Title
An Automation System for Optimizing a Supply Chain Network Design under the Influence of Demand Uncertainty

Permalink
https://escholarship.org/uc/item/2tt0321b

Author
Polany, Rany

Publication Date
2012

Peer reviewed|Thesis/dissertation
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

AN AUTOMATION SYSTEM FOR OPTIMIZING AN INTEGRATED SUPPLY CHAIN NETWORK DESIGN UNDER THE INFLUENCE OF DEMAND UNCERTAINTY

A thesis submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

TECHNOLOGY & INFORMATION MANAGEMENT

by

RANY POLANY

JUNE 2012

The Thesis of RANY POLANY is approved:

Subhas Desa, Chair

Patrick E. Mantey

Nirvikar Singh

Tyrus Miller
Vice Provost and Dean of Graduate Studies
Table of Contents

List of Figures vi

List of Tables viii

List of Notation ix

Abstract xv

Dedication xvi

Acknowledgments xvii

1 Introduction 1

1.1 Motivation .. 1

1.2 Problem Description ... 5

1.3 Problem Statement .. 6

1.4 Summary of Research Contributions 8

1.5 Organization of the Work ... 12

2 Related Work 13

2.1 Demand Forecasting and Inventory Management 13

2.2 Supply Chain Network Modeling 13

2.2.1 Overview of the Supply Chain Network 13

2.2.2 Two-stage Supply Chain Network 14

2.2.3 Multi-Echelon Supply Chain Network 14

2.3 The Influence of Uncertainty at the Macro and Micro Levels 16

2.3.1 Macro Level: Scenario Planning 16

2.3.2 Micro Level: Monte Carlo Simulation 16

2.4 Dashboard/Cockpit Automation 17
Theory and Framework

3.1 Demand Forecast Modeling
- 3.1.1 Components of Observed Demand
- 3.1.2 Static Forecasting Method
- 3.1.3 Moving Average Method
- 3.1.4 Simple Exponential Method
- 3.1.5 Holt’s Method
- 3.1.6 Winter’s Method
- 3.1.7 Forecasting Error Analysis

3.2 Inventory Management Modeling

3.3 Supply Chain Network Modeling
- 3.3.1 Overview of the supply chain network
- 3.3.2 Two-stage supply chain network
- 3.3.3 Multi-echelon supply chain networks

3.4 The Integrated Hierarchical Framework
- 3.4.1 A Hierarchical view of Handling Uncertainty
- 3.4.2 Theory of Macro and Micro Level Framework Components
- 3.4.3 The Integration Process of the Framework

3.5 Dashboard/Cockpit Automation

Implementation

4.1 Configuration of the Platform: Microsoft Excel

4.2 Scenario Planning

4.3 Demand Forecasting Analysis

4.4 Inventory Management Analysis

4.5 Facilities Management
- 4.5.1 The Two-stage Capacitated Plant Deterministic Model
- 4.5.2 Expanding to the Multi-Echelon Capacitated Plant
4.5.3 Configuring the Excel Worksheet Architecture 76
4.5.4 Demand Uncertainty with Monte Carlo Simulation 83
4.5.5 Configuring the Simulation Uncertainty Functions 83
4.5.6 Configuring the Simulation Parameters 85
4.5.7 Supply Chain Network Design Configuration Mapping 89
4.6 Dashboard/Cockpit Automation 90

5 Simulation Study and Numerical Analysis 93
5.1 Calibration 01 93
5.2 Calibration 02 97
5.3 Case Study Numerical Analysis 101

6 Results 102
6.1 Quantifying Uncertainty 102
 6.1.1 Base Case: Scenario 1 ($p = 1/3$) = Scenario 2 = Scenario 3 102
 6.1.2 Case 1: “High” (Scenario 1: $p = 100\%$) 103
 6.1.3 Case 2: “Nominal” (Scenario 2: $p = 100\%$) 104
 6.1.4 Case 3: “Low” (Scenario 3: $p = 100\%$) 105
6.2 Quantifying Total Cost versus $(CV)_D(\%)$ 106

7 Conclusion and Future Work 108

Appendix: VBA Code for the Modules 110

References 135
List of Figures

1 Idealized plot of annual inventory ordering cycle. 3
2 Sample for the annual demand at different parameters of the coefficient
of variations of demand (Trial 1 of 10,000). ... 5
3 International supply chain network for information technology compo-
nents. ... 6
4 Time series of demand data to determine the level and trend. 20
5 Static forecasting method. ... 21
6 Static method worksheet. ... 23
7 Static method chart. ... 23
8 Moving average worksheet. ... 25
9 Moving average chart. ... 25
10 Exponential smoothing worksheet. .. 28
11 Exponential smoothing chart. .. 28
12 Holt’s method worksheet. ... 30
13 Holt’s method chart. ... 30
14 Winter’s method worksheet. .. 32
15 Winter’s method chart. ... 32
16 Forecast analysis summary with GUI dashboard and controls. 34
17 An example of the standard normal probability density function. 38
18 View of the two-stage supply chain network. .. 43
19 View of the multi-echelon supply chain network. 45
20 Quantifying uncertainty in a multi-echelon supply chain network design. 48
21 The cumulative distribution function (CDF) and the relationship to a
random variable, X. ... 50
22 An integrated hierarchical framework. .. 52
23 Modeling demand uncertainty in a supply chain network design. 55
List of Tables

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Table of notation for multi-echelon supply chain network.</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>Example of a correlation matrix of the seven key uncertainties.</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>Example of a correlation matrix with the nominal scenarios “+” selected.</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>Scenario planning summary.</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>Scenario planning probabilities.</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>Simulation parameters.</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>Average annual demand parameters.</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>Seven uncertainties in the production of high-tech IT components.</td>
<td>65</td>
</tr>
<tr>
<td>9</td>
<td>Correlation matrix of the seven key uncertainties.</td>
<td>66</td>
</tr>
<tr>
<td>10</td>
<td>Correlation matrix with the key “+” uncertainties selected.</td>
<td>67</td>
</tr>
<tr>
<td>11</td>
<td>Scenario planning implementation summary.</td>
<td>67</td>
</tr>
<tr>
<td>12</td>
<td>Scenario planning configuration parameters.</td>
<td>68</td>
</tr>
<tr>
<td>13</td>
<td>Table of notation scenario-planning.</td>
<td>68</td>
</tr>
<tr>
<td>14</td>
<td>Table of notation for determining the optimal forecasting method.</td>
<td>70</td>
</tr>
<tr>
<td>15</td>
<td>An example of the tabulation for a comparative analysis of the MAPE.</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>Transportation costs between all the facilities.</td>
<td>94</td>
</tr>
<tr>
<td>17</td>
<td>Maximum capacity for each facility type.</td>
<td>94</td>
</tr>
<tr>
<td>18</td>
<td>Calibration 01 status.</td>
<td>96</td>
</tr>
<tr>
<td>19</td>
<td>Transportation costs between all the facilities.</td>
<td>97</td>
</tr>
<tr>
<td>20</td>
<td>Maximum capacity of each facility.</td>
<td>98</td>
</tr>
<tr>
<td>21</td>
<td>Calibration 02 status.</td>
<td>100</td>
</tr>
</tbody>
</table>
List of Notations

Notation: Demand Forecasting

\[B \] identifier for the optimal forecasting model ... 71

\[Bias \] bias .. 33

\[D_i \] actual demand at period \(i \), \((i = 1, 2, \ldots, t) \) 19

\[\overline{D}_i \] regressed demand at period \(i \), \((i = 1, 2, \ldots, t) \) 19

\[\overline{D}_i' \] deseasonalized demand at period \(i \), \((i = 1, 2, \ldots, t) \) 19

\[d_i \] perpendicular distance from the point \(D_i \) to line \(L \) 19

\[|E_i| \] absolute error (or deviation) ... 33

\[E_i \] forecast error .. 33

\[i \] index value for a generic period, \((i = 1, 2, \ldots, t) \) 19

\[\ell \] index value for a generic future time periods, \((\ell = 1, 2, \ldots) \) 19

\[L \] best fit straight line in the standard form of \(y = mx + b \) 19

\[MAD \] mean absolute deviation ... 33

\[MAPE \] mean absolute percent error ... 33

\[MSE \] mean square error ... 33

\[p \] periodicity ... 19

\[r \] number of cycles ... 19

\[\alpha \] smoothing constant for level ... 19

\[\beta \] smoothing constant for trend ... 19
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>smoothing constant for seasonality</td>
</tr>
<tr>
<td>S_i</td>
<td>seasonal factor for period i, $(i = 1, 2, \ldots, t)$</td>
</tr>
<tr>
<td>t</td>
<td>current or present time</td>
</tr>
<tr>
<td>TS</td>
<td>tracking signal</td>
</tr>
<tr>
<td>\mathbb{V}</td>
<td>$(d_1)^2 + (d_2)^2 + \cdots + (d_t)^2 = \sum_{i=0}^{t} (d_i)^2$</td>
</tr>
</tbody>
</table>
Notation: Inventory Management

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSL</td>
<td>cycle service level(%)</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>$(CV)_D$</td>
<td>coefficient of variation of demand</td>
</tr>
<tr>
<td>$(CV)_S$</td>
<td>coefficient of variation of supply</td>
</tr>
<tr>
<td>D_L</td>
<td>demand during lead-time</td>
</tr>
<tr>
<td>D_w</td>
<td>average weekly demand (units)</td>
</tr>
<tr>
<td>ESC</td>
<td>expected shortage per replenishment cycle</td>
</tr>
<tr>
<td>$F_{z^{-1}}(p)$</td>
<td>inverse of the normalized normal distribution function</td>
</tr>
<tr>
<td>f_R</td>
<td>fill rate(%)</td>
</tr>
<tr>
<td>L</td>
<td>lead-time</td>
</tr>
<tr>
<td>n</td>
<td>number of shipments on an annualized basis</td>
</tr>
<tr>
<td>Q_L</td>
<td>lot size</td>
</tr>
<tr>
<td>Q_L^*</td>
<td>optimal lot size</td>
</tr>
<tr>
<td>ROP</td>
<td>reorder point (units)</td>
</tr>
<tr>
<td>σ_L</td>
<td>standard deviation of D during lead-time (units)</td>
</tr>
<tr>
<td>σ_w</td>
<td>standard deviation of the demand (weekly)</td>
</tr>
<tr>
<td>σ_w</td>
<td>standard deviation of weekly D (units)</td>
</tr>
<tr>
<td>ss</td>
<td>safety stock</td>
</tr>
<tr>
<td>μ</td>
<td>average demand (units)</td>
</tr>
</tbody>
</table>
Notation: Supply Chain Network Design

\[c_{1fg} \] total cost(\$) of one unit from supplier \(f \) to manufacturer \(g \).
\[c_{2gh} \] total cost(\$) of one unit from manufacturer \(g \) to distributor \(h \).
\[c_{3hi} \] total cost(\$) of one unit from distributor \(h \) to retailer \(i \).
\[d_h \] distributor \(h \).
\[D_h \] capacity at distributor site \(h \).
\[D_i \] annual demand for market \(i \).
\[F_{db} \] annual fixed infrastructure cost(\$) of locating a plant at distributor site \(h \).
\[F_{mg} \] annual fixed infrastructure cost(\$) of locating a plant at manufacturer site \(g \).
\[F_{ri} \] annual fixed infrastructure cost(\$) of locating a plant at retailer site \(i \).
\[F_{sf} \] annual fixed infrastructure cost(\$) of locating a plant at supplier site \(f \).
\[g \] index for manufacturer locations.
\[h \] index for distributor locations.
\[g \] index value for market locations.
\[j \] number of suppliers.
\[k \] number of manufacturer.
\[m \] number of distributors.
\[m_g \] manufacturer \(g \).
\[M_g \] capacity at manufacturer plant \(g \).
\(n \) \hspace{1cm} \text{number of retailers (demand points)}

\(q_{1fg} \) \hspace{1cm} \text{quantity shipped from supplier} \ f \ \text{to manufacturer} \ g

\(q_{2gh} \) \hspace{1cm} \text{quantity shipped from manufacturer} \ g \ \text{to distributor} \ h

\(q_{3hi} \) \hspace{1cm} \text{quantity shipped from distributor} \ h \ \text{to retailer} \ i

\(r \) \hspace{1cm} \text{index for retail locations}

\(r_i \) \hspace{1cm} \text{capacity at retailer site} \ i

\(R_i \) \hspace{1cm} \text{capacity at retailer site} \ i

\(s \) \hspace{1cm} \text{index for supplier locations}

\(s_f \) \hspace{1cm} \text{supplier} \ f

\(S_f \) \hspace{1cm} \text{capacity at supplier} \ f

\(T_C \) \hspace{1cm} \text{total overall cost(\$) of the supply chain network}

\(y_f \) \hspace{1cm} \text{decision variable to open/close supplier located at site} \ f

\(y_g \) \hspace{1cm} \text{decision variable to open/close manufacturer located at site} \ g

\(y_h \) \hspace{1cm} \text{decision variable to open/close distributor located at site} \ h

\(y_i \) \hspace{1cm} \text{decision variable to open/close retailer located at site} \ i
Notation: Scenario Planning

\begin{align*}
 i & \quad \text{index value for scenarios} \quad & \text{68} \\
 n & \quad \text{number of total scenarios} \quad & \text{68} \\
 p_i & \quad \text{scenario probability(\% of occurrence) for } i = 1, \ldots, n \quad & \text{68} \\
 s_i & \quad \text{scenario } s_i \text{ for } i = 1, \ldots, n \quad & \text{68} \\
 S & \quad \text{probability weighted sum of best future scenario} \quad & \text{68}
\end{align*}
Abstract

An Automation System for Optimizing a Supply Chain Network Design under the Influence of Demand Uncertainty

by

Rany Polany

This research develops and applies an integrated hierarchical framework for modeling a multi-echelon supply chain network design, under the influence of demand uncertainty. The framework is a layered integration of two levels: macro, high-level scenario planning combined with micro, low-level Monte Carlo simulation of uncertainties in demand. To facilitate rapid simulation of the effects of demand uncertainty, the integrated framework was implemented as a dashboard automation system using Microsoft Excel®, Risk Solver, and Visual Basic. The integrated framework has been applied to the problem of quantifying the effects of demand uncertainty on total cost in multi-echelon supply chain network design for high-tech products.
Dedication

To my wife, Raya, and family. Thank you for all your support. I love you.
Acknowledgments

This work was made possible by the exceptional teaching prowess of Subhas Desa who supervised this research and served as the Chair of the thesis committee. In addition, the hierarchical framework that the author develops and applies in this thesis was conceived by Subhas. The author is grateful for the patience and commitment Subhas provided towards supporting this research. It was an honor to be his student.

The author thanks the thesis committee members, Patrick E. Mantey and Nirvikar Singh, for their time and feedback in supporting this work.

1 Introduction

1.1 Motivation

This work investigates how a manufacturing firm can minimize total cost of a supply chain by utilizing a rapid prototyping software simulation system. A competitive manufacturing firm must take into account the entire supply chain (SC) because it is concerned with maximizing profitability, defined by:

\[
\text{supply chain profitability} \triangleq \left(\text{revenue from the end customer} \right) - \left(\text{total costs incurred in the entire supply chain} \right). \tag{1.1}
\]

By taking into account the entire SC, the manufacturing firm is able to view the flow of product, cash, and information between the customers and suppliers to maximize the profitability of the entire chain. Forecasting and error analysis provides the ability to adequately respond to customer needs (thereby generating revenue) and simultaneously to minimize the total costs. The result is the increased SC profitability. A tightly connected inventory management system can reduce costs and increase profits (Desa, 2011) and therefore the firm’s inventory needs to be tightly connected to the distribution network. The facility locations need to be placed within an area that promotes the emphasis of the “market-dominance strategy and regional merchandising” (Chopra and Meindl, 2010). Optimized transportation considerations are needed to reduce the costs of making deliveries between the facilities. As part of the approach to maximize profit, the overall business objective is to reduce the costs of the entire SC. Therefore our focus is on the minimization of total costs.

As defined by Chopra and Meindl (2010), the total information system contributes significantly to the increase in profitability because it links the headquarters, suppliers, manufacturers and the entire distribution channel. A tightly integrated information system that is connected to the entire supply chain can provide more accurate forecasting to better match the customer needs and provide a competitive advantage in the
marketplace. The ideal supply chain management-of-information system for the future is realizable, but only with the right processes and information technology systems. In order to achieve success, firms must:

1. Enable closed loop collaborative planning processes across the value chain;
2. Have complete supply chain visibility;
3. Implement an effective automation system; and
4. React immediately to disruptions in supply chains.

For the ideal supply chain management system to be realized, a firm must build a responsive supply chain of information, not inventory (Desa, 2011). Due to variations of the demand, at any given time, the firms needs additional inventory in-stock, referred to as safety stock, not to run out of inventory. The safety stock serves as a buffer for the variable fluctuations in demand. Figure 1 is an idealized plot of the ordering cycle, over time (Desa, 2011). The economic order quantity (EOQ), \(Q_L \), is the calculated fixed order quantity that is submitted to the supplier to replenish inventory, where \(L \) is the lead-time from the supplier. The \(ROP \) is the reorder-point. The \(D_L \) is the demand during lead-time. The \(D_w \) is the weekly demand. The \(T \) is the total time, which is one year. The \(n \) is the number of shipments. The \(ss \) is the safety stock quantity. The sum of the \(Q_L \) and safety inventory, \(ss \), represents the maximum quantity of inventory on-hand.

The cycle inventory is defined as the average in-stock inventory that is being used to meet the demand over a replenishment cycle and formulated by:

\[
\text{Cycle Inventory} \triangleq \frac{1}{T} \int_0^T Q_L \, dt = \frac{1}{T} \left(\frac{1}{2} T Q_L \right) = \frac{Q_L}{2},
\]

where \(T \) is the cycle replenishment time and \(Q_L \) is the number of units per shipment from the supplier (also referred to as the lot size). The horizontal dotted line represents the amount of cycle inventory in-stock at any given at any given time, over an...
annualized basis of \(n \) shipments. Due to the variations of the demand occurring during the transport of the replenishment inventory, the quantity of on-hand (safety stock, \(ss \)) at the time of receipt of the replenishment delivery varies, sometimes significantly. The horizontal dashed line in Figure 1 representing the safety stock quantity, reflects the amount of inventory that should be in stock, at any given time, over an annualized basis of \(n \) shipments. An important point to observe in Figure 1 is that the safety inventory remains relatively constant over an annualized basis. Therefore, evaluating the safety stock is not a valid approach to study the uncertainty in a supply chain because over a long-term basis is does not fluctuate.

