Title
PHOTOSENSITIZED ELECTRON TRANSFER PROCESSES IN SiO2 COLLOIDS AND NaLS MICELLAR SYSTEMS: CORRELATION OF QUANTUM YIELDS WITH INTERFACIAL SURFACE POTENTIALS

Permalink
https://escholarship.org/uc/item/2vw365gn

Author
Laane, C.

Publication Date
1981-03-01
PHOTOSENSITIZED ELECTRON TRANSFER PROCESSES IN SiO₂ COLLOIDS AND NaLS MICELLAR SYSTEMS: CORRELATION OF QUANTUM YIELDS WITH INTERFACIAL SURFACE POTENTIALS

Colja Laane, Itamar Willner, John W. Otvos, and Melvin Calvin

March 1981
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
PHOTOSENSITIZED ELECTRON TRANSFER PROCESSES IN SiO₂ COLLOIDS AND NaLS MICELLAR SYSTEMS: CORRELATION OF QUANTUM YIELDS WITH INTERFACIAL SURFACE POTENTIALS

Colja Laane, Itamar Willner, John W. Otvos and Melvin Calvin

Laboratory of Chemical Biodynamics, Lawrence Berkeley Laboratory and Department of Chemistry, University of California, Berkeley, CA 94720

Abstract

The photosensitized reduction of propylviologen sulfonate, PVS⁰, has been investigated in a SiO₂ colloidal system and compared to the homogeneous aqueous phase and NaLS micellar system. In these systems, Ru(bipy)²⁺ is used as sensitizer and triethanolamine, TEA, is the ultimate electron donor. The quantum yield for PVS⁻ formation in the SiO₂ colloid (Φ ≈ 3.3 x 10⁻²) is 6.6-fold higher than the value obtained in the homogeneous system (Φ ≈ 5 x 10⁻³). Similarly, the quantum yield for PVS⁻ production in SiO₂ systems is ca. 4-fold more efficient than the value obtained in the NaLS micellar solution (Φ ≈ 8.6 x 10⁻³). The high quantum yields obtained in the SiO₂ colloidal system are attributed to stabilization against back reaction of the intermediate photoproducts, i.e., Ru(bipy)³⁺ and PVS⁻, by means of electrostatic repulsion of the reduced electron acceptor from the negatively charged particle.

* To whom all correspondence should be addressed.

This manuscript was printed from originals provided by the author.
The binding properties of the SiO₂ particles have been investigated by the flow dialysis technique. The photosensitizer, Ru(bipy)²⁺, is firmly associated with the colloidal particles (K_{ass.} = 1.1 \times 10^2 M^{-1}), and the number of ionized sites on the particle is 65. From the Gouy-Chapman theory, the surface potential of the particles has been estimated at different ionic strengths and correlated with the quantum yields of the photosensitized electron transfer process. The correlation curve reveals that an interfacial surface potential up to ca. -40 mV does not affect the quantum yield. However, increasing the surface potential over this value rapidly increases the quantum yields. The micellar NaLS system has been similarly characterized by flow dialysis.

While the sensitizer Ru(bipy)²⁺ associates strongly with the NaLS micelle (K_{ass.} = 3.5 \times 10^3 M^{-1}), the micellar interface is characterized by a significantly lower surface potential (ca. -85 mV vs. -170 mV). The quantum yield obtained in the micellar system at different ionic strengths fits nicely on the correlation curve for the colloidal SiO₂ system.
INTRODUCTION

The development of devices that convert solar energy into chemical energy is currently of great interest\(^1\). One approach involves mimicking natural photosynthesis to the extent that water is decomposed to hydrogen and oxygen\(^2,3\). The idea is to photosensitize an electron transfer process whereby a reduced electron acceptor and an oxidized electron donor are formed (eq. 1). Coupling of these intermediate photoproducts to the decomposition of water should form a cyclic device that converts water into a potential fuel (hydrogen). In the past few years significant progress in the development of such devices has been made. Particular attention has been devoted to the photosensitized reduction of 4,4'-bipyridinium salts (viologens) by synthetic sensitizers such as Ru(bipy)\(_3^{2+}\) and Zn-porphyrins\(^4-6\). With these systems the reduction of water to hydrogen as well as the photo-oxidation of water to oxygen with the aid of heterogeneous catalysts, e.g., Pt, PtO\(_2\) and RuO\(_2\), has been achieved\(^7-10\).

