Characterization of metabolic differences between benign and malignant tumors: High-spectral-resolution diffuse optical spectroscopy

Permalink
https://escholarship.org/uc/item/2tk5d971

Journal
Radiology, 254(1)

ISSN
0033-8419

Authors
Kukreti, S
Cerussi, AE
Tanamai, W
et al.

Publication Date
2010

DOI
10.1148/radiol.09082134

Supplemental Material
https://escholarship.org/uc/item/2tk5d971#supplemental

License
CC BY 4.0

Peer reviewed
Characterization of Metabolic Differences between Benign and Malignant Tumors: High-Spectral-Resolution Diffuse Optical Spectroscopy

Purpose:
To develop a near-infrared spectroscopic method to identify breast cancer biomarkers and to retrospectively determine if benign and malignant breast lesions could be distinguished by using this method.

Materials and Methods:
The study was HIPAA compliant and was approved by the university institutional review board. Written informed consent was obtained. By using self-referencing differential spectroscopy (SRDS) analysis, the existence of specific spectroscopic signatures of breast lesions on images acquired by using diffuse optical spectroscopy imaging in the wavelength range (650–1000 nm) was established. The SRDS method was tested in 60 subjects (mean age, 38 years; age range, 22–74 years). There were 17 patients with benign breast tumors and 22 patients with malignant breast tumors. There were 21 control subjects.

Results:
Discrimination analysis helped separate malignant from benign tumors. A total of 40 lesions (22 malignant and 18 benign) were analyzed. Twenty were true-positive lesions, 17 were true-negative lesions, one was a false-positive lesion, and two were false-negative lesions (sensitivity, 91% [20 of 22]; specificity, 94% [17 of 18]; positive predictive value, 95% [20 of 21]; and negative predictive value, 89% [17 of 19]).

Conclusion:
The SRDS method revealed localized tumor biomarkers specific to pathologic state.

1 From the Beckman Laser Institute, University of California, Irvine, Calif (S.K., A.E.C., W.T., B.J.T., E.G.); Laboratory for Fluorescence Dynamics, University of California, Irvine, 3210 Natural Sciences II Building, Irvine CA 92612 (S.K., E.G.); College of Medicine at the University of Illinois, Urbana-Champaign, II (S.K.); Biophysics and Computational Biology Program, University of Illinois, Urbana-Champaign, III (S.K., E.G.); Department of Biomedical Engineering, University of California, Irvine, Calif (B.J.T., E.G.); Laser Medical and Microbeam Program, University of California, Irvine, Calif (A.E.C., B.J.T.); and Department of Oncological Surgery, University of California, Irvine Medical Center, Orange, Calif (D.S.). Received December 10, 2008; revision requested February 4, 2009; revision received April 27; accepted July 1; final version accepted July 20. Supported by the Laser Microbeam and Medical Program (P41-RR01192), California Breast Cancer Research Program, and Chao Family Comprehensive Cancer Center (P30-CA62203). Address correspondence to E.G. (e-mail: enrico.gratton22@yahoo.com).

© RSNA, 2010

Spectroscopic results add functional and molecular-specific information to imaging. For example, several in vivo magnetic resonance (MR) spectroscopy studies (1–9) have shown that tumors exhibit peaks at 3.2 ppm in hydrogen 1 spectra of breast tissue that correspond to elevated levels of total choline which are known to be more abundant in active tumors. MR spectroscopy may improve diagnostic accuracy in the distinction between malignant and benign tumors and help predict therapeutic response in treated tumors (10–12).

Diffuse optical imaging is commonly used to provide biochemical information on hemoglobin concentration by measuring near-infrared (NIR) tissue absorption (13–18). Studies have shown diffuse optical imaging used to depict breast tumors and monitor tumor response to therapy (19,20). Diffuse optical spectroscopy (DOS) imaging, by increasing the wavelength range and resolution, helps measure not only the abundance of hemoglobin but also bulk lipids and water (21). DOS imaging has been used to characterize malignant tumors and tumor response to chemotherapy (22–24). However, tumor characterization by using these components (hemoglobin, water, and bulk lipids) has not been found to be specific for malignancy: The abundance of these tissue chromophores is not a unique cancer-specific signature (16,21,25). Furthermore, age and hormonal status introduce high interpatient variability in NIR absorption spectra and complicate diagnosis when only the magnitude of tissue absorption is used (24,26,27).

Through the application of a spectral analysis method that accounts for interpatient variability, we have discovered metabolic differences between malignant and normal tissues that result from subtle changes in molecular disposition (28). Our purpose was to demonstrate how absorption signatures, likely resulting from changes in lipid, hemoglobin, and water metabolism, rather than the abundance of molecules, help distinguish between benign and malignant breast tumors.