The safety inventory quantity is calculated using the mean absolute deviation \(MAD \) of the forecast error of the historical demand data, the cycle service level \(CSL \) and the
lead-time, L. The MAD is formulated as:

$$MAD_n \triangleq \frac{1}{n} \sum_{t=1}^{n} |F_t - D_t|,$$ \hspace{1cm} (1.3)

where F_i is the forecast of demand for the period, $i = 1, 2, \ldots, t (t = \text{present time})$, and D_i is the actual observed demand for the period i. The CSL is “a fraction of the replenishment cycles that end with all the customer demand being met” (Chopra and Meindl 2010). The safety stock quantity is formulated as:

$$\text{Safety Stock (qty), } ss \triangleq F_z^{-1}(CSL) \sqrt{L} \sigma_D = F_z^{-1}(CSL) \sigma_L.$$ \hspace{1cm} (1.4)

Following Chopra and Meindl (2010); Desa (2011), the inverse of the normalized normal distribution function is denoted $F_z^{-1}(p)$, with the subscript z indicating the normalization to a mean, $\mu = 0$, and standard deviation, $\sigma = 1$, thus $F_z^{-1}(p) = F^{-1}(p, \mu = 0, \sigma = 1)$. The standard deviation of the demand, σ_D, is defined as $\sigma_D \approx 1.25 \times MAD$. The standard deviation of demand, during the lead-time, σ_L, is defined as $\sigma_L = \sqrt{L} \sigma_D$. The average inventory, at any given time over an annual basis of n shipments for a desired CSL and given lead-time, is the sum of the cycle and the safety inventory:

$$\text{Average Inventory} = \text{Cycle Inventory} + \text{Safety Inventory} \hspace{1cm} (1.5)$$

$$= F_z^{-1}(CSL) \sqrt{L} \sigma_D \hspace{1cm} (1.6)$$

$$= F_z^{-1}(CSL) \sigma_L \hspace{1cm} (1.7)$$

Following the procedure to simulate variance of demand on annual inventory supply by (Ragsdale 2011) and Boute and Lambrecht (2009), shown in Figure 2 is Trial#1 sample of ten thousand (#1 of 10,000) of a Monte-Carlo simulation that illustrates the effect of increasing the coefficient of variation (CV) of the demand on the annual cycles of supply.
Figure 2: Sample for the annual demand at different parameters of the coefficient of variations of demand (Trial 1 of 10,000).

Observe that as the demand increases, the amplitude of the cycle of the demand quantity increases. Therefore, we can learn from this figure that as the coefficient of variation of demand is increased, the coefficient of variation of the supply must also increase in order to meet the demand and main good coordination in the supply chain network.

Our work investigates the above stated relationship between coefficient of variation of demand and the coefficient of variation of supply, under the influence of demand uncertainty, for a multi-echelon supply chain network on a long-term (e.g., annualized) basis.

1.2 Problem Description

This research work studies and quantifies the influence of demand uncertainty on the multi-echelon supply chain network, shown in Figure 3, and the impact to the decisions to open or close facilities, based on an objective function to minimize total cost. The
problem which is investigated is to measure and quantify the effect of the changing the coefficient of variation of demand, \((CV)_D\), on the corresponding coefficient of supply, \((CV)_S\) and the total cost, \(TC\), of the supply chain network.

Figure 3: International supply chain network for information technology components.

As shown in Figure 3, the firm has four different suppliers and manufacturing plants in China and imports the finished product to the USA. The products are transported across the Pacific Ocean, via air and ocean freight, to distributor warehouses in the United States that are located throughout four different regions (West, South, Mid-West, East). From the distributor warehouses, the products are consolidated and delivered to various retailers in a region, via ground freight (e.g., UPS), to meet the end-user demand.

1.3 Problem Statement

This work addresses two problems:

(1) The first problem is to investigate a risk-based approach to uncertainty modeling of a supply chain network for high-tech firms that manufacturer and distribute products to retailers. This work presents a process, and an integrated hierarchical framework, that can be efficiently implemented into a automation system to help business managers solve complex supply chain problems. As more and more competitive firms are looking for a means to reduce cost, off-shore manufacturing is
helping to meet this objective, due to the lower cost of oversea resources. Therefore, our work explores how a high-tech firm, in the business of selling computer components, can optimize their supply chain network when faced with demand uncertainty.

(2) The second problem is to research and address the problem of supply chain management optimization problems with a rapid software-prototyping approach for developing an automation system for the purpose of developing responsive, and efficient, information based supply chain, at a low development cost. This work presents a process for implementing an integrated hierarchical framework into an information based automation system that is able to automate the quantitative analysis of an integrated supply chain system. The automation system is developed using rapid software development tools: (1) Microsoft® Excel; (2) Rick Solver Platform; and (3) VBA programming language. The integrated framework consists of a hierarchical approach to handling uncertainty at the macro and micro level.

Our work creates a process for developing a rapid prototype, of a low cost automation system, that can be used to efficiently optimize and simulate the entire supply chain, under the influence of demand uncertainty. The context of this work is applied to a facility location problem within a multi-stage supply chain. Our work builds up from a two-stage deterministic supply chain network to a multi-stage problem with integration of scenario planning and probabilistic parametric uncertainty modeling. The decisions that are addressed, using a total cost minimization objective function, are:

(a) The facilities to be opened or closed; and
(b) The quantity of product flow between open facilities
1.4 Summary of Research Contributions

The prioritized contributions provided in this research are:

(1) A process for designing a supply chain network, under the influence of demand uncertainty, that addresses uncertainty at two levels (Figures 20, 22 and 23; Sections 3.3, 3.4 and 4.5)

Level 1: Macro (scenario planning) (Section 4.2)

Level 2: Micro (Monte Carlo simulation) (Sections 3.4, 4.5, 4.5.4 and 4.5.5)

The two-levels for modeling uncertainty are integrated together in a structured process to develop an **integrated hierarchical framework**. Specifically, the relationship of the coefficient of variation in demand (input) versus two outputs, (1) coefficient of variation in supply and (2) total costs (output), are studied using the integrated framework.

The importance of this contribution is that it provides a business manager with an integrated framework to quickly simulate a supply chain network design with an **integrated framework** under the influence of demand uncertainty. This research can help improve the decision-making in the organization in situations where a broad set of scenarios need to be considered (macro), each with a probability of occurrence. Then utilizing the optimal future scenario, a parametric probability approach is used to model the all the possible outcome (micro).

(2) An automated dashboard based system for implementing the integrated framework using $n = 3$ scenarios (macro) and Monte Carlo simulation (micro). (Figures 37 and 39 to 41; Sections 4 and 4.5)

The importance of this contribution is that it demonstrates design and programming in Excel with Visual Basic the automation of the **integrated framework** developed in this work. And, shows the application of studying the effect
of demand uncertainty (input) in a multi-echelon supply chain network design and on both the supply quantity and total cost (output).

(3) Implementation and simulation of the integrated framework of a four suppliers, four manufacturers, four distributors, and four retailers supply chain network design, under the influence of uncertainty, for a high tech firm to illustrate the application of the automation framework (Figures 46 to 50 Section 5). to demonstrate the application of the Step 3: Facilities Management software-automation module using the integrated framework and the software automation. The case study illustration has a two-step approach to the simulation and numerical analysis to modeling demand uncertainty in a supply chain network design.

Step 1: Calibration: A step-wise process to work through two calibration problems, each with known inputs and known expected outputs. The purpose of executing the calibration problems is to validate that the implementation process (e.g., formulations, code programming, etc.) of the framework have been constructed correctly.

Step 2: Simulation: A process to perform a simulation and numerical analysis using a normal distribution function to represent the demand as the input data with unknown supply quantity and total cost outputs. This process was performed using a Base Case, Case 1, 2, and 3 each with \(n = 3 \) scenarios for product cost, fixed facilities costs, and facility capacity. The results of each analysis are plotted in order to interpret and draw conclusions about the supply chain network design. The analysis of the case studies measures the effect of increasing the coefficient of variation of demand on the coefficient of variation of supply and measures the effect on total cost. Section 5 describes the implementation of the case study and numerical analysis.
The importance of this contribution is that it illustrates the application of the rapid simulation framework of the integrated framework to draw conclusions which can quickly help the decision making procedures of a business manager. This work shows that the integrated framework can quickly yield an improvement of up to 23% as compared to other heuristic and probabilistic approaches, in a rapid low-cost software-automation environment.

(4) A process and software modules programmed to forecast annual average demand (Figures 4 to 16; Sections 3.1, 4.3 and 7) and related inventory quantities (Figure 17; Sections 3.2, 4.4 and 7).

With the integrated framework and software automation dashboard developed in this work, the supply chain network designer/analyst can performing the following:

(1) Set-up and simulate a nominal supply chain network scenario and determine total cost, which facilities are open and closed, the product flows between facilities, and total supply required to meet demand. The software automation system can support up to four of each: Supplier, manufacturer, distributor, retail, demand region.

(2) Define and simulate the most feasible scenarios based on a structured process of identifying the key uncertainties and consolidating into appropriate high and low configurations. For each scenario, the design/analyst can quantitatively study the effect of demand uncertainty on the outcome of variation in supply and the total cost of the supply chain network.

(3) Utilizing an integrated framework of scenarios (macro) and Monte Carlo simulation (micro) the designer/analyst can simulate for range of possibilities around the best optimal scenario.

(4) Utilizing the integrated Monte Carlo simulation method with 10,000 trials per simulation to adjust the range of the demand uncertainty, using a normal
distribution, from \(0 \sigma\) to \(\pm 6 \sigma\).

(5) Utilizing the dashboard and GUI of the integrated automation system to quickly generate a visualization map of the optimal configuration of the supply chain network.

Therefore, given uncertainty in demand within a multi-echelon supply chain network, the simulation performed in this work using the integrated framework within an automated software tool (using Excel and Visual Basic) can be used to provide quantitative answers for the following questions:

(1) Which facilities should be opened or closed?

(2) What is the optimal product flow quantity between open facilities?

(3) What is the maximum threshold in variation of supply that can be tolerated for maintaining good coordination in supply chain network?

(4) What is the maximum threshold in variation of demand that can be tolerated for maintaining good coordination in supply chain network?

(5) What is the expected total cost of the supply chain network?
1.5 Organization of the Work

Section 1 introduces the motivation for the work, the problem statement that is being researched, the summary of the related works and the research contributions that result for this work. In Section 2 is discussed the related works and their influence on this work. Section 4 discusses an step-wise approach to the implementation process of the integrated framework presented in this work, along with the construction of the automation framework, which is utilized in the case study simulations. Section 5 is a simulation study and numerical analysis of a set of two calibration problems and a case study. Section 6 is the summary of the results. Lastly, Section 7 gives the conclusion and future work.
2 Related Work

The related literature for our work is defined in the following domains:

(1) Demand forecasting and inventory management

(2) Supply chain network modeling

(3) Uncertainty modeling using a two-level hierarchical framework

 Level 1: Scenario planning (macro)
 Level 2: Monte Carlo simulation (micro)

2.1 Demand Forecasting and Inventory Management

The text by Chopra and Meindl (2010, chap. 7-12) and lecture content by Desa (2011) provided the strategy, planning and operational background information on demand forecasting and inventory management. From these works we adopt and apply the theory towards the implementation approaches discussed in Section 3.

2.2 Supply Chain Network Modeling

2.2.1 Overview of the Supply Chain Network

Our work reviewed various forms of supply networks discussed by Desa (2011); Tsiakis et al. (2001); Chopra and Meindl (2010); Ferreira (2009); Ding et al. (2007); Peidro et al. (2009); Persson and Olhager (2002?); Snyder (2006); You and Grossmann (2010) to develop and review the facilities location networking model. The related works on supply chain networks is divided into two categories and the theory and approach we use is discussed in detail in Section 3.3

1. Two-stage networks

2. Multi-echelon networks
2.2.2 Two-stage Supply Chain Network

In the early work by Sridharan (1995), the authors introduced the formulations for the capacitate plant problem, which influenced the work towards understand the formulations of the two-stage network. The work by Swaminathan et al. (1998) provided background information on an architecture structure for handling supply chain modeling and the authors developed the terminology for utilizing a "multiagents" approach to handling the priority of inputs and outputs, during supply chain computations. The recent text by Chopra and Meindl (2010) are adopted and developed many of the Microsoft Excel worksheet structures used in the software platform that was developed as part of this research. The authors Chopra and Meindl (2010) have developed clear and comprehensive examples for building the necessary worksheets utilizing Microsoft Excel. Additionally, the reference is comprehensive to many areas of supply chain management.

2.2.3 Multi-Echelon Supply Chain Network

In the work by Tsiakis et al. (2001) the authors provide four significant contributions that significantly influenced our work:

(1) A detailed literature review of supply chain models, sorted by model type, model features, operational decisions, strategic functions, and cost functions. The authors developed a summary table reviewing related works up to that point in time. The table is useful to our work because it summarizes the historical references.

(2) A formulation for a heuristic multi-echelon, multi-product supply chain network optimization. The authors presented a multi-echelon network diagram, and the formulations for optimizing a steady-state multi-echelon supply chain network in the work. In their work, the authors considered different product families and the transportation of materials between plants. In our work, the costs are consolidated into the product flow costs.
A scenario-based approach to handle uncertainty in a supply chain model. The authors provided a discussion about the reasoning for using a scenario-based approach. The reasoning is due to the practicality of the approach for reducing the computing resources and increasing speed of attaining a reasonable solution. By condensing many uncertainties into a small number of discrete realizations, which broadly captures the entire spectrum of stochastic quantities, reduces the requirement for the computing resources to quantitatively attain a robust solution to the problem.

The work is expanded with a framework to optimize the network configuration across several scenarios. To handle this method, the authors introduced the Ψ_s to represent the probability of a scenario, s, occurring with the sum of all $\sum_{s=1}^{NS} \Psi_s = 1$ with $NS =$ total number of scenarios.

Lastly, the authors further expanded the work by introducing the superscript $[s]$ on the notation of the operating variables of the production and transportation flows, to represent the different values for each scenario. The constraints were also updated for each scenario. The binary and capacity variables remain unchanged because the optimization is for one single network.

A case study to illustrate the implement of the formulations and theory was also included.

The implementation of the multi-echelon network developed by these authors is instrumental to our work. The contributions discussed above are leveraged into the strategy and framework of our work.

In the work by Ferreira (2009), a similar approach to our work was developed, including the utilization of the Risk Solver Platform in Microsoft® Excel. However, the author clearly states (page 3 of his work) the specific intent is to avoid working with demand uncertainty, and rather to work with deterministic demand. Our work
specifically investigates and quantifies the issues when considering demand uncertainty, and more specifically, when doing so with probabilistic approaches and it differs in that respect from Ferreira (2009).

In Section 3, we re-examine the formulations (Tsiakis et al. 2001; Georgiadis et al. 2011; Chopra and Meindl 2010), and then implement the formulations (Section 4) into a dashboard-based automation system which is used to study the influence of demand uncertainty on the supply chain network design.

2.3 The Influence of Uncertainty at the Macro and Micro Levels

2.3.1 Macro Level: Scenario Planning

The construction of the scenarios in our work follows the process for scenario planning as presented in the works by Vanston et al. (1977); Schoemaker (1991, 1995) and with discussion with Chao (2012) of Seagate, Inc. These sources provided the background on how to consolidate many future uncertainties into a few possible scenarios. The consolidation process follows a structured step-wise approach that is discussed in Section 3.4.3.

2.3.2 Micro Level: Monte Carlo Simulation

Based on the text developed by Hillier and Lieberman (2005), we learn that a suitable approach to a modeling uncertainty is the Monte Carlo technique. The use of Monte Carlo simulation, for supply chain network analysis, is substantiated by the work of Schmitt and Singh (2009), in which the authors modeled inventory flow and disruption using Monte Carlo simulation. Our work is further influenced by various simulations (Junga et al. 2004; Ragsdale 2011; Boute and Lambrecht 2009; Mun 2006; Persson and Olhager 2002; Peidro et al. 2009; UCLA ATS Statistical Consulting Group 2011; Snyder 2006) that study the influence of uncertainty on supply chain networks.
2.4 Dashboard/Cockpit Automation

The texts by Alexander (2007) and Eckerson (2010) provide dashboard examples used by industry and discuss how these tools can augment the decision making process.

The key attribute of the dashboard is to facilitate the centralized presentation of the summary data in graphical format and allow the user to instantly update the input parameters through point-and-click controls (Eckerson, 2010). In our work, we leverage the lessons from these sources to create our own cockpit dashboard designs.

Our work considers and integrates the Excel worksheet architecture and theories developed by Tsiakis et al. (2001); Chopra and Meindl (2010); Ragsdale (2011); Boute and Lambrecht (2009); Ferreira (2009). The Microsoft platform has a well-developed on-line support and reference system through the MSDN (Microsoft Developer Network). The references for Solver Foundation 3.0 (Microsoft-MSDN, 2011), VBA language shapes (Hiestand, 2008), and Excel Risk Solver Platform functions in a VBA macro (Bovey et al., 2009; Frontline Systems, Inc., 2011) were utilized to understand how to develop the needed automation for computation and drawing of shapes. The text by Hiestand (2008) provided several use-case scenarios and programming guidelines for performing numerical analysis and computations utilizing the VBA programming language. The text by Bovey et al. (2009) and reference guide by Frontline Systems, Inc. (2011) discusses robust developments for programming in Microsoft® VBA and Excel. These works contain detailed examples of high level of technicality. The lessons from these works are adapted into the product design and code programming of our work which is provided in the Appendix: VBA Code for the Modules in Section 7.
3 Theory and Framework

In our work, the theory and framework are based on four prioritized components:

(1) Uncertainty modeling, using a two-level hierarchical framework

 Level 1: Scenario planning at the macro level
 Level 2: Monte Carlo simulation at the micro level

(2) Supply chain network modeling

(3) Demand forecasting and inventory modeling

(4) Dashboard/cockpit automation

The following sections present the discussion of the four components in the following sequence: (1) demand forecasting and inventory modeling which feeds into the (2) supply chain network modeling which then feeds into the (3) uncertainty modeling and all of this is encapsulated within a (4) dashboard automation system.