\[
D + A \xrightarrow{hv} D^+ + A^- \quad \text{(eq. 1)}
\]

However, one fundamental limitation of such systems is the energetically favored back reaction of the initially formed photoproducts. Thus, to facilitate the subsequent utilization of the photoproducts the back electron transfer should be retarded. Several approaches such as functionalized micelles\(^11-14\), liposomes\(^15-17\), microemulsions\(^18,19\) and polyelectrolytes\(^20,21\) have been used as a means for stabilizing charge separation. In these systems the electrostatic interactions of the photoproducts with charged interfaces play a key role.
Recently we have investigated the use of a colloidal SiO₂ solid interface for such a purpose. Here, we wish to compare the effects of the solid negatively charged SiO₂ interface to those of the negatively charged NaLS micellar interface on the electron transfer process. Furthermore, the physical characterization of the colloidal system allows one to correlate the photosensitized electron transfer characteristics with interfacial properties.

EXPERIMENTAL SECTION

Materials. N,N'-dipropyl-4,4'-bipyridinium sulfonate (PVS⁰) was prepared as described recently. The system was prepared by diluting a commercial 14.5% SiO₂ suspension (Nalco) to 0.2% and adjusting the pH to 9.8 with 0.1 M HCl. The electron acceptor, PVS⁰ (1 x 10⁻³ M), Ru(bipy)²⁺ (6 x 10⁻⁵ M) and triethanolamine (1 x 10⁻³ M) are added to the colloidal SiO₂ suspension. In the micellar systems, SiO₂ was substituted by sodium lauryl sulfate, NaLS (1.5 x 10⁻² M). The micellar solutions and the homogeneous aqueous systems were adjusted to pH 9.8. The investigated solution (3 ml) was transferred to a 1 x 1 cm glass cuvette equipped with a teflon stirring bar, a valve and serum stopper. The system was deaerated by repeated evacuation of argon flushing.

Illumination. The cuvette was immersed in a water bath (23 ± 2°C) made of a plexiglass box with a 2 x 1 cm window, and the solution in the cuvette was stirred magnetically during illumination. The light source was a 1000-W xenon arc lamp (Oriel Universal Arc Lamp Source, Model C-60-50) whose beam was filtered to give blue light (440-550 nm) through a cupric sulfate solution and two glass filters (Corning 3-72
and 5-57). The incident photon flux was $2.7 \pm 0.4 \times 10^{-7}$ einstein·sec$^{-1}$·cm$^{-2}$ as determined by Reinecke salt actinometry24. The production of propylviologen sulfonate radical anion, PVS^-, was monitored by following its absorbance at 602 nm or 735 nm. Extinction coefficients of the radical absorption were determined chemically using dithionite reduction25. The extinction coefficients are $\varepsilon(602 \text{ nm}) = 12.800$ M$^{-1}$·cm$^{-1}$ and $\varepsilon(735) = 3200$ M$^{-1}$·cm$^{-1}$. The quantum yield (ϕ) was calculated by dividing the maximal rate of PVS^- formation by the rate of quanta absorbed.

Binding Studies. Binding studies were performed with the flow dialysis technique. The apparatus and analytical method have been described previously26. The upper and lower chambers were separated by standard cellulose dialysis tubing (VWR Scientific, M.W. cut-off 6,000-8,000). Both chambers are well stirred by means of small magnetic stirring bars. The upper chamber (0.5 ml) contained the same solution (water, pH 10.2) as was pumped through the lower chamber at a rate of 1 ml/min (LKB pump, Model 2000). At time zero either Ru(bipy)_3^{2+}, methyl red or PVS^0 (see text) were added to the upper chamber up to a final concentration of 8×10^{-3} M. Fractions of 1.0 ml from the lower chamber were collected at 1 minute intervals and assayed spectrophotometrically. In the case of Ru(bipy)_3^{2+} and methyl red the absorbance $\lambda = 460$ nm was monitored and for PVS^0 the absorbance at $\lambda = 265$ nm.

