
the first contains small eccentricity graphs with highly-skewed
scale-free degree distributions, which results in a subset of few
extremely high-degree vertices; the second has large diameters
with evenly-distributed degrees. In Section VI, we choose
diverse datasets that encompass both categories, and also
generate several synthesized graphs whose eccentricity and
diameter values span from very small to very large.

B. Selection of Graph Primitives

We observe that graph primitives can be divided into two
broad groups. First, traversal-based primitives start from a
subset of vertices in the graph, systematically explore and/or
update their neighbors until all reachable vertices have been
touched. Note that only a subset of vertices is typically active
at any point in the computation. In contrast, most/all vertices in
a dense-computation-based primitive are active in every stage
of the computation.

Breath-First Search (BFS) is a common building block
for more sophisticated graph primitives, and is representative
of a class of irregular and data-dependent parallel computa-
tions [9]. Other traversal-based primitives include Betweenness
Centrality (BC), a quantitative measure to capture the effect
of important vertices in a graph, and Single-Source Shortest
Path (SSSP), which calculates the shortest distance between
the source vsource 2 V and all vertices in a weighted graph
G = (V,E,w). These three primitives are generally considered
traversal-based. Depending on its implementation, Connected
Component (CC) can be in either category: for an undirected
graph, CC finds each subset of vertices C ✓ V in the graph
such that each vertex in C can reach every other vertex in
C, and no path exists between vertices in C and vertices in
V \C. Link analysis and ranking primitives such as PageRank
calculate the relative importance of vertices and are dominated
by vertex-centric updates; PageRank is a dense-computation-
based primitive.

In this work, we use four common primitives—BFS, SSSP,
CC and PageRank—as case studies to benchmark the per-
formance of three mainstream programmable graph analytic
frameworks on the GPU. BFS represents a simpler workload
per edge while SSSP includes more expensive computations
and complicated traversal paths. CC and PageRank involve
dense computations with different per vertex/edge workloads.
The behavior of these primitives is diverse, covering both
memory- and computation-bound behaviors, and together re-
flects a broadly typical workload for graph analytics.

IV. PROGRAMMING MODELS OVERVIEW

Many graph primitives can be expressed as several inher-
ently parallel computation stages interspersed with synchro-
nizations. Existing programmable frameworks on the GPU [13,
14, 7, 21] all employ a Bulk-Synchronous Parallel (BSP)
programming model in which users express a graph problem
a series of consecutive “super-steps”, separated by global
barriers, where each super-step exhibits ample data parallelism
and can be run efficiently on a data-parallel GPU. These super-
steps may include per-vertex and/or per-edge computation that
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run on all or a subset of vertices or edges in the graph, for
instance, reading and/or updating each vertex’s/edge’s own
data or that of its neighbors. A super-step may instead traverse
the graph and choose a new subset of active vertices or edges (a
“frontier”) during or after graph computations. Thus the data
parallelism within a super-step is typically data parallelism
over the vertices or edges in the frontier. The programs
themselves are generally iterative, convergent processes that
repeatedly run super-steps that update vertex/edge values until
they reach a termination condition (convergence).

The major differences of most high-level graph analytic
frameworks lie in two aspects: 1) how a super-step is defined to
update vertices and/or edges in the current frontier, and 2) how
to generate a new frontier for the next super-step. In this work,
we study VertexAPI2 [13], an implementation strictly follow-
ing the Gather-Apply-Scatter (GAS) model; MapGraph [14],
a modified version of the GAS model; and Gunrock [7], a
data-centric abstraction that focuses on manipulations of the
frontier. All three frameworks run bulk-synchronous super-
steps on a frontier of active vertices/edges until convergence.
In the rest of the paper, we use VA to denote VertexAPI2, MG
for MapGraph, and GR for Gunrock.

A. Gather-Apply-Scatter Model

The Gather-Apply-Scatter (GAS) approach was originally
developed for distributed environments [2, 1]. The GAS model
decomposes a vertex program into three conceptual phases:
gather, apply, and scatter. The gather phase accumulates
information about adjacent vertices and edges of each active
vertex through a generalized binary operation over its neighbor
list. The apply phase computes the accumulated value, the
output of the gather phase, to the active vertex as a new vertex
attribute. And during the scatter phase, a predicate is evaluated
on all adjacent outgoing-edges and corresponding vertices. A
vertex carries two states: active and inactive. Both VA and MG
broadly follow the GAS model, but with important differences.
VA disables the scatter phase as none of the four primitives
in its current implementation can be expressed without push-
updates; instead, after gather and apply, VA writes predicate
values to a v-length flag, then invokes an activate phase to
scan and compact vertices associated with true flags to create
frontiers for the next iteration. MG instead decomposes the
scatter into two phases: expand, to generate edge frontiers and
contract, to eliminate duplicates in new frontiers that arise due
to simultaneous discovery. To improve flexibility, the gather
and scatter phases in MG support in-edges, out-edges, or both.