3.1 Demand Forecast Modeling

The formulations in this section are adapted from Desa (2011) and Chopra and Meindl (2010, chap.5). Equations from these authors are used to build the automation software within the Microsoft® Excel framework that is discussed in Section 4.
Notation for time-series forecasting:
\[i \triangleq \text{index value for a generic period, } (i = 1, 2, \ldots, t) \]
\[t \triangleq \text{current or present time} \]
\[p \triangleq \text{periodicity} \]
\[\ell \triangleq \text{index value for a generic future time periods, } (l = 1, 2, \ldots) \]
\[r \triangleq \text{number of cycles in the data} \]
\[N \triangleq \text{number of points for computing a moving average} \]
\[L_i \triangleq \text{level at present time for period } i, (i = 1, 2, \ldots, t) \]
\[\mathcal{L} \triangleq \text{best fit straight line in the standard form of } y = mx + b \]
\[d_i \triangleq \text{perpendicular distance from the point } D_i \text{ to line } \mathcal{L} \]
\[D_i \triangleq \text{actual demand at period } i, (i = 1, 2, \ldots, t) \]
\[\overline{D_i} \triangleq \text{regressed demand at period } i, (i = 1, 2, \ldots, t) \]
\[D_i' \triangleq \text{deseasonalized demand at period } i, (i = 1, 2, \ldots, t) \]
\[Y \triangleq \text{sum of the perpendicular distances, } d_i, \text{ for period } i, (i = 1, 2, \ldots, t) \]
\[Y = (d_1)^2 + (d_2)^2 + \cdots + (d_i)^2 = \sum_{i=0}^{t} (d_i)^2, (i = 1, 2, \ldots, t) \]
\[S_i \triangleq \text{seasonal factor} \]
\[\alpha \triangleq \text{smoothing constant for level} \]
\[\beta \triangleq \text{smoothing constant for trend} \]
\[\gamma \triangleq \text{smoothing constant for seasonality} \]

The process to determine the optimal forecasting method and quantify the optimal demand is:

Step 1: Compute the forecasted demand quantity utilizing static and adaptive methods.

Step 2: Determine the forecast error for each method.

Step 3: Utilize the total forecasted demand from the corresponding method with the lowest MAPE (mean absolute percent error) value.

Step 4: Convert the total demand to an average annual demand, \(\overline{D} \).

In the following subsections is presented the theory and approaches from the related works, as it pertains to the formulations for demand forecasting.
3.1.1 Components of Observed Demand

With any discussion pertaining to observed demand, \mathcal{O}, there are two important components to consider:

1. The systematic component, S, which are the expected values of the demand attained from:
 - (a) Level, L is the intercept
 - (b) Trend, T is the slope (growth)
 - (c) Seasonality, S is the predictable fluctuation of the demand.

2. The random component, R, which are the uncertain values of the demand.

As shown in Figure 4, given a historical time series of demand data, (D_1, D_2, \ldots, D_t), the objective is to determine the optimal future demand for D_i for $i = 1, 2, \ldots, t$ ($t =$ present time). Only the systematic component, S, of the demand can be forecasted. The random component, R, cannot be forecasted.

![Figure 4: Time series of demand data to determine the level and trend.](image-url)
There are two types of forecasting methods for analyzing demand:

(1) Static forecasting, in which estimates of the L, T, and S do not change with time.

(2) Adaptive forecasting, in which estimates of the L, T, and S update as new real-time data is obtained.

In the following subsections are presented the formulations of the static and adaptive forecasting methods and illustrative examples of how to construct Microsoft® Excel worksheets to compute the forecast.

3.1.2 Static Forecasting Method

Utilizing the least-squares approximation method (aka, linear regression), as shown in Figure 5, finding the straight line that best fits the data is used to estimate the future demand.

The objective is to determine the equation of the straight line, L, over all the periods, $i = 1, 2, \ldots, t$, in the standard form of $y = mx + b$ that minimizes the sum, Y, of the squared perpendicular distances, d_i, from each demand point, D_i, to the line, L, where $m =$slope (trend) and $b =$intercept (level) of the line, L.

![Figure 5: Static forecasting method.](image-url)
The process to compute the time-series static forecast is:

Step 1: Start with demand data, \(D_i \), for \(i = 1,2,\ldots,t \).

Step 2: Compute the deseasonalized data, \(\overline{D}_i \), for \(i = 1,2,\ldots,t \) by removing the seasonal effect in the demand:

\[
\overline{D}_i = \frac{D_t - (p/2) + D_{t+(p/2)} + \sum_{i=t+1-(p/2)}^{t-1+(p/2)} 2(D_i)}{2p}.
\] (3.1)

Step 3: Utilizing the \(\overline{D}_i \) results, perform the linear regression data analysis by computing the line, \(L \), to determine \(L - \text{intercept} \) and the \(T \), trend.

Step 4: With the \(L - \text{intercept} \) and \(T \) values, compute the deseasonalized regressed demand, \(\overline{D}_i \), for each period, \(i = 1 \) to \(t \), for all cycles.

Step 5: Compute the seasonal factor, \(\overline{S}_i \), for each period, \(i = 1 \) to \(t \), for all cycles:

\[
\overline{S}_i = \frac{D_i}{\overline{D}_i}.
\] (3.2)

Step 6: Compute the average seasonal factor, \(\overline{S} \), for each period, \(p \) (given \(r \) seasonal cycles in the data, for all periods \(pt + i, 1 \leq i \leq p \)):

\[
S_i = \frac{\sum_{j=0}^{r-1} \overline{S}jp + i}{r}.
\] (3.3)

Step 7: Compute the reasonalized data forecast:

\[
F_i = \overline{D}_i S_i = (L + iT)S_i.
\] (3.4)

Step 8: Compute the forecasted demand for future periods, \(\ell \), at time \(t + \ell \), and \(\ell = 1,2,\ldots \) periods into the future:

\[
F_{t+\ell} = \overline{D}_{t+\ell} \ast S_{t+\ell} = (L + (t + \ell)T) \ast S_{t+\ell}.
\] (3.5)
The static method Excel worksheet is formatted as follows:

![Quarterly Demand Forecast & Error Analysis](image)

Figure 6: Static method worksheet.

The static method Excel chart is formatted as follows:

![Demand: Static Forecast 5 Year Plot with 2 Year Forecast](image)

Figure 7: Static method chart.
3.1.3 Moving Average Method

The moving average forecasting treatment uses a series adaptive of formulas (Desa, 2011; Chopra and Meindl, 2010) to compute the demand forecast with the moving average method. This method requires that the systematic component of the demand data, S, has only level.

Step 1: Forecast by choosing N points for computing the moving average (N-point moving average) at time, t:

$$L_t = \frac{D_t + D_{t+1} + \cdots + D_{t-N+1}}{N}.$$ \hfill (3.6)

Step 2: The forecast at the current time, t, is the same as for all future periods, $t + \ell$, ($\ell = 1, 2, \ldots$) and therefore is based on the current estimate of level:

$$F_t = L_t \text{ and } F_{t+\ell} = L_t.$$ \hfill (3.7)

Step 3: After observing the demand for period, $t + \ell$, the estimate is revised:

$$L_t = \frac{D_{t+1} + D_t + \cdots + D_t - N - 2}{N}:$$ \hfill (3.8)

$$F_{t+2} = L_{t+1}$$

$$F_{t+\ell} = L_{t+1}, (t = 0, 1, 2, \ldots), (\ell = 1, 2, \ldots).$$

By adding the latest observation and dropping the oldest one by proceeding through N periods, the moving average becomes less responsive to the most recently observed demand.
The moving average Excel worksheet is formatted as follows:

![Moving Average Worksheet](image1)

Figure 8: Moving average worksheet.

The moving average Excel chart is formatted as follows:

![Moving Average Chart](image2)

Figure 9: Moving average chart.
3.1.4 Simple Exponential Method

The simple exponential smoothing demand forecasting treatment uses a series of formulas (Desa [2011] Chopra and Meindl [2010]) to compute the demand forecast with exponential smoothing constants. This method requires that the systematic component of the demand data, S, has only level.

The step-wise process for computing the simple exponential forecasting is:

Step 1: Initialize by finding the average level over the total number of data points, n:

$$L_0 = \frac{1}{n} \sum_{i=1}^{n} D_i.$$ \hspace{1cm} (3.9)

Step 2: Forecast for all periods of time, t:

$$F_{t+1} = L_t \hspace{1cm} (3.10)$$

$$F_{t+n} = L_t.$$ \hspace{1cm} (3.11)

Step 3: Estimate the error:

$$E_1 \triangleq F_1 - D_1$$

$$= L_0 - D_1.$$ \hspace{1cm} (3.12)

Step 4: Update the level based on the error estimate. If $E_1 > 0$, then F_1 exceeds the actual demand and the coefficients for the level must be adjusted.
Step 5: Adjust the level based on the error:

\[L_1 = L_0 - \alpha(E_1) \]
\[= L_0 - \alpha(L_0 - D_1) \]
\[= \alpha D_1 + (1 - \alpha)L_0 \]
\[\alpha \text{ is the smoothing constant} \]
\[0 < \alpha < 1 \]

Step 6: Adjust the level based on the error:

\[L_{t+\ell} = \alpha D_{t+\ell} + (1 - \alpha)L_t \]
\[0 < \alpha < 1 \]
\[F_{t+2} = L_{t+1} \]
\[\vdots \]
\[F_{t+\ell} = L_{t+1} \]
\[(t = 1, 2, 3, \ldots), (\ell = 1, 2, 3, \ldots). \]
The exponential smoothing Excel worksheet is formatted as follows:

![Exponential smoothing worksheet](image)

Figure 10: Exponential smoothing worksheet.

The exponential smoothing Excel chart is formatted as follows:

![Exponential smoothing chart](image)

Figure 11: Exponential smoothing chart.
3.1.5 Holt’s Method

The Holt’s method forecasting treatment uses a series of formulas (Desa, 2011; Chopra and Meindl, 2010) to compute the demand forecast with the Holt’s method. The systematic component of the demand data, S, has level and trend (i.e., no seasonality).

Step 1: The Holt’s method requires the initial level and trend using a linear regression between demand and time period, t. Obtain the level and trend by running a linear regression of demand, D_t and time, t ($b=$ initial level, L_0 at $t = 0$ and a is initial estimate of trend at T_0):

$$D_t = at + b.$$ \hspace{1cm} (3.15)

Step 2: Revise the estimate of the level:

$$T_{t+1} = \beta(L_{t+1} - L_t) + (1 - \beta)T_t$$ \hspace{1cm} (3.16)

$$0 < \beta < 0$$

$$F_{t+2} = L_{t+1}$$

β is the smoothing constant for the level.

Step 3: The current forecast for all future periods is based on the current estimate of level:

$$F_{t+1} = L_t + T_t$$ \hspace{1cm} (3.17)

and

$$F_{t+1} = L_t + T_t.$$ \hspace{1cm} (3.18)
The Holt’s method Excel worksheet is formatted as follows:

Figure 12: Holt’s method worksheet.

The Holt’s method Excel chart is formatted as follows:

Figure 13: Holt’s method chart.
3.1.6 Winter’s Method

The Winter’s forecasting treatment uses a series of formulas (Desa 2011; Chopra and Meindl 2010) to compute the demand forecast with the Winters’s method. The systematic component of the demand data, S, has level and trend, with a seasonal factor. The procedure requires the estimate for the initial level and trend from the same method as in the static forecast, and an additional step to revise the estimate of the level. The step-wise process is as follows:

Step 1: Compute L_{t+1}:

$$L_{t+1} = \alpha \left(\frac{D_{t+1}}{S_{t+1}} \right) + (1 - \alpha)(L_t + T_t)$$ \hspace{1cm} (3.19)

$0 < \alpha < 1$

α is a smoothing constant for the level.

Step 2: Compute T_{t+1}:

$$T_{t+1} = \beta (L_{t+1} - L_t) + (1 - \beta)T_t$$ \hspace{1cm} (3.20)

$0 < \beta < 1$

β is a smoothing constant for the trend.

Step 3: Compute S_{t+p+1}:

$$S_{t+p+1} = \gamma \left(\frac{D_{t+1}}{L_{t+1}} \right) + (1 - \gamma)(S_{t+1})$$ \hspace{1cm} (3.21)

$0 < \gamma < 1$

γ is a smoothing constant for the seasonal factor.

Step 4: Compute the forecast for future periods:

$$F_{t+1} = (L_t + T_t)S_{t+1}$$ \hspace{1cm} (3.22)

and

$$F_{t+\ell} = (L_t + \ell T_t)S_{t+1}, (\ell = 1, 2, 3, \ldots).$$ \hspace{1cm} (3.23)
The Winter’s method Excel worksheet is formatted as follows:

![Winter's Method Excel Worksheet](image)

Figure 14: Winter’s method worksheet.

The Winter’s method Excel chart is formatted as follows:

![Winter's Method Excel Chart](image)

Figure 15: Winter’s method chart.
3.1.7 Forecasting Error Analysis

For each forecasting method, it is important to perform an error analysis over the total number of periods, \(n \). The step-wise analytical process is provided below:

Step 1: Compute the Error, \(E_i \), \((i = 1, 2, \ldots, n)\):

\[
E_i = F_i - D_i \tag{3.24}
\]

\(F_i \) \(\triangleq \) forecast of demand at period \(i \)

\(D_i \) \(\triangleq \) actual demand at period \(i \).

Step 2: Compute the mean square error, \((MSE)_n\), \((i = 1, 2, \ldots, n)\):

\[
(MSE)_n \triangleq \frac{1}{n} \sum_{i=1}^{n} (E_i)^2. \tag{3.25}
\]

Step 3: Compute the absolute error (or deviation), \(|E_i| \), \((i = 1, 2, \ldots, n)\):

\[
A_i = |E_i| = |F_i - D_i|. \tag{3.26}
\]

Step 4: Compute the mean absolute deviation, \((MAD)_n\), \((i = 1, 2, \ldots, n)\):

\[
(MAD)_n \triangleq \frac{1}{n} \sum_{i=1}^{n} A_i = \frac{1}{n} \sum_{i=1}^{n} |E_i| = \frac{1}{n} \sum_{i=1}^{n} |F_i - D_i|. \tag{3.27}
\]

Step 5: Compute the mean absolute percent error, \((MAPE)_n(\%)\), \((i = 1, 2, \ldots, n)\):

\[
(MAPE)_n \triangleq \frac{1}{n} \sum_{i=1}^{n} \left| \frac{E_i}{D_i} \right| * 100\%. \tag{3.28}
\]

Step 6: Compute the bias, \((Bias)_n\), \((i = 1, 2, \ldots, n)\):

\[
(Bias)_n \triangleq \sum_{i=1}^{n} E_i. \tag{3.29}
\]

Step 7: Compute the tracking signal, \((TS)_n\), \((i = 1, 2, \ldots, n)\):

\[
(TS)_n \triangleq \frac{(Bias)_n}{(MAD)_n}. \tag{3.30}
\]
The forecast analysis summary with GUI dashboard and controls excel worksheet is formatted as follows:

Figure 16: Forecast analysis summary with GUI dashboard and controls.
3.2 Inventory Management Modeling

The following inventory management modeling uses a series of formulas [Desa, 2011; Chopra and Meindl, 2010] to compute the cycle and safety inventory levels. This research work does not explicitly investigate inventory in a supply chain network; however, a software-module was developed to perform inventory based computations utilizing VBA in Excel. Therefore, for purely instructional reasons, the information is presented in this thesis to instruct on the process to automate inventory formulations in a GUI. The details of the implementation process are provided in Section 4.4.

Notation:

\(D \triangleq \) average annualized demand (units)
\(\sigma_w \triangleq \) standard deviation of the demand (weekly)
\(\mu \triangleq \) average demand (units)
\(CV \triangleq \frac{\sigma}{\mu} \) coefficient of variation
\((CV)_D \triangleq \) coefficient of variation of demand
\((CV)_S \triangleq \) coefficient of variation of supply
\(CSL \triangleq \) cycle service level (%)
\(ROP \triangleq \) reorder point (units) = \(ss + D_w L \)
\(f_R \triangleq \) fill rate (%)
\(ss \triangleq \) safety inventory = \(F^{-1}_{\alpha}(CSL)\sigma_L \) (units)
\(ESC \triangleq \) expected shortage per replenishment cycle
\(D_w \triangleq \) average weekly demand (units)
\(L \triangleq \) average lead-time for replenishment (weeks)
\(D_L \triangleq \) demand during lead-time
\(\sigma_w \triangleq \) standard deviation of weekly \(D \) (units)
\(\sigma_L \triangleq \) standard deviation of \(D \) during lead-time (units)
\(n \triangleq \) number of shipments on an annualized basis
\(Q_L \triangleq \) lot size
\(Q_L^* \triangleq \) optimal lot size
\(F^{-1}_{\alpha}(p) \triangleq \) inverse of the normalized normal distribution function
The formulas for inventory management are as follows:

Optimal Lot Size, \(Q_L^* \triangleq \sqrt{\frac{2DS}{hC}} \). \hfill (3.31)

Cycle Inventory \(\triangleq \frac{Q^*}{2} \). \hfill (3.32)

Number of order per year \(\triangleq \frac{D}{Q^*} \). \hfill (3.33)

Annual ordering and holding cost \(\triangleq \frac{D}{Q^*} S + \frac{Q^*_2}{2} hC \). \hfill (3.34)

Number of shipments, \(n \triangleq \sqrt{\sum_{i=1}^{N} \frac{D_i hC_i}{2S^*}} \). \hfill (3.35)

Cost per shipment, \(S \triangleq \frac{hC(Q^*)^2}{2D} \). \hfill (3.36)

Annual holding costs \(\triangleq \frac{D_A hC_A}{2n} + \frac{D_B hC_B}{2n} + \frac{D_C hC_C}{2n} \), \hfill (3.37)

where \(A, B, C \) represent three different possible suppliers.

Total annual ordering & holding cost \(\triangleq (S \times n) + \frac{D_A hC_A}{2n} + \frac{D_B hC_B}{2n} + \frac{D_C hC_C}{2n} \), \hfill (3.38)

where \(A, B, C \) represent three different possible suppliers.

Safety stock inventory, \(ss \triangleq F^{-1}_z(CSL)\sigma_D \). \hfill (3.39)
Safety stock inventory, $ss \triangleq F_z^{-1}(CSL)\sigma_D$.
Excel Version:

$$= NORMSINV(CSL)\sigma_L.$$

Expected shortage per cycle, $ESC \triangleq (1 - f_R)QL$

$$= -ss \left[1 - F_z \left(\frac{ss}{\sigma_L} \right) \right] + \sigma_L f_z \left(\frac{ss}{\sigma_L} \right).$$
Excel Version:

$$= -ss \left[1 - NORMDIST \left(\frac{ss}{\sigma_L}, 0, 1, 1 \right) \right] + \sigma_L NORMDIST \left(\frac{ss}{\sigma_L}, 0, 1, 0 \right).$$

Reorder point, $ROP \triangleq ss + DL$.

To define a quantitative measure of probability for product availability (supply), we use Cycle Service Level, CSL, which defines the probability, P, of D_L between $-\infty$ and the ROP, by the formulation:

$$CSL \triangleq P \{-\infty < D_L < ROP\},$$

where D_L is the average demand during the lead time, L. With this information, a probability density function (Gaussian curve) can be constructed to represent the relationships of equations.
The plot in Figure 17 represents the relationship when demand during lead time, D_L, is less than the reorder point, ROP, in terms of the $F_z(z)$. The probability of $D_L < ROP$ is referred to as the Cycle Service level, (CSL). The subscript, z, indicates a normalized distribution function, with $z = \frac{x - \bar{x}}{\sigma}$, at $\bar{x}, z = 0$. The origin is defined by the mean, $\mu \equiv \bar{x}$, and the measure of distance is defined by $\sigma = \text{standard deviation from the mean}$. In our work, the coefficient of variation of demand, defined as the σ/μ is used to investigate the required responsive of the supply to meet demand is meeting.