After a steady state had been reached between the two chambers of the system, SiO_2 particles were added to the upper compartment and further fractions collected from the lower chamber were analyzed. Dodecyltrimethylammonium chloride (2×10^{-2} M) was added to the upper chamber at the time indicated (see text). Further dialyzed fractions were collected at 1 minute time intervals. Binding studies to micelles were similarly investigated by the
flow dialysis technique. In these experiments micelles were added at \(t = 0 \) together with \(\text{Ru(bipy)}^2_3 \) and the system dialyzed until a steady state had been reached between the two chambers. The micellar equilibrated system is compared to the homogeneous dialyzing curve in order to deduce the binding properties. The fraction of \(\text{Ru(bipy)}^2_3 \) bound to the negatively charged interfaces was calculated according to Ramos et al.\(^{27} \). (Further details will be given in the text.)

RESULTS AND DISCUSSION

Photosensitized Reduction of \(\text{PVS}^0 \) in \(\text{SiO}_2 \) Colloidal Systems.

The \(\text{SiO}_2 \) colloids employed in our study are composed of particles with a mean diameter of \(40 \, \text{Å} \). At \(\text{pH} > 6 \) the silanol groups on the particle surface are ionized, and an electrical double layer is produced\(^{28,29} \). Consequently, the particles repel each other and their agglomeration is prevented. The solid particle is characterized by a high (negative) surface potential which results in the attraction of positively charged species\(^{30} \). In particular, it seemed feasible to us that the \(\text{SiO}_2 \) solid interface should be capable of producing electrostatic attractions and repulsions with charged species formed in photosensitized electron transfer processes\(^{22} \). Thus, the separation of the oppositely charged photoproducts, and retardation of back electron transfer reactions, by means of these coulombic interactions seemed achievable.

Illumination of the colloidal \(\text{SiO}_2 \) suspension that includes \(\text{Ru(bipy)}^2_3 \) as sensitizer, propylviologen sulfonate, \(\text{PVS}^0 \), \(\text{I}^- \), as electron acceptor and triethanolamine, \(\text{TEA} \), as electron donor results in the production of propylviologen sulfonate radical (\(\text{PVS}^- \)). Its rate of formation is depicted in Fig. 1a. The quantum yield for \(\text{PVS}^- \) formation
appears to be $\varphi = 3.3 \times 10^{-2}$. Exclusion of the SiO_2 particles and performing the similar experiment in a homogeneous aqueous phase results in a significantly lower quantum yield for PVS^- formation (Fig. 1b), $\varphi = 5 \times 10^{-3}$. The enhancement of the quantum yield of PVS^- production is rationalized by electrostatic interactions introduced by the negatively charged SiO_2 solid interface which retard back electron transfer of the photoproducts (Fig. 2). The positively charged sensitizer (Ru(bipy)^{2+}_3) is bound to the negatively charged interface (vide infra). Excitation of the sensitizer followed by its quenching by the electron acceptor (PVS^0) via an electron transfer mechanism results in the formation of the oxidized sensitizer and the reduced electron acceptor, PVS^-. The negatively charged interface assists the separation of the ion pair and ejects the PVS^- into the continuous aqueous phase, while the oxidized sensitizer remains attached to the negatively charged particle. Due to electrostatic repulsions between the negatively charged interface and the reduced electron acceptor, the recombination of the photoproducts is hindered and, therefore, the back electron transfer is retarded (eq. 2). The subsequent oxidation of triethanolamine by the intermediate oxidized sensitizer completes the cycle. The amount of PVS^- formed after 3×10^{-5} einsteins are absorbed (2.2×10^{-4} M) relative to the initial sensitizer concentration indicates that the sensitizer is recycled during the electron transfer process. Introduction of air into the system re-oxidizes PVS^- and the amount of sensitizer determined by its absorbance at $\lambda = 460$ nm appears to be unchanged relative to its initial concentration.
The function of the SiO₂ interface in retarding the back electron transfer reaction of the intermediate photoproducts has been confirmed by a flash photolytic study of the system (Fig. 3)³¹. In the homogeneous system the photoproducts decay rapidly (eq. 2) with a bimolecular rate constant close to that of a diffusion controlled process \(k_b = 3.6 \times 10^9 \text{M}^{-1}\cdot\text{sec}^{-1} \). In the SiO₂ colloidal system a substantial decrease (24-fold) in the recombination rate is observed \(k_b = 1.5 \times 10^8 \text{M}^{-1}\cdot\text{sec}^{-1} \). Thus, the enhanced quantum yield of the photosensitized process is confirmed to be the inhibition of back reactions.