B. Data-Centric Model

Rather than focusing on expressing sequential steps of
computation on vertices, GR’s abstraction focuses on manipu-
lations of the frontier of vertices or edges that are actively
participating in the computation. GR supports three ways
to manipulate the current frontier: advance generates a new
frontier by visiting the neighbors of the current vertex frontier;
filter generates a new frontier by choosing a subset of the
current frontier based on programmer-specified criteria; and
compute executes an operation on all elements in the current
frontier in parallel. GR’s advance and filter dynamically choose
optimization strategies during runtime depending on graph
topology. In order to reduce the number of kernel calls and

enhance producer-consumer locality, GR’s computation steps
are expressed as device functions called functors that can be
fused into advance and filter kernels at compile time. Fig. 1
shows how we can express BFS using operators in three
different frameworks.

V. CRITICAL ASPECTS FOR EFFICIENCY

In this section, we identify and discuss important factors
that are critical to fast GPU graph analytics. Investigating these
issues and evaluating design choices are necessary for building
high-level graph analytic frameworks.

Efficient building block operators are vital for graph
analytic frameworks. Being efficient can mean: 1) using these
operators flexibly yields high-performance outcomes; 2) the
operators themselves are implemented efficiently. We evaluate
both in this work. The former affects how graph primitives
are defined and expressed, which result in abstraction-level
and performance differences; the latter impacts workload
distribution and load balancing, as well as memory access
patterns across the GPU. As a result, efficient building block
graph operators are invariably tied to performance. Example
operators for the three frameworks in Section IV include
gather, apply, expand, contract, activate, advance, and filter.

Workload distribution and load balancing are crucial
issues for performance; previous work has observed that
these operations are dependent on graph structure [17, 16].
Hardwired graph primitive implementations have prioritized
efficient (and primitive-customized) implementations of these
operations, thus to be competitive, high-level programmable
frameworks must offer high-performance but high-level strate-
gies to address them. While some operators are simple to par-
allelize on the GPU—GAS’s apply is perfectly data-parallel;
GR’s filter is more complex but still straightforward—others
are more complex and irregular. Traversing neighbor lists,
gather, and scatter, for instance, may each have a different
workload for every vertex, so regularizing workloads into a
data-parallel programming model is critical for efficiency.

Synchronization and data movement are limiting factors
under widely-adopted BSP models. While the BSP model
of computation is a good fit for the GPU, the cost of its
barrier synchronization between super-steps remains expen-
sive. Asynchronous models that may reduce this cost are
only just beginning to appear on the GPU [22]. Beyond BSP
synchronization, any other global synchronizations within BSP
super-steps are also costly. Expert programmers often mini-
mize global synchronizations and unnecessary data movement
across kernels. How do the high-level programming models
we consider here, and the implementations of their operations,
impact performance?

Memory access patterns and usage are also main limiting
factors for GPU performance. In graph primitives, memory
access patterns are both irregular and data-dependent, as noted
by previous work [19]. Thus efficient utilization, better access
patterns for both global and shared memory, fewer costly
atomic operations, and less warp-level divergence contribute to
superior overall performance. Because GPU on-board memory
capacity is limited, efficient global memory usage is particu-
larly important for addressing large-scale graph workloads.
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Listing 1: BFS using MG’s API

Program::Initialize(); // Initialization

// Repeat until the frontier is empty

while (frontier_size > 0) {

gather(); // Doing nothing

apply(); // Doing nothing

expand(); // Expanding neighbors

contract(); // Get new frontier

}

Problem.ExtractResults(); // Get Results

Listing 2: BFS using VA’s API

engine.setActive(); // Initialization

// Repeat until no active vertex exist

while (engine.countActive()) {

engine.gatherApply(); // Update labels

engine.scatterActivate(); // Get new

engine.nextIter(); // active list

setIterationCount(); // Count level

}

engine.getResults(); // Get results

Listing 3: BFS using GR’s API

BFSProblem::Init(); // Initialization

// Repeat until the frontier is empty

while (frontier_queue_length > 0) {

// Get neighbors and update labels

BFSEnactor::gunrock::oprtr::advance();

// Cenerate new vertex frontier

BFSEnactor::gunrock::oprtr::filter();

}

BFSProblem::Extract(); // Get result

Fig. 1: Code snapshots for three different GPU graph analytic frameworks.

VI. METHODOLOGY & EVALUATION

We begin our evaluation by looking at primitive perfor-
mance on a variety of graph types and analyzing how the
datasets influence each framework’s performance of graph
traversal and information propagation. Then to better under-
stand the performance, we focus on the following details of
the abstraction and implementations: load balance and work
distribution, synchronization, and memory usage and behavior.