The integration of the normal probability density function, $f_z(z)$, yields the probability distribution function, $F_z(z)$, formulated as:

$$F_z(z) = \int_{-\infty}^{z} f_z(z)\,dz, \quad (3.45)$$
and the relationship of the CSL and the $F_z(z)$ shows that:

$$CSL = \rho(D_L < ROP) \equiv \rho(-\infty < D_L < ROP)$$ \hspace{1cm} (3.46)

$$= F(ROP) - F(-\infty), F(-\infty) \to 0$$

$$= F(ROP, (D_L)_{avg}, \sigma_L)$$

$$(D_L)_{avg} = LD_w, \sigma_L = \sqrt{L\sigma_w}$$

$$= F(ROP, LD_w, \sqrt{L\sigma_w}),$$

$$\therefore CSL = F(ROP, LD_w, \sqrt{L\sigma_w}).$$

In the $F_z(z)$ of the probability distribution function, the z is defined as:

$$z = \frac{(x - \mu)}{\sigma} = \frac{ROP - (D_L)_{avg}}{\sigma_L},$$ \hspace{1cm} (3.47)

The expression for the CSL is formulated as:

$$CSL = F_z\left[z = \frac{ROP - (D_L)_{avg}}{\sigma_L}, \mu = 0, \sigma = 1 \right].$$ \hspace{1cm} (3.48)

The normalized distribution has an origin with a mean value, $\mu = 0$, and a measure of distance with a standard deviation, $\sigma = 1$. Utilizing the statistical Z-Tables, it is possible to convert the z value to a probability value. Therefore, the demand uncertainty, in terms of supply, can be defined by the measure of the CSL:

$$CSL = F_z\left[z = \frac{ROP - (D_L)_{avg}}{\sigma_L}, \mu, \sigma \right].$$ \hspace{1cm} (3.49)

Condensing the formulation yields:

$$CSL = F_z\left[ss \frac{ss}{\sigma_L}, \mu, \sigma \right]; \text{ss} \triangleq ROP - D_L, \mu = 0, \sigma = 1.$$ \hspace{1cm} (3.50)
CSL = \[\frac{ss}{\sigma_L} \] \[z = \frac{\text{ROP} - (D_L)_{avg}}{\sigma_L}, \mu = 0, \sigma = 1 \]. \hspace{1cm} (3.51)

To solve for the \(ss \) requires an inverse procedure, \(F_z^{-1} \), which states that “given a probability, \(p \), the \(F_z^{-1}(p, \mu, \sigma) \) is the value of \(x \) such that \(p \) is the probability that the normal random variable takes on \(x \) or less” (Chopra and Meindl, 2010, pg. 324).

Rearranging the terms:

\[\frac{ss}{\sigma_L} = F_z^{-1}(CSL). \] \hspace{1cm} (3.52)

Substituting for the \(ss \):

\[\frac{\text{ROP} - (D_L)_{avg}}{\sigma} = F_z^{-1}(CSL), \] \hspace{1cm} (3.53)

and rearranging the terms for the re-order point, in terms of demand of uncertainty for a desired CSL, is formulated as:

\[\text{ROP} = (D_L)_{avg} + F_z^{-1}(CSL)\sigma_L. \] \hspace{1cm} (3.54)

With a computed \(\sigma_L \), two equations are established for a direct and indirect approach to compute the safety inventory for a desired CSL:

Direct

\[CSL = F_z \left[z = \frac{\text{ROP} - (D_L)_{avg}}{\sigma_L}, \mu, \sigma \right] \]

\[\mu = 0, \sigma = 1 \]

Indirect

\[\frac{ss}{\sigma_L} = F_z^{-1}(CSL). \] \hspace{1cm} (3.56)

Computing the \(\sigma_L \) from the demand forecast and setting a desired CSL, the safety
stock, ss, can be derived.

Cycle Service Level, $CSL \triangleq F(ROP, D_L, \sigma_L)$.

Excel Version:

$$= \text{NORMDIST}(ROP, D_L, \sigma_L, 1). \quad (3.57)$$

Standard deviation of demand during lead-time, $\sigma_L \triangleq \sqrt{L(\sigma_D^2) + D^2(s_L^2)}. \quad (3.58)$

Next, it is possible to compute the TotalAnnualCost:

$$\text{Total Annual Cost}, TC \triangleq CD + \frac{D}{Q}S + \frac{Q}{2}hC. \quad (3.59)$$

Lastly, it is understood that in order to compute optimal order quantity, Q^*_L, one needs to compute the first derivative of the TC function and setting it equal to zero and solving for Q^*_L:

$$\frac{\partial(TC)}{\partial(Q_L)} = 0 \quad (3.60)$$

set $\frac{\partial(TC)}{\partial(Q_L)} = 0$ and solve for Q^*_L

$$Q^*_L = \sqrt{\frac{2DS}{hC}}.$$

All of the inventory formulations are translated into VBA code within the Appendix:

VBA Code for the Modules in Section[7]

41
3.3 Supply Chain Network Modeling

3.3.1 Overview of the supply chain network

In our work various forms of supply networks, as discussed by Tsiakis et al. (2001), Chopra and Meindl (2010), Ferreira (2009), Ding et al. (2007), Peidro et al. (2009), Persson and Ollinger (2002), Persson and Ollinger (2002), Snyder (2006), and You and Grossmann (2010), were examined to develop our facilities location networking model. The related works are divided into two categories:

1. Two-stage networks

2. Multi-echelon networks

and are discussed in the following sections.

3.3.2 Two-stage supply chain network

In Figure 18 is shown the network view of the two-stage supply chain network, including manufacturers and distributors.
Figure 18: View of the two-stage supply chain network.
The two-stage network is reformulated in our notation:

Notation:
- \(g \) \(\triangleq \) index for manufacturer locations
- \(h \) \(\triangleq \) index for distributor locations
- \(k \) \(\triangleq \) number of manufacturer locations
- \(m \) \(\triangleq \) number of distributor locations
- \(m_g \) \(\triangleq \) manufacturer \(g \)
- \(M_g \) \(\triangleq \) capacity at manufacturer plant \(g \)
- \(F_{m_g} \) \(\triangleq \) annual fixed infrastructure cost(\$) at manufacturer \(g \)
- \(d_h \) \(\triangleq \) distributor \(h \)
- \(D_h \) \(\triangleq \) capacity at distributor site \(h \)
- \(D_i \) \(\triangleq \) annual demand for market \(i \)
- \(c_{gh} \) = cost(\$) of producing and shipping one unit from manufacturer \(g \) to distributor \(h \)
 - cost includes production, inventory transportation and tariffs.
- \(q_{gh} \) \(\triangleq \) quantity shipped from manufacturer \(g \) to distributor \(h \)
- \(y_g = \begin{cases}
1 & \text{if manufacturer located at site } g \text{ is open} \\
0 & \text{otherwise}
\end{cases} \)
- \(TC \) \(\triangleq \) total overall cost(\$) of the supply chain network

\[
\text{Minimize} \quad \left(\sum_{g=1}^{k} F_{m_g} y_g + \sum_{g=1}^{k} \sum_{h=1}^{m} c_{gh} q_{gh} \right),
\]

subject to

\[
M_g y_g - \sum_{h=1}^{m} q_{gh} \geq 0 \quad \text{for } g = 1, \ldots, k,
\]

\[
\sum_{i=1}^{n} D_i - \sum_{h=1}^{m} q_{gh} = 0 \quad \text{for } g = 1, \ldots, k.
\]

\(y_g \in \{0, 1\}, q_{gh} \geq 0. \)
3.3.3 Multi-echelon supply chain networks

In Figure 19 is shown the network view of the multi-echelon supply chain network, including suppliers, manufacturers, distributors and retailers.

Figure 19: View of the multi-echelon supply chain network.
The multi-echelon facility location problems is reformulated in our notation:

\[g \triangleq \text{index for manufacturer locations} \]
\[h \triangleq \text{index for distributor locations} \]
\[i \triangleq \text{index for market locations} \]
\[r \triangleq \text{index for retail locations} \]
\[s \triangleq \text{index for supplier locations} \]
\[j \triangleq \text{number of suppliers} \]
\[k \triangleq \text{number of manufacturers} \]
\[m \triangleq \text{number of distributors} \]
\[n \triangleq \text{number of retailers (demand points)} \]
\[s_f \triangleq \text{capacity at supplier } f \]
\[S_f \triangleq \text{annual fixed infrastructure cost(\$) of locating a plant at supplier site } f \]
\[m_g \triangleq \text{manufacturer } g \]
\[M_g \triangleq \text{capacity at manufacturer plant } g \]
\[F_m \triangleq \text{annual fixed infrastructure cost(\$) of locating a plant at manufacturer site } g \]
\[d_h \triangleq \text{distributor } h \]
\[D_h \triangleq \text{capacity at distributor site } h \]
\[F_{dh} \triangleq \text{annual fixed infrastructure cost(\$) of locating a plant at distributor site } h \]
\[r_i \triangleq \text{retailer } i \]
\[R_i \triangleq \text{capacity at retailer site } i \]
\[F_{ri} \triangleq \text{annual fixed infrastructure cost(\$) of locating a plant at retailer site } i \]
\[D_i \triangleq \text{annual demand for market } i \]
\[c_{fg} \triangleq \text{total cost(\$) of one unit from supplier } f \text{ to manufacturer } g \]
\[c_{gh} \triangleq \text{total cost(\$) of one unit from manufacturer } g \text{ to distributor } h. \]
\[q_{gh} \triangleq \text{quantity shipped from distributor } h \text{ to retailer } i \]
\[q_{hi} \triangleq \text{quantity shipped from distributor } h \text{ to retailer } i \]
\[TC \triangleq \text{total overall cost(\$) of the supply chain network.} \]

decision variables

\[y_f = \begin{cases}
1, & \text{if supplier located at site } f \text{ is open} \\
0, & \text{otherwise}
\end{cases} \]
\[y_g = \begin{cases}
1, & \text{if manufacturer located at site } g \text{ is open} \\
0, & \text{otherwise}
\end{cases} \]
\[y_h = \begin{cases}
1, & \text{if distributor located at site } h \text{ is open} \\
0, & \text{otherwise}
\end{cases} \]
\[y_i = \begin{cases}
1, & \text{if retailer located at site } i \text{ is open.} \\
0, & \text{otherwise}
\end{cases} \]

Table 1: Table of notation for multi-echelon supply chain network.
Minimize

\[
\sum_{f=1}^{j} F_{sf} y_f + \sum_{g=1}^{k} F_{mg} y_g + \sum_{h=1}^{m} F_{dh} y_h + \sum_{i=1}^{n} F_{ri} y_i + \text{annual fixed infrastructure costs} \]

\[
\sum_{f=1}^{j} \sum_{g=1}^{k} c_{1fg} q_{1fg} + \sum_{g=1}^{k} \sum_{h=1}^{m} c_{2gh} q_{2gh} + \sum_{h=1}^{m} \sum_{i=1}^{n} c_{3hi} q_{3hi} \] product flow cost

subject to

\[
S_{fy_f} - \sum_{g=1}^{k} q_{1fg} \geq 0 \text{ for } f = 1, \ldots, j, \quad (3.65)
\]

\[
\sum_{f=1}^{j} q_{1fg} - \sum_{h=1}^{m} q_{2gh} \geq 0 \text{ for } g = 1, \ldots, k, \quad (3.66)
\]

\[
M_{gy_g} - \sum_{h=1}^{m} q_{2gh} \geq 0 \text{ for } g = 1, \ldots, k, \quad (3.67)
\]

\[
\sum_{g=1}^{k} q_{2gh} - \sum_{i=1}^{n} q_{3hi} \geq 0 \text{ for } h = 1, \ldots, m, \quad (3.68)
\]

\[
D_{hy_h} - \sum_{i=1}^{n} q_{3hi} \geq 0 \text{ for } h = 1, \ldots, m, \quad (3.69)
\]

\[
\sum_{i=1}^{n} \Omega_i - \sum_{h=1}^{m} q_{3hi} = 0 \text{ for } i = 1, \ldots, n, \quad (3.70)
\]

and

\[
y_f, y_g, y_h, y_i \in \{0, 1\}, q_{1fg}, q_{2gh}, q_{3hi} \geq 0. \quad (3.71)
\]
3.4 The Integrated Hierarchical Framework

3.4.1 A Hierarchical view of Handling Uncertainty

Shown in Figure 20 is the two-level hierarchical framework our work develops to address uncertainty, consisting of: high-level, macro scenario planning and low-level, micro Monte Carlo simulation approaches.

In the following sections, we discuss the theory of the framework components (Section 3.4.2) and the integration process (Section 3.4.3).

3.4.2 Theory of Macro and Micro Level Framework Components

In our framework, the two components for addressing uncertainty are:

1. **Macro level: scenario planning**

 A macro level process for handling uncertainty, such as scenario planning (Schoemaker 1995, 1991; Vanston et al. 1977) is used in risk analysis because it considers a wide range of possible future outcomes. Other macro level approaches include: what-if analysis and sensitivity analysis. In this work, we utilize the scenario planning process which carefully considers the key uncertainties of the stakeholders.

Figure 20: Quantifying uncertainty in a multi-echelon supply chain network design.
The scenario planning approach (Vanston et al., 1977) considers and consolidates the key uncertainties that are most relevant to the stakeholders into a small quantity of manageable scenarios.

The construction of the scenarios, discussed in Section 3.4.3, follows a structured process for scenario planning (Vanston et al., 1977; Schoemaker, 1995) and from a discussion with Chao (2012) of Seagate, Inc to understand key uncertainties involved with supply chain management of high-tech products.

(2) Micro level: Monte Carlo simulation

A micro level process, such as Monte Carlo, is useful for considering a range of possible outcomes, but is limited to only a specific situation. In our work, the Monte Carlo method is used for repeated statistical-based experiments, using computer-based simulations, to help approximate solutions to a supply chain network design problem. In general terms, a computer simulation is a process for building a model of an uncertain system and then performing repeated numerical analysis to understand the statistical significance of the underlying system.

The Monte Carlo method is based on sampling random variables, X, from the cumulative distribution function, $F(x)$, denoted by (Hillier and Lieberman, 2005, pg. 951):

$$F(x) = P\{X \leq x\},$$

(3.72)

where $P\{X \leq x\}$ is the probability of $X \leq x$.

In our work, the Monte Carlo simulation generates random variables, X, which are derived from a normal probability distribution, to represent average annual regional demand. Shown in Figure 21, X is a random variable that has a cumulative distribution function, $F(x)$, and y, denoting a uniformly distributed random number in which $0 \leq y \leq 1$. The relationships of y and X are illustrated in Figure 21.
The sampling for the numerical analysis requires that variables in the simulation model originate as independent random independent, that correspond to a dependent output value, through an associated probability distribution (e.g., normal distribution). The normalization of the distribution function allows us to declare that the area under the curve is a unique number between 0 and 1. Then using a pseudo random number generator (e.g., CMRG) we choose values between 0 and 1 and attain a number, y. The random inputs (independent values), which are uniformly distributed numbers between an interval of [0,1], are used to generate the stochastic output variables (dependent values). The repeated sampling between 0 and 1 creates a stochastic simulation (a probabilistic system that is changing over time) to model the behavior of the system (Hillier and Lieberman, 2005). To automate the repeated sample, the Monte Carlo simulation is performed using software (Ragsdale, 2011) to automate the process.

To generate a random number, pick a value, y, between 0 to 1, $0 \leq y \leq 1$, and plot this value on the vertical $F(x)$ axis. Next move horizontally (represented by [1] on Figure 21) until reaching the distribution function curve, at which point the corresponding X variable is attained on the horizontal axis (represented by [2] on Figure 21). Restated, the random variable, X, is generated by the inverse
function method with a given distribution, \(X = F^{-1}(y) \). This approach can be utilized with other known distributions (e.g., discrete uniform, Poisson, binomial, geometric, Hypergeometric) and continuous distributions (e.g., uniform, normal, exponential, beta, gamma, weibull, log-normal, chi-square, student’s t, and F-distribution). In our work we use the normal distribution, which is defined by:

\[
f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right], \quad (-\infty < x < \infty).
\]

(3.73)

To summarize the Monte Carlo method in a step-wise process:

Setup:

(a) Define the normal distribution function with a mean, \(\mu \), and standard deviation, \(\sigma \), to create the plot of the probability density function, \(PDF \).

(b) Normalize the normal distribution function to create the cumulative distribution function, \(CDF \).

Simulation: Perform \(N \) random trials (e.g., \(N = 10,000 \)) as follows:

(a) For each trial, generate a random number, \(y \), between 0 and 1 on the vertical axis, \(F(x) \), of the \(CDF \). Set \(F(x) = y \).

(b) Use \(y \) to determine the corresponding \(X \) value from the \(CDF \), \(X = F^{-1}(y) \).

That is the average annual regional demand quantity.

(c) Apply this demand value into the model.

(d) Collect the results into a table.

(e) Repeat the simulation from step (a) for \(N \) trials to generate a new random variable.

In Section 3.4.3 we discuss the process to integrate the framework components.
3.4.3 The Integration Process of the Framework

Our integrated framework addresses uncertainty for a broad spectrum of possible outcomes and provides specific quantified results for the most probable future scenario. In contrast to our work, the research in the related works is divided into two distinct approaches to addressing uncertainty by using the macro, or, the micro approach:

1. Heuristic (macro) (i.e., Tsiakis et al. (2001))

2. Parametric probability (micro) (i.e., Junga et al. (2004); Schmitt and Singh (2009))

Shown in Figure 22 are the heuristic and probabilistic approaches of the related works, alongside our integrated framework. In our work, the heuristic and probabilistic approaches are unified into an integrated framework for modeling a multi-echelon supply chain network under the influence of demand uncertainty, for a high tech manufacturer’s perspective.

Figure 22: An integrated hierarchical framework.
The macro and micro components are integrated in the following step-wise process:

Step 1: Setup the nominal deterministic model with an objective function to minimize total cost.

Step 2: Scenario planning is used a method to generate and consolidate key stakeholder uncertainties into three possible scenarios: a nominal scenario and two alternative scenarios using the following step-wise approach:

(a) Stakeholder’s must identify the key uncertainties that describe the breadth of unknowns encompassing the supply chain network.