\[
\text{Ru(bipy)}^3+ + \text{PVS}^- \rightarrow \text{Ru(bipy)}^2+ + \text{PVS}^0 \quad \text{(eq. 2)}
\]

The surface potential of the SiO₂ particles depends on the ionic strength of the system³². By increasing the ionic strength the surface potential is diminished with a consequent reduction in the quantum yield. Indeed, it can be seen (Fig. 4) that the quantum yield of the electron transfer process strongly depends on the ionic strength of the system. At an ionic strength of 0.5 M NaCl the quantum yield declines to a value of \(\Phi = 9.0 \times 10^{-3} \), a 6-fold decrease relative to the value without added salt. Furthermore, it can be noted that this value approaches the quantum yield obtained in the homogeneous system.

The effect of salt on the surface potential of such charged particles is predicted by the Gouy-Chapman relation (with Stern modification³²,³³)

\[
\sigma_s = \left(\frac{2}{\pi} \right)^{1/2} \frac{DRT}{F\Phi_\delta} \sinh \left(\frac{F\Phi_\delta}{2RT} \right) \quad \text{(eq. 3)}
\]

where \(\sigma_s \) is the surface charge density of the particle; \(\Phi_\delta \), the surface potential; \(D \), the dielectric constant; \(R \), the universal gas constant; \(F \), the Faraday constant; \(T \), the absolute temperature and \(C \), the concentration of electrolyte.
sites on a 40 Å SiO₂ particle has been determined to be ~ 60. (This value is confirmed independently in our work (vide infra.) Thus, the charge density is ~ 0.18 C/m², which corresponds to a surface potential at a salt concentration of 0.01 M of ~ -170 mV. Addition of extra salt and increasing the ionic strength results in the reduction of the surface potential. At 0.1 M NaCl the surface potential drops to -108 mV and at 0.5 M NaCl the surface potential is decreased to -72 mV. The experimental quantum yield of the photosensitized electron transfer process as a function of the surface potential of the charged particles is shown in Fig. 5. It can be seen that the quantum yield is almost unaffected up to a surface potential of ca. -40 mV. Increase of the surface potential above this apparent threshold value results in a rapid increase in the quantum yield. This dependence of the electron transfer quantum yield on the particle surface potential is expected in view of our previous discussion. By decreasing the surface potential at the interface, the coulombic interactions leading to the separation of the photoproducts are decreased. Consequently, the back electron transfer reactions (eq. 2) are enhanced, and the effectiveness of the interface is reduced. The flash photolysis in the presence of added salt confirms this explanation. The decay rate of the intermediate photoproduct in the SiO₂ colloids in the presence of added salt (0.1 M NaCl) is enhanced significantly (kₒ = 4 x 10⁸ M⁻¹·sec⁻¹) relative to the system with no added salts.
Photosensitized Reduction of PVS0 in NaLS Micelles.