We empirically evaluate the effectiveness of primitives
(Section III-B), expressed in the GAS implementations of VA
v2 and MG v0.3.3 and the data-centric implementation of GR1

(Section IV), on our benchmark suite. All experiments ran on
a Linux workstation with 2 ⇥ 3.50 GHz Intel 4-core E5-2637
v2 Xeon CPUs, and a NVIDIA K40c GPU with 12 GB on-
board memory. The GPU programs were compiled with NVCC
v6.5.12 and C/C++ code was compiled using GCC v4.8.1 with
the -O3 optimization level. In this work, we aim to focus on
an abstraction-level understanding of the frameworks centered
on their GPU implementations; thus all results ignore transfer
time (disk-to-memory and host-to-device). We use the NVIDIA
Visual Profiler to collect some of our characterization results.

Table I summarizes our benchmark suite. Road and Open
Street Maps (OSM) are two types of real-world road networks
with most (at least 87.1%) vertices having an directed out-
degree below 4. Delaunay datasets are Delaunay triangulations
of random points in the plane that also have extremely small
out-degrees. Social networks commonly have scale-free vertex
degree distributions and small diameters (thus small depths).
Kronecker datasets are similar to social networks with the
majority of the vertices belonging to only several levels of
BFS. Overall, these datasets cover a wide range of topologies
to help us characterize and understand the performance and
effectiveness of different graph analytic frameworks. Most
of our datasets are from the University of Florida Sparse
Matrix Collection [23]; we also use synthetic graph genera-
tors [24, 25]. To provide weights for the SSSP, we associate a
random integer weight in the range of [1, 128) to each edge.

A. Overall Performance

Fig. 2 contains the normalized runtime for four graph
primitives across all datasets on three frameworks. We observe
that: 1) The runtime ratios of a primitive evaluated on the three
frameworks can heavily differ simply because of the topology
of the input graph; 2) All frameworks have much higher traver-
sal rates on scale-free graphs than on road networks. In the rest

1Gunrock’s results use git commit 3f1a98a dated May 8, 2015.

Dataset Vertices Edges Degree Depth BFS Frontier Size

roadNet-CA 1.97M 5.53M 2.81 657
asia osm 12.0M 25.4M 2.13 36,077
road central 14.1M 33.9M 2.41 4,208
road usa 23.9M 57.7M 2.41 6,155
europe osm 51.0M 108M 2.12 19,338

delaunay n17 131k 393k 6.00 155
delaunay n18 262k 786k 6.00 214
delaunay n19 524k 1.57M 6.00 295
delaunay n20 1.05M 3.15M 6.00 413
delaunay n21 2.10M 6.29M 6.00 571

amazon-2008 735k 7.05M 9.58 21
hollywood-2009 1.14M 113M 98.9 8
tweets 1.85M 5.75M 3.12 16
soc-orkut 3.00M 213M 71.0 8
soc-LiveJournal1 4.85M 85.7M 17.7 14

kron g500-logn17 131k 10.1M 78.0 3
kron g500-logn18 262k 21.0M 80.7 3
kron g500-logn19 524k 43.2M 83.1 4
kron g500-logn20 1.05M 88.6M 85.1 5
kron g500-logn21 2.10M 181M 86.8 5

TABLE I: Our suite of benchmark datasets, all converted to
symmetric graphs. Degree indicates the average vertex degree
for all vertices and depth is the average search depth randomly
sampled over at least 1000 BFS runs. The last column depicts
the size of vertex frontiers (black) and edge frontiers (gray)
as a function of BFS level on road usa, delaunay n21, soc-
LiveJournal1, and kron g500-logn21. Note that road networks
and Delaunay meshes usually have comparable vertex and
edge frontier sizes; however, for social and Kronecker datasets,
edge frontiers are enormous compared to the vertex frontiers.
We group the datasets above into four different groups: road,
delaunay, social, and kron. Datasets in the same group share
similar structure and thus similar behavior.

of this section, we identify and characterize abstraction-level
trade-offs and investigate the reasons and challenges for graph
analytics behind observed differences in overall performance.

B. Dataset Impact

Ample parallelism is critical for GPU computing. To make
full use of the GPU, programmers must supply sufficient work
to the GPU to keep its many functional units occupied with
enough active threads to hide memory latency. The NVIDIA
K40c we used here has 15 multiprocessors, each of which can
support 2048 simultaneous threads; thus ⇠30k active threads
are the bare minimum to keep the GPU fully occupied, and it
is likely that many times that number are required in practice.