Advances in Knowledge
- A self-referencing differential spectroscopy (SRDS) method has been developed for near-infrared (NIR) (650–1000 nm) diffuse optical spectroscopic (DOS) imaging in tissues that accounts for the unique metabolism of individual patients and facilitates comparisons across patient populations.
- The SRDS method exploits the presence or absence of a spectral fingerprint that reports on molecular disposition—the location, concentration, and environment of a molecular species—and not molecular abundance of NIR absorbers in tissues (hemoglobin, water, and lipids).
- DOS imaging measurements of breast lesions display unique endogenous spectral absorption fingerprints, called specific tumor components (STCs), that separate lesions from normal breast tissues.
- A weighted wavelength analysis method was developed to exploit the entire STC absorption spectrum in the NIR to discriminate between benign and malignant tumors.

Materials and Methods
B.J.T., A.E.C., S.K., and E.G. report that they hold patents related to the technology and analysis methods described in this study. The particular DOS imaging instrumentation used in this study was constructed in a university laboratory by using National Institutes of Health grants. These patents are owned by the University of California. B.J.T. and A.E.C. are members of a scientific advisory board for Volighten (Irvine, Calif) and hold stock in this company. They have licensed these patents to Volighten through the University of California, Irvine. They assert that (a) this study was completed prior to the formation of the company Volighten, (b) they were not involved with Volighten during the acquisition, processing, and analysis of the results presented in this study, and (c) this study was completed without any influence by Volighten. Volighten provided no support (financial or other) toward this study.

Patients
All patients provided written informed consent to participate in the study in strict adherence to a protocol approved by an institutional review board of the University of California, Irvine. The...
Radiology: Volume 254: Number 1—January 2010

TECHNICAL DEVELOPMENTS: Diffuse Optical Spectroscopy of Breast Lesions

Kukreti et al

seven of 22 DOS imaging measurements were obtained prior to biopsy. Of the remaining subjects, the average DOS imaging measurement took place 32 days ± 16 (standard deviation) after biopsy (minimum, 14 days). In the fibroadenoma population, five of 17 patients were measured prior to undergoing biopsy. The average DOS imaging measurement date was 344 days ± 440 after undergoing biopsy (minimum, 40 days).

Instrumentation

The DOS instrument, which uses a combined frequency-domain and continuous-wave tissue spectrometer, has been previously described (29–31). The combined system is necessary to provide absorption and scattering spectra from 650 to 1000 nm (approximately 1000 wavelengths with 8-nm spectral resolution). The frequency-domain light sources are six independent laser diodes (660, 690, 780, 808, 830, and 850 nm), while the continuous-wave light source is a tungsten-halogen lamp. Frequency-modulated light was detected by using an avalanche photodiode detector, and continuous-wave light was detected by using a back-illuminated spectrometer. A handheld probe incorporates source (ie, optical fibers) and detector (ie,
TECHNICAL DEVELOPMENTS: Diffuse Optical Spectroscopy of Breast Lesions

Diffuse Optical Spectroscopy of Breast Lesions Kukreti et al

avalanche photodiode detector and a spectrometer detector fiber) channels (Fig 1). Less than 20 mW of optical power was launched into the tissue at any time by using reflection geometry (28-mm source detector separation). Frequency-domain measurements were calibrated with a tissue-simulating phantom with known absorption and scattering properties. Spectral response was calibrated by using a commercial reflectance standard (Spectralon, Labsphere, North Sutton, NH).

Measurement Procedure
DOS imaging measurements were acquired by moving the handheld probe over the tumor in lines of discrete measurement points spaced 10 mm apart (Fig 1). Tumor locations were known a priori from mammographic findings, ultrasonographic (US) findings, and/or palpation. Patients were measured in the supine position. Probe contact was similar to that at US, by using gentle contact on the breast without compression. Full broadband absorption and reduced scattering spectra were measured at each spatial location, requiring less than 10 seconds per spatial location. Similar measurements were taken on the mirrored location of the contralateral breast.

Data Analysis
Data were analyzed by using custom code designed for Matlab (Mathworks, Natick, Mass). For each measured breast location, frequency-domain and continuous-wave data were processed to recover scatter-corrected absorption spectra from 650 to 1000 nm (24). The concentrations of NIR absorbers were calculated from a spectral model of tissue absorption by using the basis spectra (Fig 2). For the self-referencing differential spectroscopy (SRDS) method, the absorption spectra were further analyzed by using custom software (Elanetst; Laboratory for Fluorescence Dynamics, Irvine, Calif, www.lfd.uci.edu). Details of the SRDS method, also known as the double-differential method, have been described (28). Briefly, the SRDS method depicts spectral components not accounted for by the basis absorber spectra (Fig 2) by eliminating patient-specific spectral variations from scatter-corrected absorption spectra. The unaccounted spectral components are called collectively the specific tumor component (STC) spectrum, because these STC spectra are found only in lesions and not in normal tissues. The STC represents tissue absorption associated with the molecular disposition of NIR absorbers in tissues. STC spectra were recovered over an average of spatial points for patients with tumors in both lesion and normal areas (see Appendix E1 [online]).

