Radiation Laboratory

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
EVIDENCE FOR THE TRANSITION OF A K^0 INTO A \bar{K}^0 MESON

Frank S. Crawford, Jr., Marcello Cresti, Myron L. Good, Klaus Gottstein, Ernest M. Lyman, Frank T. Solmitz, M. Lynn Stevenson, and Harold Ticho

September 29, 1958
EVIDENCE FOR THE TRANSITION OF A K^0 INTO A \bar{K}^0 MESON

Frank S. Crawford, Jr., Marcello Cresti, Myron L. Good, Klaus Gottstein, Ernest M. Lyman, Frank T. Solmitz, M. Lynn Stevenson, and Harold Ticho

Radiation Laboratory
University of California
Berkeley, California

September 29, 1958

ABSTRACT

Two pictures have been obtained in a liquid-hydrogen bubble chamber, each of which demonstrates the following sequence:

(1) $\pi^- + p \rightarrow Y^0 + K^0$ \hspace{1cm} $[Y^0_A = \Lambda^0, \ Y^0_B = \Sigma^0]$
(2) $\Lambda \rightarrow p + \pi^-$
(3) $K^0 \rightarrow (\sim 50\%) \ K_0 + (\sim 50\%) \ \bar{K}^0$
(4) $\bar{K}^0 + p \rightarrow \Sigma^+ + \pi^0$
(5) $\Sigma^+ \rightarrow n + \pi^+$,

where step (3) is not directly observable, but is a prediction of the theory of Gell-Mann and Pais. On the basis of two events, the cross section for process (4) is 50 mb.
EVIDENCE FOR THE TRANSITION OF A K^0 INTO A \bar{K}^0 MESON**†

Frank S. Crawford, Jr., Marcello Cresti, Myron L. Good, Klaus Gottstein, Ernest M. Lyman, Frank T. Solmitz, M. Lynn Stevenson, and Harold Ticho

Radiation Laboratory
University of California
Berkeley, California

September 29, 1958

INTRODUCTION

The particle-classification scheme of Gell-Mann and Nishijima requires the existence of two neutral K mesons of opposite strangeness. 1 It was later pointed out by Gell-Mann and Pais 2 that one could infer on the basis of charge-conjugation invariance that both the K^0 and the \bar{K}^0 would have to be superpositions of two states of equal amplitude, one representing a short-lived and the other a long-lived component. 3 Through the virtual decay of the short-lived component, a K^0 of positive strangeness would be transformed into a mixture of K^0 and \bar{K}^0 states; in the subsequent interaction the \bar{K}^0 could then lead to hyperons of negative strangeness, thus showing an apparent nonconservation of strangeness. Several of the predictions of the Gell-Mann and Pais theory have been confirmed by experiments:

*This work was done under the auspices of the U.S. Atomic Energy Commission.

†A preliminary report of this evidence was given at the 1958 Annual International Conference on High Energy Physics at Cern, 30 June - 5th July 1958 (pg. 201 of the Proceedings).

3Violations of charge-conjugation invariance have recently been established, but it has been shown that the principal predictions of the Gell-Mann-Pais theory hold under more general assumptions. 4

(1) Lande et al.\(^5\) and Panofsky et al.\(^6\) have found long-lived \(K^0\) mesons which decay into three particles as predicted by the theory.

(2) Fowler et al. have observed \(\Lambda\) hyperons in a propane bubble chamber exposed to a neutral beam.\(^7\) The events are presumed to result through the interaction of long lived neutral \(K\) mesons made in a hydrogen target by the reaction

\[
\pi^- + p \rightarrow \gamma^0 + K^0 .
\]

(3) Emulsion workers have reported somewhat similar evidence.\(^8\)

(4) Boldt et al. have seen very similar experimental evidence for the strangeness change that we are reporting here.\(^9\) These authors observed the production of \(K^0\) mesons which interacted in subsequent lead plates to produce \(\Lambda\) hyperons of strangeness opposite to that of the original \(K^0\) meson.