We begin with a best-case scenario to evaluate the graph
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Fig. 2: Runtime of BFS, SSSP, CC, and PageRank, normalized
to GR’s runtime. For a fair comparison, all GR BFS results
disable the direction-optimizing (pull updates) optimization.

traversal: two traversal-based primitives, BFS and SSSP, on
a perfectly load-balanced graph with no redundant work (no
concurrent child vertex discovery). Such a graph should allow
a graph framework to achieve its peak throughput. Fig. 3 (a)
illustrates the throughput in millions of traversed edges per
second (MTEPS) as a function of the edge frontier size at each
BFS level. Generally, throughput improves as the edge frontier
size increases. This behavior is expected—larger edge frontiers
means more parallelism—but for any of the frameworks, the
GPU does not reach its maximum throughput until it has
millions of edges in its input frontier. (The number of frontier
edges for maximum throughput corresponds to on the order of
100 edges processed per hardware thread.) This requirement
is a good match for scale-free graphs (like social networks
or kron), but means that less dense, high-diameter graphs like
road networks will be unlikely to achieve maximum throughput
on BSP-based GPU graph frameworks.

VA’s saturation point exceeds the largest synthetic frontier
size we used. We attribute such scalability and performance
boost for VA to their switching of parallelism strategy beyond
a certain frontier size. These behavioral patterns suggest that
ample workload is critical for high throughput, and thus scale-
free graphs will show the best results in general across all
frameworks. Between frameworks, the BFS topology prefer-
ence observations in Section VI-A are confirmed by our results
here: MG and GR performs more advantageously on long-
diameter road networks and meshes while VA benefits most
from social networks and scale-free kron graphs.

Let’s now turn to two real-world graphs: a high-diameter
road network, roadNet-CA, and a scale-free social graph,
hollywood-2009. We show MTEPS for these graphs in Fig. 4.
Peak MTEPS differ by several orders of magnitude, which
we can directly explain by looking at actual edge frontier
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Fig. 3: Traversed edges per second vs. edge frontier size,
measured on synthetic trees with a perfectly balanced workload
and no redundant work (no concurrent child discovery).
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Fig. 4: Traversed edges per second for each iteration of two
types of real-world graphs. Note that roadNet-CA is sampled.

sizes: roadNet-CA’s range from 3 to 17,780 (⇡ 2

14), while
hollywood-2009’s peaks at 58.1M (⇡ 2

26), which is sub-
stantially larger than the saturation frontier size we observed.
The performance patterns are consistent with the previous key
findings; VA achieves peak performance for 2 iterations of
the largest frontiers, which explains its behavior on social and
kron.

BFS and SSSP are traversal-based and thus only have a
subset of vertices or edges active in a frontier at any given time.
We see that when that fraction is small, we do not achieve peak
performance. In contrast, a dense-computation-based primitive
like PageRank has all vertices active in each iteration before
convergence. Such a primitive will have a large frontier on
every iteration and be an excellent fit for a GPU; in practice,
all three frameworks perform similarly well on PageRank.

Another important characteristic of graphs is the average
degree, which we can use to quantify per-vertex workload.
Fig. 5 shows the performance impact of the average degree of
BFS with a set of synthetic regular graphs [24] and scale-
free graphs (R-MAT [25]), all with the same number of
vertices and only differing in average degree. All frameworks
demonstrate better performance with increasing degree; more
work per vertex leads to more throughput. Smaller average
degree graphs (e.g., road networks and OSMs) are limited
by available parallelism. Larger average degree (over 20⇠30)
graphs demonstrate notably higher MTEPS for all frameworks.
In practice, this larger degree is necessary to provide enough
work to keep the GPU fully occupied.

Finally, scale-free vertex distributions and their skewness
also impact performance. We can broaden our analysis by
varying parameters of the R-MAT generator to create not only

5



●
●

● ● ● ● ● ●
●

●
●

●

25
6

51
2

10
24

20
48

0 20 40 60 80 100 120 140
average neighbor list size

M
TE

PS
 (M

iE
dg

es
/s

)

●

MapGraph
VertexAPI2
Gunrock

(a) Random Regular Graphs

●

●

●
●

●
● ●

51
2

10
24

20
48

40
96

81
92

10 20 30 40 50 60 70 80
average neighbor list size

M
TE

PS
 (M

iE
dg

es
/s

)

●

MapGraph
VertexAPI2
Gunrock

(b) Scale-free R-MAT Graphs

Fig. 5: Impact of average degree on performance.
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(a) Traversal-based: BFS
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(b) Computation-based: PageRank

Fig. 6: BFS and PageRank performance on different scale-free
graphs with the same number of vertices and edges.

social-network-like graphs but graphs with other behaviors
as well. We set the ratio of the parameters a, b, and c
(choosing b = c for symmetry) to 8 (highly-skewed scale-
free graph), 3 (closest to many real-world scenarios) and 1
(Erdös Rényi model). The result is three synthetic graphs
with the same vertex and edge count but different skewness.
Fig. 6 shows our runtime results for BFS graph traversal and
dense-computation-based PageRank. On both BFS and SSSP,
we see lower runtime as skewness increases and eccentricity
decreases; runtime is most correlated to the number of super-
steps (iterations) to traverse the graph, and the highly-skewed
graphs have the smallest diameter. On the other hand, for
PageRank, we see the opposite runtime behavior: the high
amount of skew yields noteworthy load-balancing challenges
that hurt the overall runtime compared to less-skew graphs.