Statistical Analysis
STC spectra for malignant and benign tumors were distinguished by using a custom spectral separation method (see Appendix E1 [online]). In brief, the algorithm maximizes differences in spectral shape by weighting different wavelength regions. For every patient (for each spectrum), the “similarity” from the average STC spectrum of a benign and a malignant lesion was calculated and translated into an index (ie, the malignancy index), which ranged from −1 to 1. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated on the basis of accuracy in benign or malignant classification.

Additional statistical calculations were performed by using commercial software (JMP IN; SAS Institute, Cary, NC). Nonparametric statistics were used to calculate spectral differences between benign and malignant populations (Wilcoxon rank sum test). Significance was assumed at a confidence interval of 95% (α = .05) for a two-tailed distribution. All spectral error bars are those for the population.

We analyzed the effect of including an increasing number of spectra in calculating the average. The “score” (ie, the separability of fibroadenoma from cancer) converges to a constant value as the number of patients used for the average was increased. Therefore, we concluded that adding more patients will not further decrease the separability. After a data set of 20, we started to reach a plateau, which is sufficient to separate fibroadenoma from cancer.

The data set was subjected to a round-robin analysis to determine the dependence of the classification of the patients according to the malignancy index on the particular set. Each patient was systematically omitted from the set. For each of the reduced sets (one patient omitted), the weighting factors were optimized. The malignancy index for the omitted patient was calculated according to the new weights as if this patient was unknown. We found that the malignancy index changed slightly for each patient. However, no patient changed classification as a result of this round-robin analysis.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Age (y)</th>
<th>Body Mass Index (kg/cm²)</th>
<th>Lesion Size (mm)</th>
<th>US ACR BI-RADS*</th>
<th>Menopausal Status‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>39 (32–65)</td>
<td>28.2 (18.9–40.3)</td>
<td>18 (7–100)</td>
<td>4.81 (4–5)</td>
<td>Premenopausal 12 Postmenopausal 10 Perimenopausal NA</td>
</tr>
<tr>
<td>Fibroadenoma</td>
<td>33 (22–57)</td>
<td>24.23 (18.64–30.36)</td>
<td>19.9 (4–37)</td>
<td>3.33 (2–4)</td>
<td>Premenopausal 14 Postmenopausal 6 Perimenopausal 1</td>
</tr>
<tr>
<td>Control subject</td>
<td>42 (22–74)</td>
<td>24 (17.8–41.8)</td>
<td>NA</td>
<td>NA</td>
<td>Premenopausal 13 Postmenopausal 7 Perimenopausal 1</td>
</tr>
</tbody>
</table>

Note.—Unless otherwise indicated, data are means, with ranges in parentheses. NA = not applicable.

* ACR BI-RADS = American College of Radiology Breast Imaging Reporting and Data System.

‡Data are numbers of subjects.
Results

NIR Tumor Characteristics

In Figure 3, we show an example of NIR absorption spectra averaged over a line of points from tumor-containing and normal tissues. The overall absorption is higher across the spectrum for tumor tissue than that for normal tissue. The increased absorption below 850 nm is attributed to increases in oxy- and deoxyhemoglobin (13–15, 24, 32). These spectral changes originate from electronic transitions in molecular states. The increased absorption near 960 nm is due to O-H vibrational overtones, which are primarily due to water. Tissue absorption near 930 nm is representative of vibrational overtones of lipid C-H bonds. These spectral features have been documented in a previous study of 58 malignant tumors (24).

Specific Tumor Spectra

SRDS spectra from representative normal (right breast) and malignant (left breast) tissues were calculated at seven spatial locations (Fig. 4). The SRDS method uncovered spectral signatures that were not accounted for by the traditional NIR basis set, as demonstrated.
TECHNICAL DEVELOPMENTS: Diffuse Optical Spectroscopy of Breast Lesions

Kukreti et al

by the spectral features present in the left (malignant) spectrum but absent in the right (normal) spectrum.

Increases in STC index were localized in the region of the tumor and were not present in normal tissue regions. While these maps are relatively low in spatial resolution, they are highly specific for malignancy.