(b) Build a correlation matrix to establish the positive, +, and negative, -, relationships between the uncertainties.

\[
\begin{array}{ccccccc}
 & U1 & U2 & U3 & U4 & U5 & U6 & U7 \\
U1 & - & - & - & + & + & - \\
U2 & - & + & + & + & - \\
U3 & + & + & + & + \\
U4 & + & + & - \\
U5 & + & + \\
U6 & - \\
U7 & \\
\end{array}
\]

\[U_{ij} = U_{ji}\]

Table 2: Example of a correlation matrix of the seven key uncertainties.

(c) Consolidate the "+" and "-" of the correlation matrix into three scenarios. Group the vertical columns that contain all the "+" relationships to form the “Nominal”. Group the horizontal rows that contain only the "+" relationship from both the vertical columns into two groups, creating two more alternate scenarios (e.g., high/low, good/bad).
Table 3: Example of a correlation matrix with the nominal scenarios “+” selected.

\[U_{ij} = U_{ji} \]

(d) The scenarios are named and given descriptions.

<table>
<thead>
<tr>
<th>Scenario#</th>
<th>Scenario Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1, (s_1)</td>
<td>“#1”</td>
<td>The “#1” scenario description.</td>
</tr>
<tr>
<td>Scenario 2, (s_2)</td>
<td>“Nominal”</td>
<td>The “Nominal” scenario description.</td>
</tr>
<tr>
<td>Scenario 3, (s_3)</td>
<td>“#2”</td>
<td>The “#2” scenario description.</td>
</tr>
</tbody>
</table>

Table 4: Scenario planning summary.

Step 3: The scenarios are assigned probabilities, \(p_i \), corresponding to case study configurations.

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>(s_2)</td>
<td>(s_3)</td>
</tr>
<tr>
<td>Alternate 1</td>
<td>Nominal</td>
<td>Alternate 2</td>
</tr>
<tr>
<td>Base Case</td>
<td>(p_1 = 33%)</td>
<td>(p_2 = 33%)</td>
</tr>
<tr>
<td>Case 1</td>
<td>(p_1 = 100%)</td>
<td>0</td>
</tr>
<tr>
<td>Case 2</td>
<td>0</td>
<td>(p_2 = 100%)</td>
</tr>
<tr>
<td>Case 3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5: Scenario planning probabilities.

Step 4: Use a decision-analytic approach (Hillier and Lieberman, 2005) and the
probability, p_i, of each possible future scenario, s_i, to compute the most likely future scenario, $S = \sum_{i=1}^{n} p_i s_i$.

Step 5: Model the supply chain network and compute a solution which minimizes the total cost objective function, for the most probable future scenario, S.

Step 6: Perform a probability parametric analysis (Monte Carlo) on the input value for the regional demand quantity, using a normal distributions function with $\pm 3\sigma$ to define demand uncertainty.

We use the CMRG random number generator to pick values that are then associated with a normal distribution function to attain random variables which represent demand quantity. Each cycle of attaining a random variable is referred to as a trial. In our work, we set automation parameters for each simulation to repeat for 10,000 trials and to repeat the simulation ten times, for a total of 100,000 trials.

Shown Figure 23 are the inputs and outputs of the simulation in our work. The two inputs are the average annual demand, μ_D, and the standard deviation of demand, σ_D. The two outputs are the supply quantity that is needed to fulfill demand and the total cost of the supply chain network.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Annual Demand, μ</td>
<td>Supply</td>
</tr>
<tr>
<td>Standard Deviation, σ</td>
<td>Total Cost</td>
</tr>
</tbody>
</table>

Figure 23: Modeling demand uncertainty in a supply chain network design.

In our work, the inputs we use are the standard deviation of demand value that is a multiplicative value of the μ, defined by: $\sigma_D = \mu \times (CV)_D$. The basis for using this formulation of σ is the relationship referred to as the *coefficient of variation*, CV, which is a useful measure to describe the re-
relationship because “it represents the ratio of the standard deviation to the mean for the data sample and describes the relationship, without a dependency on the units-of-measure between the two variables” (Chopra and Meindl, 2010). The formulation for \(CV \) is defined:

\[
CV \triangleq \frac{\text{standard deviation}}{\text{mean}} = \frac{\sigma}{\mu}. \tag{3.74}
\]

Using the \(CV \) makes it possible to compare how the standard deviation, \(\sigma \), relates to the mean, \(\mu \). Our goal is to understand the influence that change in \(CV \) of demand, \((CV)_D \), has on the relationship on the two outputs, supply and total cost.

For a Monte Carlo simulation that is based on a normal distribution, the mean, \(\mu \), and the standard deviation, \(\sigma \), are the required input parameters. Our work uses two demand related input values that feed into the normal distribution function:

(a) Average annual demand (regional), \(\mu_D \); and

(b) Standard deviation of the average annual demand (regional), \(\sigma_D \), in the form of \(\mu_D \ast (CV)_D \).

in which the simulation parameters automatically increment the \(CV_D \) from .01% to 50%, as shown in Table 6. By increasing the \(CV_D \), we are able to see what happens to the supply and total cost as the standard deviation increases, causing greater fluctuations in the uncertain demand. For the outputs, we quantity the supply that is needed to fulfill the demand and the total cost of the supply chain network design.

Each simulation generates 10,000 trials. The output results of the corresponding variation in supply to meet demand and total cost of the supply
<table>
<thead>
<tr>
<th>Simulation#</th>
<th>((CV)_D)%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation 01</td>
<td>.01%</td>
</tr>
<tr>
<td>Simulation 02</td>
<td>05%</td>
</tr>
<tr>
<td>Simulation 03</td>
<td>11%</td>
</tr>
<tr>
<td>Simulation 04</td>
<td>16%</td>
</tr>
<tr>
<td>Simulation 05</td>
<td>22%</td>
</tr>
<tr>
<td>Simulation 06</td>
<td>27%</td>
</tr>
<tr>
<td>Simulation 07</td>
<td>33%</td>
</tr>
<tr>
<td>Simulation 08</td>
<td>38%</td>
</tr>
<tr>
<td>Simulation 09</td>
<td>44%</td>
</tr>
<tr>
<td>Simulation 10</td>
<td>50%</td>
</tr>
</tbody>
</table>

Table 6: Simulation parameters.

The chain network are then analyzed to understand the effect that increasing the coefficient of variation of demand (i.e., increasing the fluctuations of uncertainty) has on the two output values. At the conclusion of the simulation, the average annual demand (regional), \(\mu_D\), is incremented by 10,000 \(\text{units}_{\text{region}}\), and the simulation repeated up to 50,000 \(\text{units}_{\text{region}}\), provided in Table 7.

<table>
<thead>
<tr>
<th>Analysis#</th>
<th>(\mu_D) (\text{region})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,000</td>
</tr>
<tr>
<td>2</td>
<td>20,000</td>
</tr>
<tr>
<td>3</td>
<td>30,000</td>
</tr>
<tr>
<td>4</td>
<td>40,000</td>
</tr>
<tr>
<td>5</td>
<td>50,000</td>
</tr>
</tbody>
</table>

Table 7: Average annual demand parameters.

In Section 4 is discussed the step-wise implementation process of the integrated framework to modeling uncertainty in the supply chain network design.
3.5 Dashboard/Cockpit Automation

Shown in Figure 24 is an integrated framework of the architecture for a complete supply chain automation system with four integrated supply chain modules (14, 15, 16, 17) that manage the analytical relationships of each supply chain stage: supplier and factory are (1) and (2), factory and distributor are (3) and (4), distributor and retailers are (5) and (6), retailer to customer are (7) and (8). The data from each stage feeds (9, 10, 11, and 12) into the optimization and simulation engine for quantitative processing of the input parameters into the supply chain network model. The optimization and simulation engine feeds the quantitative results into the dashboard cockpit (13), which provides a centralized location to change parameters to quickly alter and analyze the output display results. The data flows are bi-directional because the dashboard cockpit allows for changes in parameters to quickly permeate throughout the entire system. The integrated framework is important for facilitating the data entry parameters in a centralized GUI dashboard and presenting the data in a visual graphic interface using a dashboard approach.
This work considers and presents a step-wise process to building a software automation platform with Microsoft® Excel with the Risk Solver Platform. The implementation includes the development of the Excel worksheet architecture, VBA code, and the design of a dashboard GUI cockpit to control the automation input parameters.

As shown in Figure 25, our work follows a three step approach to software automation development for rapid simulation:

Step 1: Pre-Processing

Step 2: Processing

Step 3: Post-Processing
The software modules which are important for supply chain management (SCM) are:

Module 1: Demand forecasting

Module 2: Inventory management

Module 3: Facilities Management (Supply Chain Network Design)
This research focuses on only utilizing the Step 3: Facilities Management module (buttons 22, 23, 24, 25 and 26), to study and quantify the influence of demand uncer-
tainty on a supply chain network design (SCND). As shown in Figure 24, a complete supply chain management system would contain software modules for quantifying the demand, inventory, facilities, and transportation. This work is primarily focused on the uncertainty in demand and the effect this uncertainty has in the supply chain network on the supply and total cost outcomes. A simple inventory module is developed and provided strictly for instructional purposes on how to program the inventory formulations in VBA and display the results in a main level GUI.

Figure 27: Facilities management software module control panel.

A discussion of the process and formulations for demand forecasting in Section 3.1 and how the result of the forecast, referred to as the average annual demand, \overline{D}, is used as the input value into the modeling and simulation of the supply chain network design.

Section 4 describes the implementation process of assembling the software automation infrastructure framework using Microsoft® Excel, VBA programming, and Risk Solver Platform with the Monte Carlo simulation software add-in.
4 Implementation

The approach for the implementation of the integrated framework in our work utilizes the following step-wise sequence for building the integrated framework in Microsoft® Excel. There are numerous platform choices (e.g., Matlab, SPSS) to implement the theory discuss in our work. However, our work is pursued in Microsoft® Excel to specifically showcase the process in a business productivity tool that is common to most workplace computer desktops and at the low cost.

Step 1: Scenario planning

Step 2: Configuration of the automation platform: Microsoft® Excel

Step 3: Framework for the demand forecasting analysis module

Step 4: Framework for the inventory analysis module

Step 5: Framework for the facilities management module

 (1) Framework for the two-stage capacitated plant

 (2) Framework for expanding the multi-echelon capacitated plant

 (3) Framework for implementing demand uncertainty into a multi-echelon supply chain network

Step 6: Framework for the transportation management analysis module

Step 7: GUI automation

Step 8: Integrated dashboard architecture

In the next sections, each step is discussed and illustrated to explain how to build the framework.
4.1 Configuration of the Platform: Microsoft© Excel

The platform for implementing this research is based on the following architecture, Figure 28.

![Simulation technology platform diagram]

Figure 28: Simulation technology platform.

We installed and configured the latest version (v11.5) of Risk Solver Platform by Frontline Systems Inc into the latest version of Microsoft© Excel. Once installed, the Risk Solver Platform operates as an add-in within Microsoft© Excel.

4.2 Scenario Planning

The integrated framework follows the following five step process:

Step 1: Set up the nominal deterministic model.
Step 2: Perform scenario planning to identify the set of \(n \) possible future scenarios \((s_i = 1, 2, \ldots, n)\).

Scenario Planning Step 1: Stakeholder’s must identify seven (7) key uncertainties that describe the breadth of unknowns encompassing the supply chain network.

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Does off-shore manufacturing provide high-quality products?</td>
</tr>
<tr>
<td>U2</td>
<td>Are suppliers able to meet demand?</td>
</tr>
<tr>
<td>U3</td>
<td>Will consumers remain sensitive to price for IT components?</td>
</tr>
<tr>
<td>U4</td>
<td>Will demand trends reverse direction in the forecasted years?</td>
</tr>
<tr>
<td>U5</td>
<td>Can manufacturers outgoing capacity meet demand?</td>
</tr>
<tr>
<td>U6</td>
<td>Will consumer demand vary by region?</td>
</tr>
<tr>
<td>U7</td>
<td>Will customer’s maintain a need (demand) for timely delivery?</td>
</tr>
</tbody>
</table>

Table 8: Seven uncertainties in the production of high-tech IT components.

In Table 8 are shown seven uncertainties that pertain to the general production of high-tech IT components and specifically to computer hard drives as they pertain to a firm that is producing high-tech components off-shore and importing to different countries.

Scenario Planning Step 2: Build a correlation matrix, Table 9 to establish the positive, +, and negative, -, relationship between the uncertainties.
Table 9: Correlation matrix of the seven key uncertainties.

<table>
<thead>
<tr>
<th></th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>U4</th>
<th>U5</th>
<th>U6</th>
<th>U7</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>U2</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>U4</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>U5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>U6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

$U_{ij} = U_{ji}$

In this step, the goal is to consolidate the “+” and “−” of the correlation matrix into three scenarios, distinguished in the following process:

(a) **Nominal Scenario**: Group the vertical columns that contain all the “+” relationships. The joint relationship of the U5 and U6 columns creates the nominal scenario: Suppliers are able to meet all demand and meet all the key uncertainties with price sensitive costs and reasonable capacity to meet expected demand.

(b) **Scenario 1** and **Scenario 2**: Group the horizontal rows that contain only the “+” relationship from both the vertical columns into two groups, creating a high and low:

Scenario 1: High-quality products with low sensitivity to price and unlimited manufacturer output capacity to meet all the variation in regional demand creates a high cost and high capacity scenario.

Scenario 2: High-quality products with high sensitivity to price and limited manufacturer output capacity to meet all the variation in regional demand creates a low cost and low capacity scenario.
Table 10: Correlation matrix with the key “+” uncertainties selected.

\[U_{ij} = U_{ji} \]

<table>
<thead>
<tr>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>U4</th>
<th>U5</th>
<th>U6</th>
<th>U7</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U2</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U3</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U4</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U5</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(c) The scenarios are then named and given descriptions, as summarized in Table 11.

<table>
<thead>
<tr>
<th>Scenario#</th>
<th>Scenario Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1, (s_1)</td>
<td>“High”</td>
<td>The “High” scenario utilizes high product and facility costs, for one product, with high capacity manufacturing facilities.</td>
</tr>
<tr>
<td>Scenario 2, (s_2)</td>
<td>“Nominal”</td>
<td>The “Nominal” scenario utilizes the average expected product and facility fixed costs, for one product.</td>
</tr>
<tr>
<td>Scenario 3, (s_3)</td>
<td>“Low”</td>
<td>The “Low” scenario utilizes low product and facility cost, for one product, with low capacity manufacturing facilities.</td>
</tr>
</tbody>
</table>

Table 11: Scenario planning implementation summary.

(d) Take a decision-analytic approach to determine the probability, \(p_i \), of each possible future scenario, \(s_i \). Shown in Table 12 are the probabilities utilized in our work.
Table 12: Scenario planning configuration parameters.

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>s_2</td>
<td>s_3</td>
</tr>
<tr>
<td>HIGH</td>
<td>NOMINAL</td>
<td>LOW</td>
</tr>
<tr>
<td>Base Case</td>
<td>$p_1 = 33%$</td>
<td>$p_2 = 33%$</td>
</tr>
<tr>
<td>Case 1</td>
<td>$p_1 = 100%$</td>
<td>0</td>
</tr>
<tr>
<td>Case 2</td>
<td>0</td>
<td>$p_2 = 100%$</td>
</tr>
<tr>
<td>Case 3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(e) Compute the most likely future scenario, $S = \sum_{i=1}^{n} p_i s_i$.

Table 13: Table of notation scenario-planning.

- **Notation:**
 - $i \triangleq$ index value for scenarios
 - $n \triangleq$ number of total scenarios
 - $s_i \triangleq$ scenario s_i for $i = 1, \ldots, n$
 - $p_i \triangleq$ scenario probability(\%) of occurrence for $i = 1, \ldots, n$
 - $S \triangleq$ probability weighted sum of best future scenario

(f) Model the supply chain network and compute a solution which minimizes the total cost objective function, for the most probable future scenario, S.

(g) Perform a probability parametric analysis of the coefficient of variation of demand, using a normal distributions function with $\pm 3\sigma$ to define demand and study the effect on the coefficient of variation of supply and the total cost of the supply chain network design.
4.3 Demand Forecasting Analysis

Determine the optimal forecasted demand using the following process:

Step 1: Reference the formulations, Excel worksheet and Excel charts from Section 3.1

Step 2: Build the complete inter-linked Excel workbook framework for demand forecasting with the static and adaptive methods.

Step 3: Input data for the demand history

Step 4: Adjust the adaptive forecasting coefficients

(a) Exponential: α

(b) Holt’s: α, β

(c) Winter’s: α, β, and γ

Step 5: Determine the optimal forecasted annual demand as shown in Figure 29

![Figure 29: Summary results of the demand forecasting best model.](image)

After computing the $(MAPE)_t$ for each forecasting method, determine the optimal forecasting method by selecting the forecasting method that yields the lowest $(MAPE)_t$ at the current time, t. The optimal forecast method is the one with the smallest $(MAPE)_t$. Once the best forecasting method has been established, determine the optimal forecasted demand, using the corresponding optimal forecasting method that produced the lowest $(MAPE)_t$.

69
Notation:

\[i \triangleq \text{generic index identifier for a forecast method} \]
\[i = 1 \triangleq \text{index value for the static method} \]
\[i = 2 \triangleq \text{index value for the moving average method} \]
\[i = 3 \triangleq \text{index value for the exponential method} \]
\[i = 4 \triangleq \text{index value for the Holt's method} \]
\[i = 5 \triangleq \text{index value for the Winter's method} \]
\[t \triangleq \text{present time period} \]
\[B \triangleq \text{minimum (MAPE)}^i_t \text{ at time } t, \text{ for a forecast method } i \]
\[F_i \triangleq \text{reasonalized forecast quantity: for the corresponding method, } i = 1,2,3,4,5 \]
\[F_2 \triangleq \text{reasonalized forecast quantity: moving average} \]
\[F_3 \triangleq \text{reasonalized forecast quantity: Exponential method} \]
\[F_4 \triangleq \text{reasonalized forecast quantity: Holt’s method} \]
\[F_5 \triangleq \text{reasonalized forecast quantity: Winter’s method} \]
\[D \triangleq \text{total quantity of the reasonalized forecast} \]

Table 14: Table of notation for determining the optimal forecasting method

Step 1: Compute the static forecast and error analysis. Tabulate all the results.

Step 2: Compute the moving average forecast and error analysis. Tabulate all the results.

Step 3: Compute the exponential forecast and error analysis. Tabulate all the results.

Step 4: Compute the Holt’s forecast and error analysis. Tabulate all the results.

Step 5: Compute the Winter’s forecast and error analysis. Tabulate all the results.