In summary: the GPU shines when given large frontiers
with large and uniformly-sized vertex frontiers, and when
diameters are low. It struggles with small frontier sizes, with
small vertex degrees and load imbalances within the frontier,
and with more synchronizations caused by high diameters.
Dense, scale-free, low-diameter graphs like social networks are
particularly well suited for the GPU; road networks are a poor
fit for all the frameworks we study here, because they do not
expose enough work to saturate the GPU. In general, traversal-
based primitives will be more affected by graph topology
than computation-based primitives, because they operate on
a smaller subset of the graphs and hence have less parallel
work to do per operation. Next, we turn away from how our
graph analytic frameworks perform on different topologies to
the underlying reasons why they perform that way.

C. Operator Load Balancing Strategies

For graph analytics, the amount of parallelism is dynamic,
time-varying, workload-dependent, and hard to predict. The

programmable frameworks we study here encapsulate their
solution to this problem in their operators, which must capture
this parallelism at runtime. Thus, the design choices of GR’s
advance traversal operation and GAS’s gather and scatter
operations can appreciably impact performance.

Load Balancing Methods: The graph analytic frameworks
we study in this work use three distinct techniques to achieve
parallel workload mapping at runtime:

1) When the frontier is so small that there is no way
to fully utilize the GPU, load balance is not a major
concern. The simple strategy is thus the popular one:
a per-thread neighbor list expansion (PT), where an
entire vertex’s neighbor list is mapped to a single
thread. However, as frontiers get larger and neighbor
list sizes differ by several orders of magnitude, PT’s
load-balancing behavior becomes unacceptably bad.

2) One alternative is Merrill et al.’s dynamic workload
mapping [9] (DWM), which groups neighbor lists
by size into three categories and uses one thread,
one warp, or one block to cooperatively expand one
vertex’s neighbor list. This strategy achieves good
utilization within blocks; however, it still potentially
suffers from intra-block imbalance.

3) The other alternative is Davidson et al.’s partitioned
load-balancing workload mapping [8] (PLB), which
ignores any difference in neighbor list size and always
chooses to map a fixed amount of workload to one
block. When the frontier size is small, it maps a fixed
number of vertices to a block. All threads expand all
the neighbor lists cooperatively. When the frontier
size is large, it maps a fixed number of edges to
a block. To make all threads cooperatively visit all
edges and know to which vertex’s neighbor list each
edge belongs require extra work, either an extra load-
balanced search or a sorted search.

VA uses PT when frontier size is small and PLB when
large. MG uses PLB for gather and dynamically switches
between DWM and PLB (two-phase) for scatter according to
frontier size. GR also dynamically chooses between DWM
and PLB, not by frontier size but instead according to the
graph type (DWM for mesh-like graphs and PLB for scale-free
graphs). Both MG and VA implement PLB using load-balanced
search while GR implements PLB using sorted search.

In Figs. 3 and 4, we see significant performance differences
between VA and MG, despite both using the same GAS
programming model. MG’s two-phase method is efficient in
expending the small frontiers that commonly appear in long-
diameter graphs. VA’s PT strategy hurts its performance when
the frontier size is small, but it spends less time on redundant
removal on scale-free graphs. MG behaves similar to GR
since similar dynamic strategies are used in both frameworks.
However, GR’s implementation of PLB saves one pass through
the frontier and thus shows superior performance. In general,
DWM brings the best performance on small frontiers for both
graph types and PLB shows the best performance on large
frontiers that are common for scale-free graphs. A successful
framework must carefully and dynamically consider both graph
topology and frontier size to pick the best mapping strategy.

Fig. 7 provides a level breakdown for BFS: in which
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Fig. 7: Phase breakdown of BFS. In MG, the expand phase enumerates neighbors and the contract phase generates next-level
vertices. VA uses apply to update labels and scatter to activate the next level. In GR, filter is used to generate the new frontier
while updates can be either in advance or filter, depending on mode. Overhead encompasses synchronization and data movement.