Specific Tumor Spectra and Population Distribution

Figure 5 presents the STC spectra acquired from 22 malignant breast tumors and the spatially equivalent normal tissue from the same patients, as well as normal regions from 21 control subjects. Despite the wide range in patient age and tumor size, the STC spectrum was present in all 22 tumors and was not found in the normal tissues of any subjects in this study. STC spectra were found in all malignant cases and displayed notable features in the following five wavelength regions: 650–665, 730–800, 875–930, 930–960, and 980–1000 nm (28). We note that the specific choice of normal region had little effect on the overall shape of the STC spectrum. The STC spectral shapes were similar to the original, and the tumors were correctly classified as benign or malignant.

In Figure 6, we present a comparison of STC spectra that have been normalized to the amplitude (thereby providing a ratio) to retrieve the differences in spectral shape, as opposed to magnitude, from both benign (n = 18) and malignant (n = 22) tumors. Distinctive spectral differences exist between the STC spectra of these populations.

Differential Diagnosis

The average malignancy index values for benign and malignant tumors were −0.51 ± 0.29 and 0.44 ± 0.26, respectively. These means were statistically different (Z < .0001, Wilcoxon rank sum test, two sided, α = .05). Plotting the malignancy index values for all patients showed a separation between the pathologic states (Fig 7). The malignancy index was positive for malignant tumors and negative for benign tumors. As shown in Figure 7, one benign tumor (patient 5) was misclassified as cancer and two cancers (patients 25 and 38) were misclassified as benign. If we use a value of 0.0 as the cutoff point, we would recover a sensitivity and specificity of 91% and 94%, respectively. Positive predictive values and negative predictive values were calculated to be 95% and 89%, respectively.

Discussion

Increased spectral content improves tissue characterization. The SRDS approach to spectral analysis revealed spectral signatures that contain specific absorption bands which separate normal from normal tissue and benign from malignant tissue. To accurately measure these fingerprint STC spectra, it is imperative that many individual NIR wavelengths (approximately 1000) are measured across a wide spectral band (650–1000 nm). The amplitudes of the STC spectra are small (about 1% of the total absorption) but well above the signal-to-noise ratio. The STC spectral shapes are highly reproducible and exhibit consistent and specific wavelength-dependent characteristics. In STC spectra, the variations in abundance of NIR absorbers resulting from interpatient variances have been effectively subtracted (28). This self-referencing feature is important because NIR absorption spectra are known to
CSRDS method implies that detection is (ie, the background is zero). Further-and/or classification is based solely on
ologic variation. CSRDS tumor depiction analysis, which subtracts normal physi-
ual important consequence of the CSRDS
shape. Conservation of STC shape is
of STC spectra but not the spectral
the tumor depth affects the amplitude
sion). While the depth of the tumor
tra was conserved, regardless of size of
STC spectra. Furthermore, DOS imaging may be combined with other imaging modalities to improve sensitivity and specificity.

On the basis of the wavelength depen-
dence of the STC spectrum, we hypo-
thesize that the signature is due to changes in lipid metabolism. Recent studies (10,33–35) have shown that
cancers can alter the lipid metabolism.
Benign lesions such as fibroadenomas
display hemodynamic signatures similar
to those of malignant lesions (16,25).

There were limitations to the study. Fibroadenomas were the only type of be-
nign tumors measured. Furthermore, the lesions were not corrected for depth.

In conclusion, the CSRDS method
relies on the presence or absence of a spectral fingerprint that reports on molecular disposition and not molec-
lar abundance. These changes in mol-
ecular disposition are on the order of parts per thousand and are possibly due to alterations in the lipid state.
The CSRDS technique subtracts for the unique metabolism of each individ-
ual patient and facilitates compari-
sions across patient populations. We
converted the observed molecular dis-
positions into a simple index that strat-
ified benign and malignant tumors in a
population of 40 subjects with lesions.
The observation of pathologic state-
specific spectral signatures provided a potentially significant method for dif-
ferential diagnosis and monitoring re-

tersponse to therapy.

Acknowledgments: Programmatic support was provided by the Air Force Office of Scientific Research Medical Free Electron Laser program and the Beckman Foundation. We thank our staff at the Beckman Laser Institute for assisting with acquisition of measurements and subjects for participating in research.

References

5. Yeung DK, Chan Y, Leung S, Poon PM, Pang C. Detection of an intense reso-
11. Kumar M, Jagannathan NR, Seenu V, Dwivedi SN, Jalka PK, Rath GK. Monitor-
ing the therapeutic response of locally ad-
12. Manton DJ, Chaturvedi A, Hubbard A, et al. Neoadjuvant chemotherapy in breast...