Step 6: Tabulate the results of the forecasting (MAPE)_t, for each forecasting method as shown in Table 15.
<table>
<thead>
<tr>
<th>Forecast Method</th>
<th>$(MAPE)_i^i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static:</td>
<td>$(MAPE)_i^1$</td>
</tr>
<tr>
<td>Moving Average:</td>
<td>$(MAPE)_i^2$</td>
</tr>
<tr>
<td>Exponential:</td>
<td>$(MAPE)_i^3$</td>
</tr>
<tr>
<td>Holt’s:</td>
<td>$(MAPE)_i^4$</td>
</tr>
<tr>
<td>Winter’s:</td>
<td>$(MAPE)_i^5$</td>
</tr>
</tbody>
</table>

Table 15: An example of the tabulation for a comparative analysis of the $MAPE$.

Step 7: Determine the optimal forecasting model, B, corresponding to the minimum $(MAPE)_i^i$, $i = 1, 2, 3, 4, 5$ at present time t.

$$B \triangleq \text{Min } (MAPE)_i^i \quad (4.1)$$
Step 8: Determine the total forecasted demand quantity, \mathcal{D}, for all future periods ($t = 1, 2, 3, \ldots$) and ($\ell = 1, 2, 3, \ldots$), utilizing the optimal forecasting method that is corresponding to the B. The automation process for determining the optimal forecast, and the corresponding optimal forecasted demand quantity is:

$$\text{if } B = (MAPE)_t^1 \text{ then}$$
$$\mathcal{D} = \sum_{j=t}^{t+\ell} (F_1)_j$$

$$\text{else if } B = (MAPE)_t^2 \text{ then}$$
$$\mathcal{D} = \sum_{j=t}^{t+\ell} (F_2)_j$$

$$\text{else if } B = (MAPE)_t^3 \text{ then}$$
$$\mathcal{D} = \sum_{j=t}^{t+\ell} (F_3)_j$$

$$\text{else if } B = (MAPE)_t^4 \text{ then}$$
$$\mathcal{D} = \sum_{j=t}^{t+\ell} (F_4)_j$$

$$\text{else if } B = (MAPE)_t^5 \text{ then}$$
$$\mathcal{D} = \sum_{j=t}^{t+\ell} (F_5)_j$$

end if

The value for \mathcal{D} represents the optimal total of the forecasted demand quantity, for ℓ periods. As stated in the preceding Motivation, Section 1.1 of our work, the concern of a global supply chain is to view the annualized basis. Therefore the \mathcal{D} value needs to be converted to an average annualized forecast demand, \mathcal{D}_a. For example, if there are three years of annual forecasted demand, it is appropriate to divide the sum of the three years by three, in order to attain an average annual demand.

It is the quantity value of \mathcal{D}_a that is utilized as the average annual demand for all further analysis in the supply chain. Therefore, the numeric value of \mathcal{D}_a is used in the
subsequent sections when the annual forecasted demand quantity is required.

4.4 Inventory Management Analysis

This part of the research work is only concerned with illustrating how to build and program in VBA and Excel an Inventory Management Module, a software-based type calculator, as part of the GUI, because it is an important part of studying supply chains. This research work is not specifically addressing or studying inventory analysis as part of the simulation or numerical case study analysis. As part of this thesis research, the following section is provided, for instructional purposes, on how to program an inventory management calculator in Excel with VBA.

![Inventory Management Module](image)

Figure 30: Inventory management module.

To perform the inventory analysis computations, the inventory analysis module is utilized:

1. Reference the formulations from Section: 4.4.

2. Build the Excel workbook framework for the inventory analysis module as show in Figure 30

3. Adjust the inventory input parameter values using the inventory module.

4. Determine the optimal inventory values using the Compute Inventory button.
As presented in Figure 30, **Step 2: Compute Inventory**, the user is able to select the forecasting method and adjust the input values of the inventory management. Upon the button click of the *Compute Inventory* button, the computations are performed by the VBA code in Appendix: VBA Code for the Modules in Section 7 and the results are presented in the **Step 2: Summary Results**.

4.5 Facilities Management

4.5.1 The Two-stage Capacitated Plant Deterministic Model

Developing the two-stage capacitated plant deterministic model followed these steps:

1. Reference the equations from the model formulation from Section 3.3.2

2. Build the Excel worksheet architecture for a two-stage capacitated plant problem to include the scenario planning results. The generalized frameworks are discussed within Chopra and Meindl (2010).

4.5.2 Expanding to the Multi-Echelon Capacitated Plant

To process for expanding the framework to a multi-echelon capacitated plant problem with $n = 3$ scenarios, was:

1. Reference the equations from the model formulation from Equation (3.63) in Section 3.3.3

2. Update the problem formulation to consider scenarios.

 The problem formulation from Equation (3.63) is reformulated and expanded to consider the $n = 3$ scenarios. The scenario notation for i is enclosed in a bracket, identified by $[i]$. Since there are $[n] = 3$ scenarios, we consider the capacity, product cost and fixed infrastructure cost of each manufacturer scenario and update the problem formulation as follows:
Minimize \[\sum_{f=1}^{j} F_{s_f y_f} + \sum_{f=1}^{j} \sum_{g=1}^{k} c_{1_f g} q_{1_f g} + \sum_{i=1}^{n} p_i \left(\sum_{g=1}^{k} F_{i_m g} y_g + \sum_{g=1}^{k} \sum_{h=1}^{m} c_{2_g h} q_{2_g h} \right) \] subject to \[S_{f y_f} - \sum_{g=1}^{k} q_{1_f g} \geq 0 \text{ for } f = 1, \ldots, j, \] \[\sum_{f=1}^{j} q_{1_f g} - \sum_{h=1}^{m} q_{2_g h} \geq 0 \text{ for } g = 1, \ldots, k, [i] = 1, \ldots, [n], \] \[M_{y_{[i]}} y_{[i]} - \sum_{h=1}^{m} q_{2_g h} \geq 0 \text{ for } g = 1, \ldots, k, [i] = 1, \ldots, [n], \] \[\sum_{g=1}^{k} q_{2_g h} - \sum_{i=1}^{n} q_{3_{h i}} \geq 0 \text{ for } h = 1, \ldots, m, [i] = 1, \ldots, [n], \] \[D_{y_{[i]}} y_{[i]} - \sum_{i=1}^{n} q_{3_{h i}} \geq 0 \text{ for } h = 1, \ldots, m, \] \[\sum_{i=1}^{n} \kappa_i - \sum_{h=1}^{m} q_{3_{h i}} = 0 \text{ for } i = 1, \ldots, n, \] and \[y_f, y_g, y_h, y_i \in \{0, 1\}, q_{1_f g}, q_{2_g h}, q_{3_{h i}} \geq 0. \]

(3) Build the Excel worksheet architecture for the multi-echelon capacitated problem. The frameworks are provided in detail in the following subsection: Configuring the Excel Worksheet Architecture.

(4) Automate the process using Solver and VBA programming language and integrate into a GUI dashboard as provided in Appendix: VBA Code for the Modules in Section 7.
4.5.3 Configuring the Excel Worksheet Architecture

With the updated problem formulation to consider \(n = 3 \) scenarios, the generalized excel worksheet architecture is formatted as follows:

Figure 31: Generalized Excel worksheet framework for multi-echelon supply chain network.
The worksheet architecture to enter cost inputs with $n = 3$ scenarios is formatted as:

![Excel worksheet structure of inputs (costs, capacities, and demand)](image)

Figure 32: Excel worksheet structure of inputs (costs, capacities, and demand)
The decision variables in the worksheet architecture is formatted as follows:

![Excel worksheet structure of decision variables.](image)

Figure 33: Excel worksheet structure of decision variables.
The constraints portion in the worksheet architecture is formatted as follows:

![Excel worksheet structure of constraints.](image)

Figure 34: Excel worksheet structure of constraints.
The Excel programming reference, based on the Figure 31 generalized architecture is:

=SUMPRODUCT(E2,A1)+SUMPRODUCT(E3,A2)+B1*(SUMPRODUCT(F2,
B4)+SUMPRODUCT(F3,B5))+B2*(SUMPRODUCT(F2,B7)+
SUMPRODUCT(F3,B8))+B3*(SUMPRODUCT(F2,B10)+SUMPRODUCT(
F2,B11))+SUMPRODUCT(G2,C1)+SUMPRODUCT(G3,C2)+
SUMPRODUCT(H2,D1)+SUMPRODUCT(H3,D2)
The entire worksheet architecture, using \(n = 3 \) scenarios is then formatted as follows:

![Excel worksheet structure of constraints](image)

Figure 35: Excel worksheet structure of constraints.
The function for the objective function is defined by the following Excel formula:

4.5.4 Demand Uncertainty with Monte Carlo Simulation

To implement a Monte Carlo simulation in Excel, the Risk Solver Platform add-in is required. The following subsections describe the methods used to perform the analysis.

4.5.5 Configuring the Simulation Uncertainty Functions

The normal distribution function for demand requires two parameters:

1. The mean, \(\mu \)
2. The standard deviation, \(\sigma \).

The average annual demand quantity is needed, \(\mu = \overline{D} \). This value of \(\mu \) serves as the equivalent of the mean annual demand parameter, for each region, in the normally distributed uncertainty functions within the Risk Solver Platform programming configuration for the demand generation functions in the simulation. Therefore, it is essential that \(\overline{D} \) is converted to an annual basis value, to remain consistent throughout the analysis.

The normal distributions functions are developed using three Risk Solver Platform \(\Psi \) functions, which are nested together, in the following process:

1. \(\Psi_{SimNormal} \): The normal distribution is defined by the \(\Psi_{SimNormal}(\mu,\sigma) \) function, in which the input parameters are the \(\mu \equiv \text{Mean} \) and \(\sigma \equiv \text{standard deviation} \). To model uncertainty, our work utilizes \(\sigma \) as a “multiplicative” of \(\mu \) (Junga et al., 2004) such that \(\sigma = \mu \ast CV \). In the Monte Carlo simulation, the (CV) is set to incrementally increase from .01% to .50%, thereby widening the range of \(\sigma \), over ten simulations. Figure 36 shows an example of an output from the \(\Psi_{SimNormal}(\mu,\sigma) \), function with \(\mu = 10, (CV)_D = 10\% \) and \(\sigma = \mu \ast (CV)_D \). It is clear that this approach of using \(\sigma \) as a “multiplicative” of \(\mu \) produces the desired result and is a suitable approach to adjusting the (CV) _D_.

83
Figure 36: Example of $PsiNormal()$ function for a normal distribution function.

(2) **PsiSimParam**: The adjustment of the $(CV)_D$ in the simulations is performed automatically by the Risk Solver Platform $PsiSimParam$ function, defined by $PsiSimParam(lower, upper)$, with: $lower \triangleq$ the lower value of a range; $upper \triangleq$ the upper value of a range. The range used in our work is .01% to 50%.

(3) **PsiTruncate**: Lastly, is the truncating function, $PsiTruncate(lower, upper)$, in which $lower \triangleq$ lower value of a range and $upper \triangleq$ upper value of a range. The $PsiTruncate()$ function is useful when nested within the $PsiSimParam()$ because as the (CV) values increase (which are used to define the σ range increase from a lower (e.g., .01%) to upper (e.g., 50%) range over the ten simulations) the $PsiTruncate()$ function ensures the demand value output from the $PsiSimNormal()$ function is automatically adjusted, with each simulation, so that demand is constrained within a defined range for the desired standard deviation. In our work, the analysis was constrained to the $Max(0, -3\sigma)$ on the left side of the mean to ensure demand is never negative (Chopra and Meindl, 2010).
The range automatically adjusts with each incremental parameter of the simulation in which demand is never negative on the lower range and \((+3\sigma)\) on the right side of the mean. This research goes on to use \(\pm 3\sigma\). This method of using the \(\text{PsiTruncate}()\) ensures that for all values in the analysis the demand quantity is nonnegative. If further research calls for six sigma analysis with normal distribution, then the use of the \(\text{PsiTruncate}()\) can be widened. The generalized Excel formula is:

\[
=\text{PsiNormal}(\mu, \mu \ast \text{PsiSimParam}(0.01\%, 50\%)), \\
\text{PsiTruncate}((\text{Max}(0, \mu - 3(\mu \ast \text{PsiSimParam}(0.01\%, 50\%))))), \\
(\mu + 3(\mu \ast \text{PsiSimParam}(0.01\%, 50\%))).
\]

After performing the Monte Carlo Simulation, the results are tabulated for subsequent analysis of the numerical results.

4.5.6 Configuring the Simulation Parameters

The Monte Carlo random number generator is based on CMRG. The simulation optimization parameters are shown in Figure 37.
Figure 37: Risk Solver Platform configurations.

Set Target Cell: D112

Equal To: Min

By Changing Cells: D43:H46,E51:H54,D60:H63,D68:H71

Subject to the constraints:
The implementation of ten simulations and ten thousand trials per simulation are used to cover the \(\Psi_{SimParm}(0.01\%, 50\%) \) range. This range for the \(\Psi_{SimParam}() \) is utilized as the multiple of the average of demand, \(\mu \), to create the increasing parameters for the standard deviation within the format required for the \(\Psi_{Normal}(\mu, \sigma) \).
In our work, the use of chance constraints was utilized to facilitate the Monte Carlo simulation and because we are also solving for the binary decision variables for the facilities being opened/closed. To explain a chance constraint we source [Frontline Systems, Inc. (2011) (version 11.5.1.0)]: "If a constraint depends on uncertain parameters and normal decision variables, we must specify what it means for the constraint to be satisfied. There are many possible realizations for the uncertain parameters, but only single values for the decision variables. The Solver must find values for the decision variables that cause the constraint to be satisfied for all, or perhaps most but not all, realizations of the uncertainties. We call this a chance constraint." In our work, a chance constraint was configured to a strict value of 1%. This chance constraint parameter for the simulation was set to such a strict value to ensure that the unmet demand quantity must be less than or equal to zero, with only a 1%. Restated, the 1% chance constraint setting was used to ensure that the supply quantity meet at the least 99% of the demand quantity.
4.5.7 Supply Chain Network Design Configuration Mapping

The software module that was developed for the mapping of the supply chain network utilizes the results of the open/close binary values to determine if a facility is opened or closed. The quantity values associated from the decision variables determine if a connection is needed between the nodes. The network diagram updates each time the simulation concludes. An example of the network mapping output is shown in Figure 39. The automated networking mapping module is entirely programmed using VBA code, provided in the Appendix: VBA Code for the Modules in Section 7.

Figure 39: Example of the supply chain network design configuration mapping.
4.6 Dashboard/Cockpit Automation

In our work, the best forecasting model for the demand is performed using: `DetermineOptimalModel` VBA code module. The inventory management was automated using: `ComputeInventory` VBA code module. The Solver language automated for the facilities design in the `ComputeFacilitiesDesign` VBA code module and the Monte Carlo Simulation is automated using the `ComputeSimulation` VBA code module.

The primary purpose of the software automation system developed as part of this research is to automate the computations for analyzing a supply chain network design. This work presents the automation code developed using VBA programming code within Excel to harness the spreadsheet power of Excel along with practical and rapid prototyping tools of the VBA and Solver languages. The software code was developed in modules and various macros and functions were written to perform the computations. Functions are assigned to GUI buttons (Bovey et al., 2009) to allow for easy button click operation of the programming code.

Each of these VBA functions call other important subfunctions. These high level functions provide the starting point for understanding the mechanisms of the code for the software developed in our work. The entire programming language code of declarations is documented in the Appendix: VBA Code for the Modules in Section 7.

In the dashboard architecture, user can update the α, β, and γ parameters for the demand forecasting and change the forecasting method. An initial concept of the dashboard cockpit design is presented in Figure 40. The dashboard is designed to quickly present numerical and graphical results including:

1. Overall total profitability summary results and graphs;
2. Demand summary results and graphs;
3. Inventory summary results and graphs;
4. Facility design summary results and graphs; and

90
5. Transportation design summary results and graphs.

The dashboard display was designed to be easy to interpret and update quickly upon changes to input parameters. Scenarios are saved to a database for easy retrieval and saving of work for a later date. Decision recommendations can be presented based on the results. Each module is integrated to share data with the other modules. Additionally, each module pushes the data into the dashboard. The data is presented in an adaptive format so that a change in the input parameter automatically permeates throughout the supply chain network design and updates the dashboard results.

When using automated software application tools, it is important to be able to quickly and effectively make changes to the input parameters that quickly update the output results. This software feature enables quick decision-making and improves productivity. The design of an airplane cockpit has been adopted into the software development arena as a method of design to accomplish this goal of efficiently updating parameters to quickly gain results of updated information delivery.

In the automation software developed in our work, the concept of a cockpit and dashboard control panel are developed and utilized to facilitate the updating of the parameters for the adaptive forecasting parameters. In the demand entry form worksheet, Figure 40, the demand data is entered and the parameters for the forecasting techniques can be easily adjusted using a spin button configured between 0 and 1.

<table>
<thead>
<tr>
<th>EXPONENTIAL COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOLT'S COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
</tr>
<tr>
<td>beta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WINTERS COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
</tr>
<tr>
<td>beta</td>
</tr>
<tr>
<td>gamma</td>
</tr>
</tbody>
</table>

Figure 40: Cockpit controls for demand entry parameters.
An issue of using Excel (version 2010 Professional) and adjusting the adaptive forecasting coefficients with *spin control buttons* is that the controls can only process values greater than 1. However, the coefficients values are less than 1. Therefore the spin controls buttons cannot directly be used for the dashboard GUI. A solution is to set the target cell for the coefficients to be a value greater than one, and then in an adjacent cell, divide this target cell by 100. It is this value in the adjacent cell that is displayed in the GUI. The target cell is hidden (e.g., same color font as the background) and the adjustments that are made to the spin buttons immediately update the coefficients for the forecasting and the charts in the dashboard are updated in real-time.
5 Simulation Study and Numerical Analysis

Our work creates a two-step process to the simulation and numerical analysis for quantifying the effects of demand uncertainty on a supply chain network and the corresponding outputs of measuring supply and total cost. Only the Demand Forecasting and Facilities Management Modules are utilized in the simulation study.

First, we present a set of calibration problems, each with known inputs and known expected outputs that are used to validate that the implementation of the framework has been constructed correctly. Second, we present the analysis of a Base Case, Case 1, 2, and 3 each with $n = 3$ scenarios for product cost, fixed facilities costs, and facility capacity. The analysis of the case studies measures the effect of varying the coefficient of variation of demand on the coefficient of variation of supply in the SCN and the relationship to total cost.

The implementation of the software is discussed in Section 4. The environment is a Windows Vista platform running a 64-bit OS and Microsoft® Excel 2010 Professional with the Front Line Systems Inc. Risk Solver Platform version 11.5 add-in.