Primitive Framework road delaunay social kron

BFS
MapGraph 86.0% 84.1% 84.1% 92.3%
VertexAPI2 81.6% 73.4% 94.0% 98.4%
Gunrock 86.6% 83.4% 92.8% 94.1%

SSSP
MapGraph 90.6% 89.1% 94.6% 94.8%
VertexAPI2 95.4% 95.4% 94.6% 95.9%
Gunrock 96.9% 96.3% 96.6% 96.6%

CC
MapGraph 95.3% 92.9% 96.7% 97.3%
VertexAPI2 96.2% 92.3% 95.2% 95.3%
Gunrock 96.0% 96.8% 98.6% 96.1%

PageRank
MapGraph 96.3% 95.9% 97.1% 98.2%
VertexAPI2 94.9% 92.4% 97.0% 95.8%
Gunrock 93.4% 99.5% 99.6% 93.5%

TABLE II: Average warp execution efficiency (WEE).

stages does each framework spend its time? BFS’s primary
operations are traversing neighbors and updating labels, and
its stage breakdown is similar to other graph-traversal-based
primitives, like SSSP. We notice long-diameter road networks,
which require more bulk synchronized super-steps, have much
more synchronization overhead; their execution time is mostly
occupied traversing neighbor lists. Conversely, scale-free and
social networks introduce significant redundant edge discovery,
thus contract/filter operations dominate their execution time.

Warp Execution Efficiency: Warp divergence occurs when
threads in the same warp take different execution paths. For
graph primitives, this is the main contribution of control flow
irregularity. Warp execution efficiency (WEE) defines the ratio
of the average active threads per warp to the maximum number
of threads per warp supported on a multiprocessor. Table II
shows the average WEE of different graph primitives for three
frameworks. For BFS, social and kron graphs enable a higher
average warp execution efficiency across all frameworks due
to the highly-optimized load-balanced graph traversal operators
used by each framework. However, road and Delaunay graphs
show lower WEE due to two reasons: 1) underutilization and
limited parallelism caused by small frontier sizes and slow
frontier size expansion; 2) the use of the per-thread-expand
(PT) load-imbalanced neighbor list traversal method. For graph
primitives with dense computation such as PageRank, all three
frameworks achieve very high WEE because all vertices in the

neighbor lists actively participate in computations. Although
CC for GAS is based on BFS, SSSP is traversal-based: all
vertices are actively finding minimum neighbors, introducing
more parallelism and thus a higher WEE.

D. Synchronizations and Kernel Execution Patterns

Beyond load balancing, another potential obstacle to per-
formance is the cost of GPU synchronizations, which occur
in two places: 1) the implied BSP barriers at the end of each
super-step, and 2) implicit global synchronizations between
GPU kernel invocations within each super-step. The BSP bar-
rier count is directly proportional to the iterations required for a
primitive to converge, and kernel invocation count corresponds
to the number of synchronizations within each iteration. Each
kernel invocation performs four steps: read data from global
memory, compute, write results, and synchronize. Many graphs
with long tails have substantial synchronization overhead.

All three frameworks share the same BSP model and do
not support asynchronous execution, thus each framework has
the same number of BSP barriers, except for CC2. Table III
summarizes the barrier count BC and kernel count KC. Both BC
and KC show strong positive correlations with achieved perfor-
mance as in Table IV. For traversal-based primitives where all
three frameworks follow similar approaches, fewer synchro-
nizations (implying kernels that do more work) yield superior
performance: expert programmers fuse kernels together to re-
duce synchronization and increase producer-consumer locality
by reducing reads and writes to global memory.

However, reducing kernel invocations is a non-trivial task
for programmable frameworks because the building blocks
of programmable frameworks—operators—are typically kernel
calls. Generally, high-level programming models trade off
increased kernel invocation overhead (compared to hardwired
implementations) for flexibility and more diverse expressiv-
ity. That being said, reducing kernel invocations (KC) is a
worthwhile goal for any framework implementation, and GR’s
ability to fuse computation stages into advance or filter kernels

2The huge performance gap between GR and the GAS implementations
on CC is primarily from GR’s ability to run Greiner’s PRAM-based CC
algorithm [26], which implements hooking and pointer-jumping using the filter
operator. The GAS implementations are instead BFS-based, counting compo-
nents by graph traversal, and suffer from a large number of synchronizations,
especially for long-tail graphs.
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BSP Barrier Count (BC) Kernel Invocations Count (KC)

Dataset Primitive MapGraph VertexAPI2 Gunrock Hardwired MapGraph VertexAPI2 Gunrock Hardwired

road usa

BFS 6,263 6,263 6,263 6,262 18,842 89,045 49,660 11
SSSP 6,700 6,700 6,700 — 84,281 165,967 116,800 —
CC 6,262 6,262 13 10 77,840 178,551 93 83
PageRank 20 20 20 — 1,093 504 112 —

delaunay n21

BFS 564 565 565 564 2,042 9,229 1,133 388
SSSP 879 879 871 — 10,695 19,514 14,802 —
CC 564 564 7 7 6,085 14,949 58 59
PageRank 20 20 20 — 889 378 259 —

soc-LiveJournal1

BFS 12 12 13 12 144 175 92 61
SSSP 31 31 32 — 365 801 466 —
CC 12 12 5 2 223 292 46 22
PageRank 20 20 20 — 1,094 552 313 —

kron g500-logn21

BFS 6 7 6 6 96 85 48 37
SSSP 10 10 9 — 142 147 82 —
CC 6 6 5 4 147 139 37 33
PageRank 20 20 20 — 893 438 269 —

TABLE III: BSP barrier count (BC) and kernel count (KC) of BFS, SSSP, CC, and PageRank for each framework vs. hardwired
implementations of BFS: b40c [9], and CC: Soman et al. [11]. Bold indicates fewest among the three programmable frameworks.

