Feasibility study for robotic radical prostatectomy cautery-free neurovascular bundle preservation

Permalink
https://escholarship.org/uc/item/2vg2v4qd

Journal
Urology, 65(5)

ISSN
0090-4295

Authors
Eichel, L
Chou, D
Skarecky, D W
et al.

Publication Date
2005-05-01

Peer reviewed
Feasibility Study for Robotic Radical Prostatectomy Cautery Free Neurovascular Bundle Preservation

Louis Eichel, M.D., David Chou, M.D., Douglas W. Skarecky, B.S., and Thomas E. Ahlering, M.D.,
Department of Urology, University of California (Irvine) Medical Center, Orange, CA.

Key Words: prostatectomy, robotic, cautery, neurovascular bundle

Urology 65(5): 994-998, +video, May 2005

Introduction.
Efforts continue to develop techniques that maintain the neurovascular bundles and minimize trauma for robotic laparoscopic radical prostatectomy (RLP). We evaluate the feasibility of preserving the nerve bundles without cautery or surgical clips.

Technical Considerations.
The seminal vesicles are dissected using scissors and bipolar cautery. After the rectum has been mobilized, the vascular pedicles (VP) are delineated. Laparoscopic bulldog clamps (30mm) are placed at least one cm from the prostate. Using scissors the VP are divided right at the prostate. The NVB is gently dissected off of the prostatic capsule. After mobilizing the bundle, FloSeal™ is applied along its entire length. The FloSeal is then covered with a dry 1 X 4 cm sheet of Gelfoam. Once the prostate is removed, the bulldogs are sequentially withdrawn. The VPs are observed and if pulsatile bleeding is encountered a 3-0 figure of 8 suture is precisely placed for hemostasis. When hemostasis is complete the anastomosis is performed.

Results
In 17 men, temporary vascular occlusion was applied to 27 VP and FloSeal and Gelfoam was applied each time. In four cases (15%) hemostasis was inadequate due to continued arterial bleeding, and were easily controlled with a superficial figure of eight ligature of 3.0 absorbable suture; average EBL was 91cc (range 75-150cc).

Conclusions
Cautery free, clip free, nerve-sparing RLP is feasible using a combination of temporary occlusion of the thick posterior prostatic pedicles with bulldog clamps followed by application of FloSeal. Effect on potency needs further follow-up.

Introduction
The anatomic basis for erectile dysfunction and the technique for nerve sparing radical retropubic prostatectomy was first described by Walsh and Donker in 1982. In that paper the authors described the tortuous path of the parasympathetic nerves that run from the pelvic plexus past the tips of
the seminal vesicles along side the rectum and then along the postero-lateral aspect of the prostate between the true capsule and the lateral prostatic fascia finally piercing the urogenital diaphragm just posterior and lateral to the urethra. With the widespread popularization of this knowledge a major emphasis has been placed on cavernous nerve preservation in appropriately selected patients.

Numerous techniques for nerve preservation have been developed over the past 20 years. Originally, emphasis was placed on proper anatomic dissection starting at the apex of the gland and working retrograde. Avoidance of trauma to the neurovascular bundle (NVB) by using bipolar cautery or surgical clips and operative magnification became popular methods for open and laparoscopic prostatectomy alike. In fact, a recent canine study suggests that the use of monopolar, bipolar, and harmonic energy for nerve dissection during radical prostatectomy appears to cause significantly more injury to cavernosal function postoperatively. In our attempts to improve our technique for RLP we concentrated on a means to reduce or eliminate the potentially injurious effects of electrocautery on the NVBs. We considered techniques for partial nephrectomy where the vascular supply is temporarily occluded, the tumor excised and bleeding then controlled with hemostatic agents such as Floseal™ (Baxter, Irvine, CA) and Gelfoam or suture ligature avoiding electrocautery. Herein, we describe our technique and report the feasibility of cautery and clip free preservation of the NVBs.

Methods

Patient Population:

All procedures were performed robotically by a single surgeon (TA). Men were selected for excision of one or both neurovascular bundles if the patient had extensive involvement noted on biopsy cores (>50% by volume estimate and/or Gleason score >4+3), obvious palpable disease (with biopsy confirmation), inadequate sexual function (SHIM<10) or patient preference. Group 1 patients (case #'s 101-125) consisted of men who underwent NVB preservation (Bilateral=14 and Unilateral=10) utilizing our standard technique of scissors and judicious bipolar electrocautery. Group 2 (case #'s 126-150) consisted of men who underwent NVB preservation (Bilateral=10 and Unilateral=7) utilizing the new technique of temporary vascular occlusion and hemostatic agents without the use of electrocautery or clips. Standard clinical characteristics were recorded prospectively and entered into an electronic database. In particular we focused on estimated blood loss, change in hemoglobin and intraoperative and postoperative complications. A postoperative complication was defined as the need for emergent return to the OR, prolonged hospitalization greater than 48 hours or the need for re-intervention or hospitalization within 30 days of surgery. Operative complications attributable to the technique, such as bleeding, hematuria, pelvic hematoma or abscess, etc were also noted. All
statistical comparisons between the groups were two-sided using Fisher's exact test and the Student t-test for means (SAS 8.2 statistical package).