Micelles have been widely explored in the past as potential interfaces for retarding back electron transfer by coulombic interactions$^{11-16}$. Micellar aggregates are close in their size (ca. 40 Å diameter)11b,34 to the solid SiO$_2$ particles. Thus, it was interesting to compare and relate the effectiveness of the SiO$_2$ particles to that of a negatively charged micellar surface. The previously described system including Ru(bipy)$_3^{2+}$ as sensitizer, PVS0 as electron acceptor and TEA as electron donor in a medium of negatively charged sodium lauryl sulfate, NaLS, micelles has been explored (CMC for NaLS micelles 8.1 x 10$^{-3}$ M)13a,34. The rate of reduction of PVS$^-$ upon illumination is shown in Fig. 1c. The quantum yield for the electron transfer process is only twice the value obtained in the homogeneous system, and ca. 4-fold lower than the corresponding quantum yield in the colloidal SiO$_2$ system. The physical characterization of micelles, and, in particular, NaLS micelles is well documented in the literature34. It appears that although there is no difference in size between the micelles and the SiO$_2$ particles, they differ significantly in the number of ionized groups and consequently in their charge density. The aggregation number of NaLS micelles is 62, and about 1/6 (or ~17%) of these headgroups are in an ionized form.

Thus, the number of ionized sites on an NaLS micelle is ca. 10 and corresponds to a charge density of approximately \(\sigma_s = 0.04 \ \text{C/m}^2 \). Using (eq.3) the NaLS micelle is characterized by a surface potential of ~90 mV.

The quantum yield obtained in the micellar NaLS system fits nicely on the curve of quantum yields vs. surface potential as derived for the SiO$_2$ system (Fig. 5). As in the colloidal SiO$_2$ system, the surface potential of micelles is reduced by increasing the ionic strength. Addition of salt
to the micellar NaLS system ([NaCl] = 0.1 M) reduced the quantum yield of the photosensitized electron transfer to a value of $\Phi = 5 \times 10^{-3}$ (Fig. 1d). At this ionic strength the calculated micellar surface potential is -44 mV. Despite this fact, the quantum yield of the electron transfer process is identical to that obtained in the homogeneous system and is in agreement with the curve formulated for the SiO$_2$ system (Fig. 5).

These results clearly demonstrate a relation between the interfacial surface potential leading to the separation of the photoproducts and the quantum yield of the photosensitized electron transfer process. Although at present we are not able to explain the shape of this curve, several points should be emphasized. The design of interfaces with even higher charge densities is expected to improve the quantum yields. Furthermore, common micellar aggregates are usually characterized by a low surface potential and thus are limited in their capability to improve quantum yields. However, modifications of the micellar structure (for example, by introducing heavy metals as counter ions) might improve the charge density and consequently increase their function in enhancing the quantum yields12a,34.

Binding of Ru(bipy)$_3^{2+}$ to the SiO$_2$ and NaLS Charged Interfaces.

Positively charged species are known to bind to SiO$_2$ and negatively charged micelles30,35. Several methods for characterization of the binding of positively charged molecules to SiO$_2$ particles have been used, including spectroscopic titrations and radioactive labeling30. Similarly, the association of positively charged species to negatively charged micelles has been well characterized using X-ray diffraction, spin labeling techniques, absorption and NMR spectroscopy36. We have found
that flow dialysis26,27 is a particularly simple and useful technique for characterization of the binding properties of sensitizers to silica colloids and micelles. This technique has been widely used in studying binding of low molecular weight ligands to enzymes26,37 and uptake of permeable substrates by bacterial membranes27,38. The flow dialysis apparatus is composed of two compartments, separated by a dialysis membrane.

Into the upper chamber, a solution of Ru(bipy)2+ is introduced. Ru(bipy)2+ dialyzes through the membrane into the lower chamber and by means of a flow of solution through the lower chamber fractions are collected at time intervals. A typical curve of the Ru(bipy)2+ concentration in the lower chamber measured spectroscopically (\(\lambda_{\text{max}} = 460\) nm) at the different time intervals is shown in Fig. 6a. It can be seen that shortly after the addition of Ru(bipy)2+ to the upper chamber, Ru(bipy)2+ appears in the dialysate (lower chamber), increases linearly for about 3 minutes, and reaches a maximum which then decreases at a slow rate. In the latter part of the curve, the amount of Ru(bipy)2+ appearing in the dialysate is directly proportional to the concentration of free sensitizer in the upper chamber. Upon addition of the SiO\textsubscript{2} particles to the upper chamber, a sharp decrease of the Ru(bipy)2+ in the lower chamber is observed, and a new steady state between the two chambers is established. This indicates that Ru(bipy)2+ binds to the particles (Fig. 6a). Surfactants are known to bind strongly to SiO\textsubscript{2} particles30. Addition of an excess of dodecyltrimethylammonium chloride, DTMA, to the upper chamber indeed releases the Ru(bipy)2+ from the particles, and consequently its concentration in the lower chamber increases and reaches the level observed in the experiment performed without added particles (Fig. 6a1). From this type of
curve the number of Ru(bipy)$_3^{2+}$ molecules bound to one particle can be de-