BFS SSSP CC PageRank Overall

Correlation BC 0.759 0.721 0.878 — 0.624
Correlation KC 0.868 0.577 0.615 0.308 0.575

TABLE IV: Correlation of BC and KC with performance
(measured as throughput). PageRank BC data is not applicable
because of its fixed iteration count.

Primitive Dataset MapGraph VertexAPI2 Gunrock

BFS roadNet-CA 55 320 56
kron g500-logn17 8,091 1,723 2,862

SSSP roadNet-CA 4,516 60,413 3,956
kron g500-logn17 454,973 97,394 2,211

CC roadNet-CA 288,309 112,270 15,657
kron g500-logn17 2,569,069 162,983 1,082

PageRank roadNet-CA 0 0 7,680
kron g500-logn17 0 0 212

TABLE V: Global atomic transactions in each framework.

appears to directly translate into fewer kernel calls and thus
higher performance.

E. Atomic Operation and Memory Impact

As graph primitives are often memory-bound due to a lack
of locality, factors such as data movement, memory access
patterns, and total memory usage all have obvious impacts on
achieved performance.

Atomic Operation: Atomic instructions are generally con-
sidered expensive, although their cost has decreased with more
recent GPU micro-architectures. Unfortunately, they are a key
ingredient in operations on irregular graph data structures, due

to the large amount of concurrent discovery, particularly char-
acteristic of scale-free graphs. Table V summarizes each frame-
work’s number of global atomic transactions. BFS/SSSP’s
atomics are found in MG’s expand/contract, VA’s activate, and
GR’s filter. MG and GR show similar atomic behavior because
they visit neighbors and do push-updates, then contract/filter
out redundant vertices; for both, the work of contract/filter is
substantial. VA uses more atomic operations on road networks
for BFS/SSSP because its simple atomic activates (per-thread-
expand) are frequently used; conversely, its fewer atomics in
scale-free graphs are due to VA’s use of a Boolean flag to
indicate vertex status in the new frontier-generating phase.

GR results in this paper incorporate an idempotent mode
of operation, applicable primarily to BFS, that allows multiple
insertions of the same vertex in the frontier without impacting
correctness. It reduces the atomic operation count from 20,034
to 2,862 for BFS on kron g500-logn17. On this dataset, the
idempotent optimization improves the MTEPS from 891.7 to
3291 MiEdges/s (a 3.69X speedup). Without the idempotent
operation, using atomic operations to check whether or not the
vertices in next level have already been claimed as someone
else’s child is extremely expensive. In GAS, this optimization
is not applicable because GAS frameworks cannot guarantee
the idempotence of arbitrary user-defined apply functions [13].
Turning to PageRank, we note that PageRank’s runtime is
dominated by vertex-centric updates and ideally suited to the
GAS abstraction; neither VA nor MG requires atomics in their
implementations, and partially as a result, both frameworks
deliver excellent performance.

Data Movement: Another metric directly proportional to
kernel invocations of data-intensive graph primitives is the data
movement across GPU kernels. Let the number of vertices
be v and the number of edges e, and consider BFS in both
programming models: The GAS model requires 5e+ 6v data
transfers of which 4e + 3v are coalesced. In the data-centric
model, both of GR’s load balancing strategies require 5e+4v
global data transfers, of which 2e+ 3v are uncoalesced.
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Dataset MapGraph VertexAPI2 Gunrock

load store load store load store

delaunay 422k 204k 23.5k 9.78k 1.48k 4.70k
kron 18.5M 981k 840k 8.73M 1.89M 736k

TABLE VI: Achieved global load and store transactions on
BFS. Delanuay n17 contains 131k vertices and 393k edges
while kron g500-logn17 has 131k vertices and 10.1M edges.
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Fig. 8: Global memory bandwidth impact on BFS MTEPS.

Table VI summarizes the actual global load and global store
counts for the three frameworks running BFS on two types of
graphs. It supports the above theoretical analysis. We notice
that for delaunay n17, MG requires more data communication
than GR and VA. Potential reasons for this behavior are: 1) the
cost of maintaining an edge frontier between MG’s expand
and contract phase, and 2) the requirement for two-level loads
from global memory to registers, first loading frontier data
into tile arrays and then loading from those arrays data to
do computation. In contrast, GR’s PLB only has one level
of such loads. VA on the other hand, uses flags to indicate
the status of vertices without generating edge frontiers, which
results in fewer data transfers. On kron g500-logn17, MG
and GR both have more reads than writes due to heavy
concurrent discovery. In general, performance is consistent
with the number of memory transactions. The framework
which has the least amount of memory transactions usually
has the best performance.