We have observed two events in a liquid-hydrogen bubble chamber, shown in Figs. 1 and 2, which give striking additional confirmation for the Gell-Mann Pais hypothesis. In each case a \(\pi^-\) meson interacts with a proton to give a hyperon and a neutral \(K\) meson:

\[
\pi^- + p \rightarrow \begin{cases}
(\text{neutral } K) + \Lambda^0 \text{ (in Event A)} \\
(\text{neutral } K) + \Sigma^0 \rightarrow \Lambda + \gamma \text{ (in Event B)}
\end{cases}
\]

\(^8\)Amar, Friedman, and Levi Setti, Nuovo cimento \underline{5}, 1801 (1957);
Baldo-Ceolin, Dilworth, Fry, Greening, Hugita, Limentari, and Sichirollo, Nuovo cimento \underline{6}, 130 (1957).

followed in each case by:

(2) \(\Lambda \rightarrow p + \pi^{-} \);

The neutral K meson then interacts with a proton at some distance from its point of production to give a hyperon and a \(\pi^{0} \) meson:

\[
\text{(neutral K) + p} \rightarrow \Sigma^{+} + \pi^{0},
\]

followed by

(3) \(\Sigma^{+} \rightarrow n + \pi^{+} \).

We here observe the predicted apparent nonconservation of strangeness; a \(K^{0} \) of strangeness + 1 is produced in an interaction and subsequently changes into a \((K^{0}, \bar{K}^{0}) \) mixture, i.e. a mixture of positive and negative strangeness. The subsequent interaction then results in the production of a negative-strangeness hyperon. From the dynamics of the events we cannot rule out the possibility that the particle produced in the interaction of the neutral K and the proton is a \(K^{+} \). However, in both events the positive particle produced in the interaction has a very short lifetime, which is strongly in favor of the \(\Sigma^{+} \) interpretation.

The two events were obtained in the course of an experiment on associated production of strange particles.\(^{10}\) On the basis of an estimated 1200 cm of \(K^{0} \) path, the cross section for Reaction (3) is of the order of 50 mb. We present here a detailed account of one of these two events, and a brief summary of the second event.

ANALYSIS OF EVENTS

Event A

The analysis of this event (Fig. 1 and Tables I and II) consists of:

(a) identifying tracks 2, 3, and 4 as a \(\Lambda \) decaying into a \(\pi^{-} \) and a proton respectively;

(b) determining that the \(\Lambda \) is produced directly via the reaction

\[\pi^- + p \rightarrow \Lambda + K^0, \] and not indirectly from the compound reaction \[\pi^- + p \rightarrow \Sigma^0 + K^0 \] and \[\Sigma^0 \rightarrow \Lambda + \gamma, \] and that the associated \(K^0 \) should indeed be expected to follow a line of flight coincident with Track 5;

(c) showing that the recoiling track, Track 6, is consistent dynamically with being the \(\Sigma^+ \) in the reaction \(K^0 + p \rightarrow \Sigma^+ + \pi^0; \)\(^{11}\) and

(d) finally demonstrating that Track 7 is consistent with being the \(\pi^+ \) in the decay \(\Sigma^+ \rightarrow n + \pi^+. \)\(^{12}\) We will now consider separately these stages of analysis.

(a) Tracks 2, 3, and 4 were constrained to fit first a \(\Lambda \) and then a \(K^0 \) decay subject to the contraint that \(\chi^2 = \sum [(a_i - \beta_i)/\delta\beta_i]^2 \) be a minimum:

Here \(\beta_i \) and \(\delta\beta_i \) are the ith measurement and its rms error, whereas \(a_i \) is the "theoretical" value corresponding to the ith measurement that yields energy and momentum conservation. The \(\chi^2 \) value for the \(\Lambda \) interpretation was 0.6 whereas \(\chi^2 \) for the \(K \) interpretation was 1.1. On the basis of this test, the \(V \) event could be either a \(K^0 \) or a \(\Lambda \) decay.

However, by measuring the energy of the delta ray on Track 4, we can clearly establish that this track is a proton. That this \(V \) event is not a \(K^0 \) decay can be further demonstrated by calculating the momentum of the incident pion required to produce a \(K^0 \) at this momentum and angle. This momentum would have to be \(1310 \pm 10 \text{ Mev}/c \), whereas the average beam momentum was independently known to be \(1227 \pm 3 \text{ Mev}/c \). On the other hand, if we assume the particle to be a \(\Lambda \), we obtain \(1248 \pm 16 \text{ Mev}/c \) for the incident-pion momentum, which is clearly consistent with \(1227 \text{ Mev}/c \).