5.1 Calibration 01

Step 1: Problem Input values

A manufacturer has four sites (m_1, m_2, m_3, m_4), each with fixed infrastructure cost of $1,000 and capacity of 10,000 units. The manufacturer has four separate suppliers (s_1, s_2, s_3, s_4), four distributors (d_1, d_2, d_3, d_4) and four retailers (r_1, r_2, r_3, r_4). The transportation costs between all the facilities shares the following structure cost/unit($).
Facility 1 Facility 2 Facility 3 Facility 4
Facility 1 $1 $2 $3 $4
Facility 2 $2 $1 $2 $3
Facility 3 $3 $2 $1 $2
Facility 4 $4 $3 $2 $1

Table 16: Transportation costs between all the facilities.

The maximum capacity (quantity of units output) for each facility type is:

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Capacity(units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier</td>
<td>10,000</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>10,000</td>
</tr>
<tr>
<td>Distributor</td>
<td>10,000</td>
</tr>
<tr>
<td>Retailer</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Table 17: Maximum capacity for each facility type.

The average annual demand at four market end points has been forecasted for total of: 40,000 units/year. Shown in Figure 42 are “Input of cost, capacities and demand for calibration problem 1”, in which regions \(D_2 \) and \(D_3 \) equally have 20,000 units/year and regions \(D_1 \) and \(D_4 \) are zero.
Figure 42: Input of cost, capacities and demand for calibration problem 1.

The objective is to determine which facilities should be open and the quantity of units to flow from each to minimizes the total cost of the supply chain.

Step 2: Planning: Step-wise process to perform calibration.

1. Draw the network a diagram, properly notating all variables for the facilities, capacities, costs between nodes, quantity of products flowing between nodes and demand points. Make sure to illustrate and labels the flow variables and arrows for the inputs and outputs of at least one set of nodes between suppliers-
manufactures, manufactures-distributors and distributors-retailers.

2. Formulate the problem to minimize the total cost of the complete supply chain network.

3. Build the formulation into the Excel spreadsheet and program the optimization into Risk Solver Platform.

4. Test the simulation framework for the accuracy of the results by altering the capacity and demand input values to ensure the outcomes are as expected.

Step 3: Calibration Results

The result for the calibration problem should match the following output.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>OPEN</td>
</tr>
<tr>
<td>s2</td>
<td>OPEN</td>
</tr>
<tr>
<td>s3</td>
<td>OPEN</td>
</tr>
<tr>
<td>s4</td>
<td>OPEN</td>
</tr>
<tr>
<td>m1</td>
<td>OPEN</td>
</tr>
<tr>
<td>m2</td>
<td>CLOSED</td>
</tr>
<tr>
<td>m3</td>
<td>CLOSED</td>
</tr>
<tr>
<td>m4</td>
<td>OPEN</td>
</tr>
<tr>
<td>d1</td>
<td>OPEN</td>
</tr>
<tr>
<td>d2</td>
<td>CLOSED</td>
</tr>
<tr>
<td>d3</td>
<td>CLOSED</td>
</tr>
<tr>
<td>d4</td>
<td>OPEN</td>
</tr>
<tr>
<td>r1</td>
<td>OPEN</td>
</tr>
<tr>
<td>r2</td>
<td>CLOSED</td>
</tr>
<tr>
<td>r3</td>
<td>CLOSED</td>
</tr>
<tr>
<td>r4</td>
<td>OPEN</td>
</tr>
<tr>
<td>demand1</td>
<td>UNSERVED</td>
</tr>
<tr>
<td>demand2</td>
<td>SERVED</td>
</tr>
<tr>
<td>demand3</td>
<td>SERVED</td>
</tr>
<tr>
<td>demand4</td>
<td>UNSERVED</td>
</tr>
</tbody>
</table>

The objective function yields a $TC = $230,000
5.2 Calibration 02

Step 1: Problem Input values A manufacturer has four sites \((m_1, m_2, m_3, m_4)\), each with fixed infrastructure cost of $1,000 and capacity of 10,000 units. Each manufacturer is served by four separate suppliers \((s_1, s_2, s_3, s_4)\), and delivers products to four distributors \((d_1, d_2, d_3, d_4)\), which in-turn deliver products to four retailers \((r_1, r_2, r_3, r_4)\). Transportation costs between all the facilities shares the following structure cost/unit($).

<table>
<thead>
<tr>
<th>Facility 1</th>
<th>Facility 2</th>
<th>Facility 3</th>
<th>Facility 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility 1</td>
<td>$1</td>
<td>$2</td>
<td>$3</td>
</tr>
<tr>
<td>Facility 2</td>
<td>$2</td>
<td>$1</td>
<td>$2</td>
</tr>
<tr>
<td>Facility 3</td>
<td>$3</td>
<td>$2</td>
<td>$1</td>
</tr>
<tr>
<td>Facility 4</td>
<td>$4</td>
<td>$3</td>
<td>$2</td>
</tr>
</tbody>
</table>

Table 19: Transportation costs between all the facilities.

Capacity (maximum quantity of units output) for each facility and the demand regions:
<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity(units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier</td>
<td>10000 10000 10000 10000</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>M₁ M₂ M₃ M₄</td>
</tr>
<tr>
<td>Distributor</td>
<td>D₁ D₂ D₃ D₄</td>
</tr>
<tr>
<td>Retailer</td>
<td>R₁ R₂ R₃ R₄</td>
</tr>
<tr>
<td>Demand Region</td>
<td>D₁ D₂ D₃ D₄</td>
</tr>
</tbody>
</table>

Table 20: Maximum capacity of each facility.

In the Figure is shown an example of the “Inputs-costs,capacities,demand Excel worksheet entry form” in which regions 1, 2, 3, and 4 equally have 10,000 units/year.
The objective is to determine which facilities should be open and the quantity of units to flow from each to minimize the total cost of the supply chain.

Step 2: Planning Step-wise process to perform calibration:

1. Draw the network diagram properly notating all variables for the facilities, capacities, costs between nodes, quantity of products flowing between nodes and
demand points. Make sure to illustrate and labels the flow variables and arrows for the inputs and outputs of at least one set of nodes between suppliers-manufactures, manufactures-distributors and distributors-retailers

2. Formulate the problem to minimize the total cost of the complete supply chain network.

3. Build the formulation into the Excel spreadsheet and program the optimization into Risk Solver Platform.

4. Test simulation of the results by altering capacity and demand to ensure outcomes are as expected.

Step 3: Calibration Results The result for the calibration problem should match the following output.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>OPEN</td>
</tr>
<tr>
<td>s2</td>
<td>OPEN</td>
</tr>
<tr>
<td>s3</td>
<td>OPEN</td>
</tr>
<tr>
<td>s4</td>
<td>OPEN</td>
</tr>
<tr>
<td>m1</td>
<td>CLOSED</td>
</tr>
<tr>
<td>m2</td>
<td>OPEN</td>
</tr>
<tr>
<td>m3</td>
<td>OPEN</td>
</tr>
<tr>
<td>m4</td>
<td>CLOSED</td>
</tr>
<tr>
<td>d1</td>
<td>CLOSED</td>
</tr>
<tr>
<td>d2</td>
<td>OPEN</td>
</tr>
<tr>
<td>d3</td>
<td>OPEN</td>
</tr>
<tr>
<td>d4</td>
<td>CLOSED</td>
</tr>
<tr>
<td>r1</td>
<td>CLOSED</td>
</tr>
<tr>
<td>r2</td>
<td>OPEN</td>
</tr>
<tr>
<td>r3</td>
<td>OPEN</td>
</tr>
<tr>
<td>r4</td>
<td>CLOSED</td>
</tr>
<tr>
<td>demand1</td>
<td>SERVED</td>
</tr>
<tr>
<td>demand2</td>
<td>SERVED</td>
</tr>
<tr>
<td>demand3</td>
<td>SERVED</td>
</tr>
<tr>
<td>demand4</td>
<td>SERVED</td>
</tr>
</tbody>
</table>

Figure 45: Calibration 02: Network.
Table 21: Calibration 02 status.

The objective function yields a $TC = $210,000.
5.3 Case Study Numerical Analysis

Step 1: Implement the Monte Carlo Simulation

Step 2: Plot the CV of Supply verse CV Demand: To investigate the influence of uncertainty on the supply chain, we compute the CV of supply versus CV of demand, for ten Monte Carlo simulations, then plot the results, relative to each other with CV of supply on the y-axis and CV of demand on the x-axis. Each simulation uses an increasing uncertainty measure of the coefficient of variation of demand for the normal distribution function, of the average annual forecasted demand, \bar{D}. The process is summarized as follows, for each case study:

Step 2.1: Establish fixed values for the coefficient of variation of demand, $(CV)_D$.

Step 2.2: Solve the optimization and Monte Carlo simulation problem.

Step 2.3: Determine the coefficient of variation of supply, $(CV)_S$.

Step 2.4: Plot $\frac{(CV)_S}{(CV)_D}$ versus $(CV)_D$.

Step 2.5: Determine the data point at which $\frac{(CV)_S}{(CV)_D} = 1$.

Step 2.6: Plot the TC versus the data point at which $\frac{(CV)_S}{(CV)_D} = 1$.

Step 2.7: Repeat for each optimization parameter, which in our work are different values for $\bar{D} = 10000, 20000, 30000, 40000, 50000$.

The outcome is two graphical plots that are used for interpretation and analysis:

1. $\frac{(CV)_S}{(CV)_D}$ versus $(CV)_D$; and
2. TC versus $(CV)_D$ at $\frac{(CV)_S}{(CV)_D} = 1$.

101
6 Results

6.1 Quantifying Uncertainty

In this section the results and numerical analysis for the Base Case and Case Study 1, 2, and 3 simulation are presented.

6.1.1 Base Case: Scenario 1 ($p = 1/3$) = Scenario 2 = Scenario 3

In Figure 46 is shown the ratio of $\frac{(CV)_S}{(CV)_D}$ versus $(CV)_D$ (%) for Base Case. The threshold for the maximum variation in demand that can be tolerated to maintain good coordination in an SCN is defined by $\frac{(CV)_S}{(CV)_D} = 1$ and identified by the hollow line markers. Utilizing the $(CV)_D$ (%) data points values at $(CV)_D = 1$ for each average annual demand, \overline{D}, the plot of the relationships between $TC(\$)$ versus $(CV)_D$ (%) is plotted in the summary of results, Figure 50.
6.1.2 Case 1: “High” (Scenario 1: \(p = 100\% \))

Figure 47: Case 1 results.

In Figure 47 is shown the ratio of \((CV)_S/(CV)_D \) versus \((CV)_D(\%) \) for Case 1. The threshold for the maximum variation in demand that can be tolerated to maintain good coordination in an SCN is defined by \((CV)_S/(CV)_D = 1 \) and identified by the hollow data point markers. Utilizing the \((CV)_D(\%) \) data points values at \((CV)_D = 1 \) for each average annual demand, \(\overline{D} \), the plot of the relationships between \(TC(\$) \) versus \((CV)_D(\%) \) is plotted in the summary of results, Figure 50.
6.1.3 Case 2: “Nominal” (Scenario 2: $p = 100\%$)

In Figure 48 is shown the ratio of $(CV)_S/(CV)_D$ versus $(CV)_D(\%)$ for Case 2. The threshold for the maximum variation in demand that can be tolerated to maintain good coordination in an SCN is defined by $(CV)_S/(CV)_D = 1$ and identified by the hollow data point markers. Utilizing the $(CV)_D(\%)$ data points values at $(CV)_D = 1$ for each average annual demand, \overline{D}, the plot of the relationships between $TC(\$) versus $(CV)_D(\%)$ is plotted in the summary of results, Figure 50.
6.1.4 Case 3: “Low” (Scenario 3: \(p = 100\% \))

In Figure 49 is shown the ratio of \((CV)_S / (CV)_D \) versus \((CV)_D \) (%) for Case 3. The threshold for the maximum variation in demand that can be tolerated to maintain good coordination in an SCN is defined by \((CV)_S / (CV)_D = 1 \) and identified by the hollow data point markers. Utilizing the \((CV)_D \) (%) data points values at \((CV)_D = 1 \) for each average annual demand, \(\overline{D} \), the plot of the relationships between \(TC(\$) \) versus \((CV)_D \) (%) is plotted in the summary of results, Figure 50.
6.2 Quantifying Total Cost versus \((CV)_D(\%) \)

Shown in Figure 50 is the relationship of the threshold of the maximum variation in demand, \((CV)_D(\%) \), that can be tolerated to maintain coordination versus the total cost, \(TC \), for each average annual demand, \(\overline{D} \), for the Base Case and Case 1, 2 and 3 when using the integrated framework. In addition, are shown the comparative results (the solid markers) of the corresponding heuristic approach results, when utilizing the \((CV)_D(\%) \) value of the corresponding integrated framework case. The heuristic results were attained by utilizing the data point value of \((CV)_D(\%) \) and the average annual regional demand, \(\overline{D} \), in the deterministic version of the framework, using a Simplex approach to solving the problem.

![Figure 50: Total cost versus \((CV)_D(\%\)).](image)

From Figure 50 we learn that as the average annual regional demand, \(\overline{D} \) increases, while the maximum facility supply capacity remains fixed, the following are the observations:

(1) The Base Case (all scenarios are equally like to occur) results are nearly equal
to the Case 2 when only the nominal scenario, s_2.

(2) The $(CV)_D(\%)$ threshold, for maintaining good supply in the supply chain network, is decreasing. In keeping the maximum supply capacity fixed in the facilities and increasing the units of measure for the $(CV)_D(\%)$, the result is that at higher levels of demand the threshold of maintaining the $(CV)_D(\%)$ is decreasing. A firm needs to increase supply capacity to prevent the threshold $(CV)_D(\%)$ converging to zero.

(3) The total cost, TC, is increasing.

(4) The range between the “High” (Case 1 results) and “Low” (Case 3 results), is increasing.

(5) At high levels of demand the integrated framework developed in our work yields a result that is 23% less in total cost than the heuristic approach.
7 Conclusion and Future Work

This work presented an integrated, rapid software-prototyping, approach to simulating and quantifying a supply chain network design. Specifically, our work studied the relationship between the threshold of maintaining good coordination in a supply chain network, \(\frac{(CV)s}{(CV)d} = 1 \), and the total cost, \(TC(\$) \), under the influence of demand uncertainty.

The integrated framework developed in our work models a supply chain’s ability to maintain a good coordinated with less total cost than a heuristic approach. Specifically, at high levels of demand, the integrated framework has shown to yield a 23\% reduction in total cost when compared to the heuristic approach (Section 6.2). Therefore, it is in the interest of firms that need to remain competitive in the marketplace to utilize an integrated framework, such as that developed in our work, for efficient and rapid supply chain network modeling. In our work, I have presented five key contributions.

First, an integrated framework and dashboard cockpit, using Microsoft® Excel and the Risk Solver Platform, to model a multi-echelon supply, under the influence of demand uncertainty. The software platform that was developed utilizes an integrated framework that manages the demand, inventory and network design of a supply chain. Furthermore, I presented the technique and approach for implementing Monte Carlo simulation to understand the relationship between the coefficient of variation of demand verses coefficient of variation of supply. The relationship was measured by increasing the units of measurement of the coefficient of variation of demand and to measure the result coefficient of variation of supply. The coefficient of variation in demand was increased by incrementally widening the standard deviation from the \(\mu \) from 0 to \(\pm 3\sigma \) of in a normal distribution function to represent the average regional demand. The software developed in this research, called “SCMTracker”, serves as low-cost, high efficiency, rapid prototyping tool for simulating and optimizing the supply chain network.

For a multinational manufacturing firm, operating in different time zones, with
various currencies, fluctuating markets, and heterogeneous languages, the capability to have one integrated platform is essential. Of course, as the complexity of the features increases, so does the cost. This work presented a small-scale prototyping system that is suitable for data exchange on a local area network. Yet, such a system is difficult, if not impractical, to integrate into a global web-based, platform that needs to dynamically update the information in real-time. More research into this domain is needed, especially with the latest developments in cloud computing.

As discussed with Chao (2012) of Seagate, an area of future work that can prove of value is to expand the system to support manufacturing facilities nodes across various countries and to consider multiple global supply scenarios. The reality is that large multi-national companies are consistently exploring new geographical areas for manufacturing that increase speed to market and reduce costs. Therefore, developing information technology systems that can help a business unit manager make better decisions about locating these facilities is vital to a long-term competitive strategy.