Operative Technique:

After dividing the posterior bladder neck, the ampula of each vas is isolated and dissected until the tip of the seminal vesicle is exposed. The seminal vesicles are dissected using scissors and judicious use of bipolar cautery. Denonvillers fascia is entered in the midline and the rectum is mobilized to the level of the apex of the prostate. This delineates the prostatic vascular pedicles. Laparoscopic bulldog clamps (30mm) are placed on the vascular pedicles at least one centimeter from the prostate (Figure 1). From this point, only scissors are used to divide the vascular pedicles very close to the prostate. The lateral prostatic fascia is incised along the prostate and the NVB is gently dissected off of the prostatic capsule. After completely mobilizing the neurovascular bundle down to the urethra, FloSeal™ (Baxter, Irvine, CA) is applied along the entire length of NVB. The FloSeal is then covered with a dry 1 X 5 cm sheet of Gelfoam™ (Pfizer, NY, NY). This acts as a protective cover to keep the FloSeal particles in place. The vascular pedicles are observed for pulsatile bleeding and if this is encountered the Gelfoam cover is elevated to expose the arterial stump and a 3.0 figure of 8 ligature of absorbable suture is precisely placed for control. The Gelfoam is replaced and the anastomosis performed.

Results

Group 1 patients (undergoing our standard technique with bi-polar electrocautery) had nearly identical clinical characteristics as Group 2 patients (Table 1). Additionally, blood loss and complications were very similar. Neither group required a transfusion or suffered from postoperative delayed bleeding.

Eight of the Group 2 patients did not have temporary vascular occlusion due to the need to perform a wide excision of both NVBs or preoperative impotence. Table 2 lists pertinent findings between these subgroups. The temporary vascular occlusion group patients were significantly younger and had significantly better baseline sexual function. In this group, 10 patients had bilateral temporary occlusion and bilateral nerve preservation and 7 had unilateral temporary occlusion and unilateral nerve preservation.
As noted there was no difference in blood loss or complications.

In Group 2, temporary vascular occlusion was applied to 27 vascular pedicles and FloSeal and Gelfoam was applied each time. In four cases (15%) hemostasis was inadequate due to continued arterial bleeding. All four bleeding vessels were easily controlled with a superficial figure of eight ligation of 3.0 absorbable sutures; of these patients three had EBLs of 75 cc and the remaining EBL was 150 cc.

Discussion

The object of nerve sparing radical prostatectomy is to remove the prostate and seminal vesicles without injuring the delicate neurovascular bundles. The mainstay to nerve preservation is avoidance of nerve transection followed by reduction of traumatic injury. Monopolar electrocautery is known to cause significant thermal and electrical injury to adjacent tissue. Techniques such as bi-polar electrocautery, Harmonic Scalpel™ and Ligasure™ have been introduced in an attempt to reduce thermal injury. These forms of energy reduce thermal injury by simplifying the transmission of energy between two relatively close applicators. Ideally it would be best to avoid thermal energy and just simply cut the vessels. However, with laparoscopic surgery vision is critical and even relatively small amounts of bleeding are not tolerable. Borrowing on the concept of temporary vascular occlusion advocated in partial nephrectomy we elected to test the feasibility of temporary vascular occlusion of the prostatic vascular blood supply. The video clip demonstrates that bleeding is controlled nicely facilitating accurate transsection of the vascular pedicle and dissection of the NVB.

Drawing further on the experience extant with partial nephrectomy we also tested the efficiency of hemostatic agents to control bleeding along the vascular pedicle and NVB. Experience with gelatin matrix hemostatic sealants in the urologic literature is growing. Richter and associates showed improvement of hemostasis in open and laparoscopic partial nephrectomy using a gelatin matrix-thrombin tissue sealant13. In their series, 25 patients underwent partial nephrectomy followed by FloSeal application to the tumor bed before re-perfusion of the kidney. No additional attempts at hemostasis were made. They and others have concluded that gelatin matrix provided durable hemostasis following partial nephrectomy. Lee and associates have also described a technique highly dependent on the hemostatic benefits of FloSeal for tubeless percutaneous nephrolithotomy.15 The benefits of FloSeal and Gelfoam has also been demonstrated in cardiac and vascular surgery.16,17

On four occasions (15%) we noted that after removal of the bulldog clamps there was pulsatile bleeding. Peeling the Gelfoam back and suture ligating the specific bleeding artery or arteries easily controlled the bleeding. Once ligated, the FloSeal provided satisfactory hemostasis for the remainder of the NVB.
One potential criticism might be the crushing effect of the bulldog clamp on the NVB. However these clamps are designed for atraumatic control of arteries and veins. Further, the thick posterior pedicles are larger and more bulky which should serve to protect the nerve bundles. In fact, during dissection, the pedicles continue to ooze which would imply that vascular compression is not complete. Hence, the amount of pressure applied is not excessive. Another potential criticism is that the hemostatic agents might be toxic to the nerves. However, to date there is no clinical or experimental information indicating that hemostatic agents are toxic.