(b) By using the known momentum of the incident pion and of the \(\Lambda \) hyperon, one can predict the direction and magnitude of the \(K^0 \) momentum. The predicted azimuth, dip, and momentum are \(138.3 \pm 5^\circ, 2.8 \pm 1.2^\circ, \) and \(622.6 \text{ Mev}/c \), respectively. These values, when compared with the measured values, when compared with the measured values...
Table I

Table of measured and adjusted quantities for Event A

<table>
<thead>
<tr>
<th>Particle</th>
<th>Track No.</th>
<th>Measured quantities</th>
<th>Final adjusted quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Momentum, p (MeV/c)</td>
<td>Azimuth, φ (deg)</td>
</tr>
<tr>
<td>π⁻</td>
<td>4</td>
<td>54.6 ± 0.8</td>
<td>113.7 ± 0.6</td>
</tr>
<tr>
<td>p</td>
<td>5</td>
<td>955 ± 218</td>
<td>73.5 ± 0.3</td>
</tr>
<tr>
<td>Λ</td>
<td>3</td>
<td>74.7 ± 1.4</td>
<td>-1.9 ± 14</td>
</tr>
<tr>
<td>K⁰</td>
<td>2</td>
<td>138.5 ± 0.3</td>
<td>2.0 ± 1.2</td>
</tr>
<tr>
<td>Σ⁺</td>
<td>6</td>
<td>345 ± 3000</td>
<td>111.8 ± 1.4</td>
</tr>
<tr>
<td>[or K⁺]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>π⁺</td>
<td>7</td>
<td>251 ± 19</td>
<td>205.6 ± 0.3</td>
</tr>
<tr>
<td>(or μ⁺)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incident π⁻</td>
<td>1</td>
<td>945 ± 220</td>
<td>101.2 ± 0.3</td>
</tr>
</tbody>
</table>

a The brackets indicate the alternative interpretation \(K⁰ + p^0 \to K⁺ + n \).

b The parentheses indicate the alternative interpretation as the decay \(K⁺ \to μ⁺ + ν \).
Table II
Reaction and decay angles in degrees for Event A

<table>
<thead>
<tr>
<th>Reaction angles</th>
<th>(\cos \theta_{\mu \nu}) ((\equiv \hat{p}{\mu} \cdot \hat{p}{\nu}))</th>
<th>(\theta_{\mu \nu}) lab system</th>
<th>(\theta_{\mu \nu}) center-of-mass system</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{p}{\text{inc}} \cdot \hat{p}{\Lambda})</td>
<td>26.7 ± 1.5</td>
<td>26.6 ± .4</td>
<td>97.8</td>
</tr>
<tr>
<td>(\hat{p}{\text{inc}} \cdot \hat{p}{K^0})</td>
<td>37.4 ± .5</td>
<td>37.3 ± .4</td>
<td>82.2</td>
</tr>
<tr>
<td>(\hat{p}{K^0} \cdot \hat{p}{\Sigma^+})</td>
<td>52.1 ± 8.0</td>
<td>50.3 ± 5.0</td>
<td>142</td>
</tr>
<tr>
<td>([\hat{p}K \cdot \hat{p}{K^+}]^a)</td>
<td>([52.1 ± 5.0]^a)</td>
<td>(83^a)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decay angles</th>
<th>(\hat{p}{\Sigma^+} \cdot \hat{p}{\pi^+})</th>
<th>(\theta_{\mu \nu}) lab system</th>
<th>(\theta_{\mu \nu}) center-of-mass system</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\hat{p}{K^+} \cdot \hat{p}{\pi^+})^b)</td>
<td>((59.5)^b)</td>
<td>((109)^b)</td>
<td></td>
</tr>
<tr>
<td>(\hat{p}{\Lambda} \cdot \hat{p}{\pi^-})</td>
<td>67.0 ± 5.0</td>
<td>67.0</td>
<td>150</td>
</tr>
<tr>
<td>(\hat{p}_{\Lambda} \cdot \hat{p}_p)</td>
<td>3.5 ± 2.5</td>
<td>3.5</td>
<td>30</td>
</tr>
</tbody>
</table>

\(^a \) The brackets indicate the alternative interpretation \(K^0 + p^0 \rightarrow K^+ + n \).

\(^b \) The parentheses indicate the alternative interpretation as the decay \(K^+ \rightarrow \mu^+ + \nu \).
azimuth and dip of Track 2, $138.5 \pm 3^\circ$ and $2.0 \pm 1.2^\circ$, respectively, clearly indicate by their agreement that a \bar{K}^0 or K^0 has interacted at Point A of Fig. 1.

