Title
INTRAMOLECULAR CYCLOADDITIONS OF BIS-O-XYLYLENES. AN EXTREMELY SHORT ROUTE TO [2.2.2]CYCLOPHANES

Permalink
https://escholarship.org/uc/item/2vt4z319

Author
Aalbersberg, W.G.L.

Publication Date
1979-04-01
INTRAMOLECULAR CYCLOADDITIONS OF BIS-\(\text{O}\)-XYLYLENES.
AN EXTREMELY SHORT ROUTE TO \([2.2.2]\)CYCLOPHANES

W. G. L. Aalbersberg and K. P. C. Vollhardt

April 1979
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
INTRAMOLECULAR CYCLOADDITIONS OF BIS-O-XYLYLENES.
AN EXTREMELY SHORT ROUTE TO [2.2.2]CYCLOPHANES.

W. G. L. Aalbersberg and K. P. C. Vollhardt*
(Department of Chemistry, University of California,
and the Materials and Molecular Research Division,
Lawrence Berkeley Laboratory, Berkeley, California 94720)

Abstract: Benzocyclobutenes linked by two-carbon bridges undergo flash-
pyrolytic conversion to [2.2.2]cyclophanes.

Tightly packed layered compounds of the [2]n cyclophane type are of con-
siderable current interest as models for transannular interactions between
\(\pi \)-systems, because of their potential to transfer \(\pi \)-electron density between
the various layers ("cyclophane zwitterions"), their model role in the search
for organic superconductors, their unique \(\pi \)-ligand potential in sandwich
complexes, and their strain-related unusual chemical properties.\(^1\) We wish
to report an extremely short route to this class of compounds amenable to
extensive structural variation. Our approach combines recent advances in alkyne
cooligomerization chemistry\(^2\) with gas phase flash pyrolysis techniques.\(^3\) The
latter have also been used recently in a new synthesis of [2.2.2](1,2,4,5)-
cyclophane.\(^4\)

Thus, bisbenzocyclobutene \(\mathbf{1} \) is readily available (55\%) by cobalt catalyzed
cotrimerization of 1,5-hexadiyne.\(^5\) When \(\mathbf{1} \) is heated in benzene (sealed tube,
\(200^\circ \text{C} \)) a colorless, brittle polymer forms quantitatively. However, vacuum
sublimation (1g) through a quartz-chip filled quartz tube (33 cm, 1.8 cm OD,
\(10^{-2} \) Torr, \(750^\circ \text{C} \)) gave \([2.2.2](1,2,4) \)cyclophane \(\mathbf{2} \) in 75\% yield, in addition to
recovered starting material (5\%). The physical data on \(\mathbf{2} \) are identical with
those reported by Cram\(^6\) in the first synthesis of \(\mathbf{2} \) (7 steps, 15.5\% from
\([2.2] \)paracyclophane), and Hopf\(^7\) (5 steps, 0.08\% from propargylbromide). Another
preparation employs a low-yield sulfone pyrolysis in the final step (6 steps,
1.5\% from 1,2,4-tricarbomethoxybenzene).\(^8\) The hitherto unreported \(^{13}\)C-NMR

Spectrum of \(\mathcal{Z} \) shows the expected twelve lines: \(\delta \) (ppm from TMS, CDCl\(_3\)) 32.9, 33.2, 36.4 (methylene), 129.2, 133.0, 139.3 (proton bearing aromatics), 139.8, 140.0, 141.2 (quaternary). It is interesting to note that pyrolysis of \(\mathcal{Y} \) selectively gives the achiral \(\mathcal{Z} \), none of the chiral \(\mathcal{Z}^8 \) being observed. This could be due to a relatively unfavorable transition state B presenting a kinetic barrier to \(\mathcal{Z} \), or (more likely) due to the (presumed) greater thermodynamic stability of the relatively unstrained \(\mathcal{Z} \).

The ready availability of \(\mathcal{Z} \) has allowed some preliminary chemical investigation. For example, facile uptake of 4 mole \(\text{H}_2 \) occurs under mild conditions (PtO\(_2\), CH\(_3\)COOH, 22°C) to give 4 \([m/e 242 (M^+, 95%), 214 (53%), 91 (100%)\]; \(^1\text{H-NMR} \delta (\text{CDCl}_3, 60 \text{ MHz}) 1.0 - 2.24 \text{ (m)} \) and small amounts of 5 \([m/e 244 (M^+, 100%), 216 (88%)\]; \(^1\text{H-NMR} \delta (\text{CDCl}_3, 60 \text{ MHz}) 1.0 - 2.22 \text{ (m)} \) separated by preparative g.c. (1/4" x 5' SE-30, 5% on Chrom W, 200°C). At higher hydrogen pressure increasing amounts of 5 are generated at the expense of 4 (5 atm \(\text{H}_2 \), 5 days, 4:5 = 1:1), but complete hydrogenation has not been

\(\mathcal{Z} \) achiral, \(C_s \)

B

3 chiral, \(C_2 \)
possible. Reaction with m-chloroperbenzoic acid rapidly gave a mixture of oxidized products, currently under investigation. The Ames test as applied to 2 revealed the absence of mutagenic activity.

The versatility of the approach may be demonstrated by the synthesis of the new dehydrocyclophane ("cyclophene") 6 from trans-1,2-bis(4-benzocyclobutenyl) ethylene, in turn obtained from 1 by treatment with N-bromosuccinimide. Flash pyrolysis of this compound (770°C, 5 x 10^{-3} Torr) gives 6 [20%; m.p. 120 - 121°C; m/e 232.1245 (M^+, 87%, calcd. for C_{18}H_{16}: 232.1249), 217 (61%), 202 (100%); 1H-NMR, δ (CDCl\textsubscript{3}, 60 MHz) 2.42 - 3.13 (8H, m), 6.04 - 6.18 (6H, m), 7.16 (2H, s); 13C-NMR δ (ppm from TMS, CDCl\textsubscript{3}) 31.3, 32.2 (methylenics), 127.6 (olefinics), 131.8, 137.8, 139.5 (proton bearing aromatics); λ\textsubscript{max} (95% EtOH) large endabsorption, 240 sh (lgε = 3.16), tailing to 350 nm] in addition to recovered starting material (60%), separated by preparative g.c. It should be noted, that introduction of the additional olefinic unsaturation in going from 2 to 6 does not appear to have a pronounced effect on the physical characteristics of the cyclophane framework.

The generality of this synthetic sequence and its application to the preparation of novel cyclophanes is the subject of current efforts.

Acknowledgments We are grateful for financial support from NSF, NIH (CA-20713), Chevron Research Company, and the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract No. W-7405 Eng-48. We thank Professor D. J. Cram for valuable experimental and spectral data and Ms. L. M. Donahue for the mutagenicity studies.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.