Lastly, as prescribed by Desa (2011), enabling the software system to be more quickly updated with real-time global market conditions, will allow the manufacturing firm to gain competitive advantage by delivering higher quality, real-time information, to the business unit decision managers. Therefore, building a real-time relational web-driven supply chain network simulator that considers these expansion parameters and is integrated with the supply side e-commerce systems would be essential in competitive advantage. Quantifying the rate of improvement in the speed of accurate decision making relative to fluctuations in downstream supply chain activities (i.e., Bull-whip effect) can be of value to firm that is considering investment within information technology systems. An interesting analysis would be to quantity the cost-to-benefit trade-off’s of implementing a robust information technology e-commerce system to managing a supply chain.
Appendix: VBA Code for the Modules

' * RANY POLANY
' * M.S. Thesis
'
Sub Open_FacilitiesEntry()
',
'
 OpenDemand Macro
',
',
',

 Sheets(" Facilities_Entry "). Select
 Range("D2:J21"). Select
 ActiveWindow.Zoom = True
 Range("E10"). Select
End Sub

Sub DetermineOptimalModel()
',
',
 Calculates the demand
 And puts best choices in the cell
',
',
 Dim StaticModel
 Dim MovingAverageModel
 Dim ExponentialModel
 Dim HoltsModel
 Dim WintersModel
 Dim MinModel
 Dim BestModel
 Dim BestModelName As String
 Dim Demand_Year1
 Dim Demand_Year2
 MinModel = Worksheets("Demand_Comparison_Forecasts"). Range("E13")
StaticModel = Worksheets("Demand_Comparison_Forecasts").Range("E7")
MovingAverageModel = Worksheets("Demand_Comparison_Forecasts").Range("E9")
ExponentialModel = Worksheets("Demand_Comparison_Forecasts").Range("E10")
HoltsModel = Worksheets("Demand_Comparison_Forecasts").Range("E11")
WintersModel = Worksheets("Demand_Comparison_Forecasts").Range("E12")

' Identifies the best model using the lowest value for the MAPE
'
If MinModel = StaticModel Then
 BestModelName = "Static Forcast"
 BestModel = StaticModel
ElseIf MinModel = MovingAverageModel Then
 BestModelName = "Moving Average"
 BestModel = MovingAverage_4Month
ElseIf MinModel = ExponentialModel Then
 BestModelName = "Exponential"
 BestModel = ExponentialModel
ElseIf MinModel = HoltsModel Then
 BestModelName = "Holts"
 BestModel = HoltsModel
ElseIf MinModel = WintersModel Then
 BestModelName = "Winters"
 BestModel = WintersModel
End If

' Based on the determined best model, the forecasted Annual Demand is determined
' Populates the cells with the Summary Results for the Demand Module
'
Range("K7") = BestModelName
Range("K8") = Demand_Year1
Range("K9") = Demand_Year2
Range("K10") = (Demand_Year1 + Demand_Year2) / 2

End Sub
Sub Open_MainModule()
 ' OpenMainModule Macro
 ' Opens Main Module Worksheet
 ' Keyboard Shortcut: Ctrl+m
 Sheets("Main").Select
 Range("E1:M41").Select
 ActiveWindow.Zoom = True
 Range("E5").Select
End Sub

Sub PrintSummary()
 ' PrintSummary Macro
 ' Prints Summary Worksheet
 ExecuteExcel4Macro "PRINT (1,,,1,,,,,,,,2,,, TRUE,,FALSE)"
End Sub

Sub Clear_DemandDataSummary()
 ' ClearDemandData Macro
 ' ClearsDemandData
 Range("K6:M9").Select
Selection.ClearContents

End Sub

Sub Clear_InventoryManagementSummary()
 '
 ' ClearInventoryManagement Macro
 ' ClearsInventoryManagement Data
 '

 Range("K13:K25").Select
 Selection.ClearContents

End Sub

Sub Clear_TransportationDataSummary()
 '
 ' ClearTransportationData Macro
 ' Clear Transportation Data
 '

 Range("K24:M27").Select
 Selection.ClearContents

End Sub

Sub Clear_DemandData1()
 '
 ' Clear DemandData1 Column Macro
 '

 Range("E4:E23").Select
 Selection.ClearContents

End Sub
Sub Clear_DemandData2()
',
' Clear DemandData2 Column Macro
',
',
 Range("F4:F23").Select
 Selection.ClearContents
End Sub

Sub Clear_DemandData3()
',
' Clear DemandData3 Column Macro
',
',
 Range("G4:G23").Select
 Selection.ClearContents
End Sub
Sub Clear_DemandData4()
',
' Clear DemandData4 Column Macro
',
',
 Range("H4:H23").Select
 Selection.ClearContents
End Sub
Sub Open_BestModel()
',

' OpenBestModel Macro
'
If BestModel = StaticModel Then
Sheets("Demand_Static_Chart").Select

ElseIf BestModel = MovingAverageModel_4Month Then
Sheets("Demand_MA_Chart").Select

ElseIf BestModel = Exponential Then
Sheets("Demand_Exponential_Chart").Select

ElseIf BestModel = HoltsModel Then
Sheets("Demand_Holts_Chart").Select

ElseIf BestModel = WintersModel Then
Sheets("Demand_Winters_Chart").Select
End If

Sub ComputeInventory()
'
' Compute Inventory
'
'
Dim SelectedModel As String
Dim strModelString As String

Sub ComputeInventory()
Dim AnnualDemand As Double
Dim OptimalInventory As Double
Dim NumberofShipments As Double
Dim CycleInventory As Double
Dim CycleInventoryValue As Double
Dim OrderFrequency As Double
Dim SafetyStock As Double
Dim SafetyStockValue As Double
Dim StandardDevDuringLeadTime As Double
Dim ReOrderPoint As Double
Dim ESC As Double
Dim FillRate As Double

Dim AnnualMaterialCost As Double
Dim AnnualOrderingCost As Double
Dim AnnualHoldingCost As Double
Dim TotalAnnualCost As Double

SelectedModel = Range("K13")

If SelectedModel = "Static" Then
 AnnualDemand = Worksheets("Demand_Comparison_Forecasts").Range("O7")
ElseIf SelectedModel = "Moving Average" Then
 AnnualDemand = Worksheets("Demand_Comparison_Forecasts").Range("O9")
ElseIf SelectedModel = "Exponential" Then
 AnnualDemand = Worksheets("Demand_Comparison_Forecasts").Range("O10")
ElseIf SelectedModel = "Holts" Then
 AnnualDemand = Worksheets("Demand_Comparison_Forecasts").Range("O11")
ElseIf SelectedModel = "Winters" Then

AnnualDemand = Worksheets("Demand_Comparison_Forecasts").Range("O12")

End If

OptimalInventory = Sqr((2 * AnnualDemand * (Worksheets("Main").Range("H17"))) / (
((Worksheets("Main").Range("H13") * (Worksheets("Main").Range("H15")))))))

NumberOfShipments = AnnualDemand / OptimalInventory

CycleInventory = OptimalInventory / 2

CycleInventoryValue = CycleInventory * (Worksheets("Main").Range("H15"))

OrderFrequency = 365 / NumberOfShipments

SafetyStock = WorksheetFunction.NormSInv(Range("H19")) * Sqr(Range("H22")) * Range("F22")

SafetyStockValue = SafetyStock * (Worksheets("Main").Range("H15"))

StandardDevDuringLeadTime = (AnnualDemand / 52) * ((Worksheets("Main").Range("F25")) * (Sqr((Worksheets("Main").Range("H22"))))))

ReOrderPoint = SafetyStock + (AnnualDemand / 52) * ((Worksheets("Main").Range("H22"))

With Application.WorksheetFunction

ESC = (-1) * SafetyStock * (1 - .NormDist(SafetyStock / StandardDevDuringLeadTime, 0, 1, 1)) + StandardDevDuringLeadTime * .

NormDist((SafetyStock / StandardDevDuringLeadTime), 0, 1, 0)

End With

FillRate = 1 - ESC / OptimalInventory
AnnualMaterialCost = AnnualDemand * Worksheets("Main").Range("H15")
AnnualOrderingCost = (AnnualDemand / OptimalInventory) * (Worksheets("Main").Range("H17"))
AnnualHoldingCost = (OptimalInventory / 2) * ((Worksheets("Main").Range("H13"))
) * (Worksheets("Main").Range("H15"))
TotalAnnualCost = AnnualMaterialCost + AnnualOrderingCost + AnnualHoldingCost

Range("K14") = OptimalInventory
Range("K15") = NumberofShipments
Range("K16") = CycleInventory
Range("K17") = CycleInventoryValue

Range("K18") = OrderFrequency

Range("K19") = SafetyStock
Range("K20") = SafetyStockValue
Range("K21") = StandardDevDuringLeadTime
Range("K22") = ReOrderPoint
Range("K23") = ESC
Range("K24") = FillRate

Range("K26") = AnnualMaterialCost
Range("K27") = AnnualOrderingCost
Range("K28") = AnnualHoldingCost
Range("K29") = TotalAnnualCost

End Sub
Sub OpenWinters()
 '
 ' OpenWinters Macro
 ' Opens Winters Model
 '
 '
 Sheets("Demand_Winters_Data").Select
 Range("B3:O36").Select
 ActiveWindow.Zoom = True
End Sub

Sub OpenHolts()
 '
 ' OpenHolts Macro
 ' Opens Holts Model
 '
 '
 Sheets("Demand_Holts_Data").Select
 Range("B3:N35").Select
 ActiveWindow.Zoom = True
 Range("B3").Select
End Sub

Sub OpenExponential()
 '
 ' OpenExponential Macro
 ' Opens Exponential Model
 '
 '

Sub OpenMovingAverage()
'
' OpenMovingAverage Macro
' Opens Moving Average Analysis
'

 Sheets("Demand_MA_Data").Select
 Range("B3:M34").Select
 ActiveWindow.Zoom = True
 Range("B3").Select
End Sub

Sub OpenStatic()
'
' OpenStatic Macro
' Opens Static Forecasting Analysis
'

 Sheets("Demand_Static_Data").Select
 Range("B3:P35").Select
 ActiveWindow.Zoom = True
 Range("B3").Select
End Sub
Sub Clear_Step1()
'
' ClearStep1 Macro
'
'
Range("K7:M10").Select
Selection.ClearContents
End Sub

Sub Clear_Step2()
'
' Clear_Step2 Macro
'
'
Range("K13:M26").Select
Selection.ClearContents
End Sub

Sub Clear_Step3()
'
' Clear_Step4 Macro
'
'
Range("K28:M31").Select
Selection.ClearContents
End Sub

Sub Clear_Step4()
Step4 Macro

Range("K37:M40").Select
Selection.ClearContents
End Sub

Sub ViewBestModel()

If Range("K7") = "Static Forcast" Then
Shts("TeleComOptic_P01_Static").Select

ElseIf Range("K7") = "MovingAverage_4Month" Then
Shts("TeleComOptic_P01_Static").Select

ElseIf Range("K7") = "MovingAverage_3Month" Then
Shts("TeleComOptic_P01_Static").Select

ElseIf Range("K7") = "Exponential" Then
Shts("TeleComOptic_P01_Static").Select

ElseIf Range("K7") = "Holts" Then
Shts("TeleComOptic_P01_Static").Select

ElseIf Range("K7") = "Winters" Then
Shts("TeleComOptic_P01_Static").Select
End If

End Sub

Sub OpenMAPE()

' OpenMAPE Macro
' Opens MAPE Analysis
'

Sheets("Plot_of_MAPE").Select
End Sub

Sub OpenFacilitiesDesign()

' OpenFacilitiesDesign Macro
' Open Facilities Design
'

Sheets("Facilities_Design").Select
Range("A1:K27").Select
ActiveWindow.Zoom = True
End Sub

Sub Compute_FacilitiesDesign()

' Populates the Facilities with the Information after running Solver
' Reference MSDN: http://support.microsoft.com/kb/843304#5
'

' Clear Prior Data in the cells
'Sheets("Facilities_Design_Optimizer").Select
'Range("D43:G46").Select
' Selection.ClearContents

'Sheets("Facilities_Design_Optimizer").Select
'Range("D51:G54").Select
'Selection.ClearContents

'Sheets("Facilities_Design_Optimizer").Select
'Range("D60:G63").Select
'Selection.ClearContents

'Sheets("Facilities_Design_Optimizer").Select
'Range("D68:G71").Select
'Selection.ClearContents

DetermineOptimalModel

Sheets("Facilities_Design_Optimizer").Select

Range("O42:S45").Select
 Application.CutCopyMode = False
 Selection.Copy
 Range("D43").Select
 ActiveSheet.Paste
 Range("D51").Select
 ActiveSheet.Paste
 Range("D60").Select
 ActiveSheet.Paste
 Range("D68").Select
 ActiveSheet.Paste

' Set Solver parameters
SolverReset
SolverOptions Precision:=0.000001
SolverOptions Convergence:=0.0001
SolverOptions AssumeLinear:=True
SolverOptions MaxTime:=150
SolverOptions Iterations:=250
SolverOptions AssumeNonNeg:=True

'AssumeLinear:=True, StepThru:=False, Estimates:=1, Derivatives:=1, _
'SearchOption:=1, IntTolerance:=1, Scaling:=False, Convergence:=0.001, _
'AssumeNonNeg:=False

SolverOK SetCell:=Worksheets("Facilities_Design_Optimizer").Range("D112"),
 MaxMinVal:=2, _
ByChange:=Worksheets("Facilities_Design_Optimizer").Range("D43:H46,D51:H54,D60
 :H63,D68:H71")

'SolverOK SetCell:=Range("A2"), MaxMinVal:=3, ValueOf:=50, _
 'ByChange:=Range("A1")

'Set Solve Constraints

'# Relation can be a value between 1 and 5 as in the following example:
' * The value 1 is less than or equal to (<=).
' * The value 2 is equal to (=).
' * The value 3 is greater than or equal to (>=).
' * The value 4 is an integer.
' * The value 5 is the binary (a value of zero or one).

'Decision Variables
SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("D43:G46"), Relation:=3, FormulaText:="0"

SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("D51:G54"), Relation:=3, FormulaText:="0"

SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("D60:G63"), Relation:=3, FormulaText:="0"

SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("D68:G71"), Relation:=3, FormulaText:="0"

'Constraints
SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("D77:D80"), Relation:=3, FormulaText:="0"

SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("D85:D88"), Relation:=3, FormulaText:="0"

SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("D94:D97"), Relation:=3, FormulaText:="0"
SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("D102:D105"), Relation:=3, FormulaText:="0"

'SolverAdd CellRef:=worksheets("Facilities_Design_Optimizer").Range("H38"),
Relation:=2, FormulaText:="J47"
'SolverAdd CellRef:=worksheets("Facilities_Design_Optimizer").Range("H38"),
Relation:=2, FormulaText:="J55"
'SolverAdd CellRef:=worksheets("Facilities_Design_Optimizer").Range("H38"),
Relation:=2, FormulaText:="J63"

SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("H38"),
Relation:=2, FormulaText:="J72"

SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("H60:H63"), Relation:=5, FormulaText:="binary"

SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("D109:G109"), Relation:=2, FormulaText:="0"

SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("I78"), Relation:=2, FormulaText:="0"
SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("I86"), Relation:=2, FormulaText:="0"
SolverAdd CellRef:=Worksheets("Facilities_Design_Optimizer").Range("I95"), Relation:=2, FormulaText:="0"

' Finish and do not display the results
SolverSolve UserFinish:=True

' Finish and keep the results
SolverFinish KeepFinal:=1

Sheets("Facilities_Network_Mapper").Select
Module7.DeleteAllShapes
Module7.DrawRect

Sheets("Main").Select
Range("K32").Select
Module7.Determine_Open_Closed_Facilities

End Sub
Sub Populate_Facilities_Info()

If Worksheets("Facilities_Design").Range("G13") >= 1 Then
 Worksheets("Main").Range("K28") = "Use Low Capacity"
ElseIf Worksheets("Facilities_Design").Range("H13") >= 1 Then
 Worksheets("Main").Range("K28") = "Use High Capacity Plant"
ElseIf Worksheets("Facilities_Design").Range("G13") + Worksheets("Facilities_Design").Range("H13") = 0 Then
 Worksheets("Main").Range("K28") = "Eliminate Factory"
End If

' * Determine Facilities for Shanghai

If Worksheets("Facilities_Design").Range("G14") >= 1 Then
 Worksheets("Main").Range("K29") = "Use Low Capacity Plant"
ElseIf Worksheets("Facilities_Design").Range("H14") >= 1 Then
 Worksheets("Main").Range("K29") = "Use High Capacity Plant"
ElseIf Worksheets("Facilities_Design").Range("G14") + Worksheets("Facilities_Design").Range("H14") = 0 Then
 Worksheets("Main").Range("K29") = "Eliminate Factory"
End If

' * Determine Facilities for Ningbo

If Worksheets("Facilities_Design").Range("G15") >= 1 Then
 Worksheets("Main").Range("K30") = "Use Low Capacity Plant"
ElseIf Worksheets("Facilities_Design").Range("H15") >= 1 Then
 Worksheets("Main").Range("K30") = "Use High Capacity Plant"
ElseIf Worksheets("Facilities_Design").Range("G15") + Worksheets("Facilities_Design").Range("H15") = 0 Then
 Worksheets("Main").Range("K30") = "Eliminate Factory"
End If

Worksheets("Main").Range("K31") = Worksheets("Facilities_Design").Range("C19")
 + Worksheets("Facilities_Design").Range("C20") + Worksheets("Facilities_Design").Range("C21")

Worksheets("Main").Range("K32") = Worksheets("Facilities_Design").Range("C26")
End Sub

Sub ComputeTransportation()

 Dim SupplierADeliveryDays As Double
 Dim SupplierBDeliveryDays As Double
 Dim SupplierCDeliveryDays As Double
 Dim SupplierDDeliveryDays As Double
 Dim SupplierEDeliveryDays As Double

 Dim SupplierATotalCost As Double
 Dim SupplierBTotalCost As Double
 Dim SupplierCTotalCost As Double
 Dim SupplierDTotalCost As Double
 Dim SupplierETotalCost As Double

End Sub
Dim PreferredSupplier As String
Dim PreferredMode As String
Dim MinimizedTotalCost As Double
Dim DaysToDelivery As Double

SupplierADeliveryDays = Worksheets("TransportationTotalCosts").Range("A13")
SupplierBDeliveryDays = Worksheets("TransportationTotalCosts").Range("A14")
SupplierCDeliveryDays = Worksheets("TransportationTotalCosts").Range("A15")
SupplierDDeliveryDays = Worksheets("TransportationTotalCosts").Range("A16")
SupplierEDeliveryDays = Worksheets("TransportationTotalCosts").Range("A17")

SupplierATotalCost = Worksheets("TransportationTotalCosts").Range("M13")
SupplierBTotalCost = Worksheets("TransportationTotalCosts").Range("M14")
SupplierCTotalCost = Worksheets("TransportationTotalCosts").Range("M15")
SupplierDTotalCost = Worksheets("TransportationTotalCosts").Range("M16")
SupplierETotalCost = Worksheets("TransportationTotalCosts").Range("M17")

If Worksheets("TransportationTotalCosts").Range("M18") = SupplierATotalCost
Then
PreferredSupplier = "Supplier A"
PreferredMode = Worksheets("TransportationTotalCosts").Range("C13")
MinimizedTotalCost = Worksheets("TransportationTotalCosts").Range("M13")
DaysToDelivery = SupplierADeliveryDays
ElseIf Worksheets("TransportationTotalCosts").Range("M18") = SupplierBTotalCost
Then
PreferredSupplier = "Supplier B"
PreferredMode = Worksheets("TransportationTotalCosts").Range("C14")
MinimizedTotalCost = Worksheets("TransportationTotalCosts").Range("M14")

DaysToDelivery = SupplierBDeliveryDays

ElseIf Worksheets("TransportationTotalCosts").Range("M18") = SupplierCTotalCost Then
PreferredSupplier = "Supplier C"
PreferredMode = Worksheets("TransportationTotalCosts").Range("C15")
MinimizedTotalCost = Worksheets("TransportationTotalCosts").Range("M15")
DaysToDelivery = SupplierCDeliveryDays

ElseIf Worksheets("TransportationTotalCosts").Range("M18") = SupplierDTotalCost Then
PreferredSupplier = "Supplier D"
PreferredMode = Worksheets("TransportationTotalCosts").Range("C16")
MinimizedTotalCost = Worksheets("TransportationTotalCosts").Range("M16")
DaysToDelivery = SupplierDDeliveryDays

ElseIf Worksheets("TransportationTotalCosts").Range("M18") = SupplierETotalCost Then
PreferredSupplier = "Supplier E"
PreferredMode = Worksheets("TransportationTotalCosts").Range("C17")
MinimizedTotalCost = Worksheets("TransportationTotalCosts").Range("M17")
DaysToDelivery = SupplierEDeliveryDays

End If

Range("K35") = PreferredSupplier
Range("K36") = PreferredMode
Range("K37") = MinimizedTotalCost
Range("K38") = DaysToDelivery

End Sub

Sub ClearTransportationSummary()
'
' ClearTransportationData Macro
' Clear Transportation Data
'
'
 Range("K35:M38").Select
 Selection.ClearContents
End Sub
References

Ming Chao. -. Interview, 2012.

Subhas Desa. TIM-225: Supply chain management. Lecture, University of California Santa Cruz, 2011.