(c) Track 6 is so short and steeply dipping that curvature measurements yield no information concerning its momentum. Consequently, only the direction of Track 6 can be used effectively in the analysis. Track 6 is consistent with that from either a Σ^+ produced at an angle of 137° in the center of mass of the $\bar{K}^0 + p$ system or a K^+ charge exchange at 85° in the center of mass of the $K^0 + p$ system. Table II gives the laboratory angles as well as the angles in the center-of-mass or rest systems both for the reaction products and the decay products. Both alternatives fit the measured laboratory production angle, $\cos^{-1}(\hat{p}_2 \cdot \hat{p}_6)$, equally well.

(d) From Tables I and II, one can see that the decay Track 7 can be fit as well by the $K^+ \to \mu^+ + \nu$ interpretation as by the $\Sigma^+ \to \pi^+ + n$ interpretation. The choice between these two alternatives is decided on the basis of the flight time of Track 6. If it is a Σ^+, it lived 0.54×10^{-10} sec (0.65 of a Σ^+ mean life), and if it is a K^+ it lived 0.3×10^{-10} sec (2.5 $\times 10^{-3}$ of a K^+ mean lifetime). One can then conclude that for this event the odds are about 200 to 1 in favor of the Σ^+ interpretation on the basis of lifetime alone.

Event B

The analysis of this event follows essentially the same lines as that of Event A with the following exceptions:

(a) The interaction at Point A in Fig. 2 is definitely established to be produced by a K and not a Λ by the fact that only the K could be produced at such a large angle.

(b) Event B also differs from Event A in that the Λ of Event B is the decay product of a directly produced Σ^0. This means that one cannot use the Λ hyperon's momentum and direction to predict the line of flight and momentum of the K^0. However, the K^0 momentum and direction plus the Λ hyperon's momentum and direction are consistent with the compound reaction $\pi^- + p \to K^0 + \Sigma^0$ and $\Sigma^0 \to \Lambda + \gamma$.

Here again as determined from dynamics alone, Track 6 could equally well be the K^+ from the charge-exchange reaction $K^0 + p \to K^+ + n$ as it
could be the Σ^+ from the reaction $\overline{K}^0 + p \rightarrow \Sigma^+ + \pi^0$. Again Track 7 is consistent with either $K^+ \rightarrow \mu^+ + \nu$ or $\Sigma^+ \rightarrow \pi^+ + n$. The short lifetime of Track 7, namely 0.25×10^{-10} sec, indicates that the latter reaction is the more probable. The probability that this is a K^+ decaying in 0.25×10^{-10} sec is 2.06×10^{-3} whereas the probability of a Σ^+ decaying in 0.25×10^{-10} sec is 0.28. On the basis of lifetime alone, this gives us odds of 136 to 1 that we again have observed the reaction $\overline{K}^0 + p \rightarrow \Sigma^+ + \pi^0$. The neutral K, incidentally, lived 8.2×10^{-10} sec, namely $2.96 \overline{K}^0$ mean lives.

ACKNOWLEDGMENTS

We wish to thank Prof. Luis W. Alvarez for his interest and guidance throughout this experiment. The assistance of the crew members of the bubble chamber and the Bevatron is gratefully acknowledged. We also wish to thank Mr. George Kalbfleisch for his assistance with the data analysis.
FIGURE LEGENDS

Fig. 1. (Event A). This is an associated production event \(\pi^- + p \rightarrow K^0 + \Lambda \)
in which the hyperon \(\Lambda \) (Track 2) decays into a \(\pi^- \) meson (Track 3) and
a proton (Track 4). By the time the neutral \(K \) meson (Track 5) reaches point A and produces the interaction \(\bar{K}^0 \rightarrow \Sigma^+ + \pi^0 \), its
"strangeness" has changed from +1 to -1. The \(\Sigma^+ \) (Track 6) then
decays into a \(\pi^+ \) (Track 7) and a neutron.

Fig. 2. (Event B). This is an associated production event \(\pi^- + p \rightarrow K^0 + \Sigma^0 \)
in which the \(\Sigma^0 \) decays immediately into a \(\Lambda \) hyperon (Track 2) plus a
gamma ray. The \(\Lambda \) subsequently decays into a \(\pi^- \) meson (Track 3) and
a proton (Track 4). By the time the neutral \(K \) meson (Track 5) reaches
point A and produces the interaction \(\bar{K}^0 \rightarrow \Sigma^+ + \pi^0 \), its "strangeness"
has changed from +1 to -1. The \(\Sigma^+ \) (Track 6) then decays into a \(\pi^+ \)
meson (Track 7) and a neutron.
Fig. 2.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.