Memory Usage and Bandwidth: All frameworks use the
Compressed Sparse Row (CSR) format to store graphs. CSR
is a good fit for its space efficiency and its ability to easily
strip out adjacency lists and find offsets using parallel-friendly
primitives [9]. CSR contains a row pointer array and column
indices array. Compress Sparse Column (CSC) is similar to
CSR except it stores column pointers and row indices. The
design choice of different CSR-based graph formats of each
framework and how to efficiently access them dramatically
affects performance. This section will focus on the character-
ization of memory usage and bandwidth.

Without losing generality, Fig. 8 illustrates traversal
throughput (MTEPS) as a function of memory bandwidth
running BFS on 5 kron datasets (logn17 - logn21). All three
frameworks follow the same pattern: higher achieved memory
bandwidth leads to higher throughput. VA and GR use mem-
ory bandwidth more efficiently. However, no framework ap-
proaches our GPU’s theoretical maximum memory bandwidth
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Fig. 9: Memory usage comparisons for BFS, SSSP, CC, and
PageRank across four datasets, normalized to GR = 1.

of 288 GB/sec, which implies that implementations based on
current CSR-based graph representations utilize a substantial
number of scattered (uncoalesced) reads and writes.

The frameworks in this study abstract graph primitives with
iterative advance + filter or gather + apply + scatter super-
steps. In the data-centric model, the advance uses CSR to
expand the neighbors of a current vertex frontier. In GAS,
the gather phase requires a CSC to gather its neighbors
(pull), and the scatter phase requires CSR (push) to complete
push-style updates/activations. Thus the GAS implementations
require storing the topology in both CSR and CSC formats.
The usage of CSC doubles the memory usage of GAS com-
pared to GR for directed inputs. However, GR integrates
optimizations that consume memory beyond only CSR, such as
direction-optimized traversal (“pull”) on BFS, which requires
a CSC input. GR’s pull-enabled BFS requires 3.52 GB on
kron g500-logn21 (1.26X compared with non-pull-enabled).
This optimization improves the traversal rate from 3476.6 to
8384.5 MiEdges/s. Here, GR demonstrates a trade-off between
memory usage and performance.

Fig. 9 shows the global memory usage comparisons. Scale-
free graphs often consume additional memory compared to
long-diameter graphs due to the cost of maintaining the fast-
expanding and extremely large edge frontiers. In the GAS
implementations, MG uses a two-step procedure to build CSR
and CSC formats in memory, which results in an overall
factor of 1.88X⇠3.54X above GR. VA’s implementation elim-
inates the scatter phase, which results in less usage than MG
(1.27X⇠2.4X compared to GR). The memory footprint for
GAS implementations is clearly not optimal. Ultimately the
larger memory usage of the GAS implementations limits the
size of graphs that can fit into the GPU’s limited on-board
memory (12 GB on the K40c).

VII. CONCLUSION

High-level GPU programmable interfaces are crucial for
programmers to quickly build and evaluate complex work-
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loads using graph primitives. However, graphs are particu-
larly challenging: the intersection of varying graph topolo-
gies with different primitives yield complex and even op-
posing optimization strategies. In this work we have learned
that the Gather-Apply-Scatter (GAS) abstraction can elimi-
nate expensive atomic operations for primitives dominated by
vertex-centric updates; however, it suffers from slow infor-
mation propagation and high memory usage. A data-centric
abstraction enables more complex and powerful operators
and lower memory usage. In practice, GR’s implementation
allows integrating more work in each kernel, thus requiring
fewer kernel invocations and synchronizations and resulting
in higher achieved throughput. For any of the frameworks
we studied, and for future frameworks, the design choice
of operators and the ability to implement efficient primitives
beneath a high-level abstraction are key to achieving best-
of-class performance. From an architecture perspective, better
hardware and programming-system support for load-balancing
irregular parallelism would be a worthwhile investment for
better support of graph analytics.

None of the programmable frameworks show convincing
performance on low-degree long-tail graphs. More broadly,
the common challenges to the frameworks we studied include
synchronization cost and limited parallelism. These may be
a limitation of the BSP model common to all three frame-
works. Using an asynchronous execution framework may be
an interesting direction for future work. A second challenge is
automatic kernel fusion, which can potentially reduce synchro-
nization cost, but current GPU programming frameworks do
not perform this (difficult) optimization automatically. Finally,
memory performance is a crucial aspect of any GPU graph
primitive and a fruitful area for future study. All three frame-
works share the CSR graph format, but alternate graph formats
might allow superior memory performance, particularly with
regard to data coalescing.
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