This series only represents the description of our technique for cautery free, laparoscopic, nerve sparing radical prostatectomy. The technique appears to be safe as no postoperative bleeding events were encountered. There is no inclusion of follow up data on potency as it is too early in the postoperative period to assess this in this group of patients.

Conclusion

Cautery and clip free nerve sparing RLP is feasible using a combination of temporary occlusion of the prostatic vascular pedicles with bulldog clamps followed by application of hemostatic agents. Follow up studies to evaluate the efficacy of this technique with regard to postoperative potency are required.

References

Table 1.
Clinical characteristics and outcomes of our standard technique (Group 1) versus temporary vascular occlusion (Group 2).

<table>
<thead>
<tr>
<th>Clinical Factor</th>
<th>Group 1</th>
<th>Group 2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case #’s</td>
<td>101-125</td>
<td>126-150</td>
<td>NS</td>
</tr>
<tr>
<td>Age (years)</td>
<td>62.3 (46-75)</td>
<td>61.1 (44-78)</td>
<td>NS</td>
</tr>
<tr>
<td>BMI</td>
<td>26.8 (21.7-30.4)</td>
<td>26.7 (21.6-34)</td>
<td>NS</td>
</tr>
<tr>
<td>Preop PSA</td>
<td>6.0 (1.4-19.9)</td>
<td>6.1 (1.9-22.8)</td>
<td>NS</td>
</tr>
<tr>
<td>AUA symptom score</td>
<td>8.2 (0-24)</td>
<td>8.9 (1-21)</td>
<td>NS</td>
</tr>
<tr>
<td>SHIM</td>
<td>18.0 (1-25)</td>
<td>17.4 (1-25)</td>
<td>NS</td>
</tr>
<tr>
<td>Estimated blood loss (cc)</td>
<td>90 (25-250)</td>
<td>90 (25-200)</td>
<td>NS</td>
</tr>
<tr>
<td>Postop Hgb change (g/ dl)</td>
<td>-1.2 (-3.5-1.3)</td>
<td>-1.1 (-4.2-0.8)</td>
<td>NS</td>
</tr>
<tr>
<td>Hospital stay (hrs)</td>
<td>27.8 (24-48)</td>
<td>28.3 (24-96)</td>
<td>NS</td>
</tr>
<tr>
<td>Complications (%)</td>
<td>1/25 (4%)</td>
<td>2/25 (8%)</td>
<td>NS</td>
</tr>
<tr>
<td>Positive Surgical Margins (%)</td>
<td>5 (20%)</td>
<td>3 (15%)</td>
<td>NS</td>
</tr>
</tbody>
</table>
Table 2.
Subset comparison of clinical characteristics and outcomes of patients in Group 2 that had temporary vascular occlusion (Bulldog) versus none.

<table>
<thead>
<tr>
<th>Clinical Factor (means)</th>
<th>Bulldog</th>
<th>No Bulldog</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=17</td>
<td></td>
<td>N=8</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>58.1 (44-69)</td>
<td>67.5 (57-78)</td>
<td>.006</td>
</tr>
<tr>
<td>BMI</td>
<td>25.2 (21.6-32.3)</td>
<td>28.2 (25.2-34)</td>
<td>.02</td>
</tr>
<tr>
<td>PreOP PSA</td>
<td>5.2 (3-8.6)</td>
<td>8.1 (1.9-22.8)</td>
<td>.08</td>
</tr>
<tr>
<td>AUA symptom score</td>
<td>8.7 (1-21)</td>
<td>9.4 (1-17)</td>
<td>.79</td>
</tr>
<tr>
<td>SHIM</td>
<td>20.8 (11-25)</td>
<td>11.6 (1-25)</td>
<td>.005</td>
</tr>
<tr>
<td>Estimated blood loss (cc)</td>
<td>91 (25-250)</td>
<td>88 (25-200)</td>
<td>.81</td>
</tr>
<tr>
<td>Postop Hgb change (g/dl)</td>
<td>-1.6 (-0.8-4.2)</td>
<td>-1.9 (1.1-2.5)</td>
<td>.70</td>
</tr>
<tr>
<td>Positive Surgical Margins (%)</td>
<td>1</td>
<td>2</td>
<td>NS</td>
</tr>
</tbody>
</table>