rived27. A value of ~ 65 sites per particle available for Ru(bipy)$_3^{2+}$

binding was found. Furthermore, the fraction of Ru(bipy)$_3^{2+}$ bound to

the particle (α) can easily be determined for any given particle concen-

tration and a value for the Michaelis binding constant (K) can be estimat-

ed from a Langmuir type plot (eq.4). P in this equation is the number of

free sites available for binding.

$$\alpha^{-1} = 1 + \frac{1}{K_{ass}[P]} \quad \text{(eq.4)}$$

A value of $K_{ass} = 1.1 \times 10^{2} \text{M}^{-1}$ is estimated which indicates that Ru(bipy)$_3^{2+}$

binds strongly to the particle. An alternative explanation for the observed
decrease of Ru(bipy)$_3^{2+}$ in the dialysate upon addition of SiO$_2$ particles

could be that the permeability of the dialysis membrane for the Ru(bipy)$_3^{2+}$
is hindered, due to binding of the SiO$_2$ particles to the dialysis membrane.

The fact that no decrease in the concentration of a negatively charged
dye (methyl red) in the lower chamber is observed excludes such a possi-
bility (Fig. 6b). In addition, Fig. 6b demonstrates that in contrast to

positively charged dyes, a negatively charged dye does not bind to the

particles. An essential feature of the scheme shown in Fig. 2 is that

the oxidized acceptor will not bind to the particle and that the reduced

form is repelled by the negatively charged sites on the particle. Fig. 6c

clearly shows that the oxidized acceptor (PVS0) does not bind to the

particle.
Similar experiments were conducted with negatively charged NaLS micelles. Ru(bipy)$_3^{2+}$ was found to bind strongly to the micelles ($K_{\text{ass}} = 3.5 \times 10^3 \text{M}^{-1}$). However, for micelles the number of sensitizer molecules bound per unit area was considerably less than for SiO$_2$ particles. A value of ~ 10 sites per micelle available for Ru(bipy)$_3^{2+}$ binding was found, while in the similar sized SiO$_2$ particles a value of ~ 65 was determined. The number of binding sites determined by the flow dialysis method are in good agreement with the ionic site values obtained for these interfaces by other methods (for SiO$_2$ ~ 60 ionic sites30 and for NaLS micelles $\sim 10^{13a,34}$).

Application to Photolysis of Water.

The overall photosensitized reaction achieved in the SiO$_2$ colloid and NaLS micellar system is the reduction of PVS0 by triethanolamine, TEA. The ultimate electron donor, TEA, is a sacrificial component in the system. It functions as a scavenger for the intermediate Ru(bipy)$_3^{3+}$ and results in an alternate route to the degradative back electron transfer reaction and recycles the photoactive component. To accomplish the photodecomposition of water, the TEA donor must be eliminated from the system, and water itself should be the final electron donor. The intermediate oxidized sensitizer Ru(bipy)$_3^{3+}$ is thermodynamically capable of oxidizing water ($E^0 (\text{Ru(bipy)}_3^{3+}/\text{Ru(bipy)}_3^{2+} = 1.26 \text{ volt}^4$). Indeed, oxygen evolution using this oxidizing species in the presence of solid catalysts such as RuO$_2$ has been accomplished9,10. It seems, therefore, feasible to support an oxygen evolution catalyst on the SiO$_2$ particles. Furthermore, viologen radicals are capable of reducing water to hydrogen in the presence of solid catalysts such as Pt or Rh38. Our experiments
were performed at pH 9.8. At this pH PVS$^-$ ($E_0 = -0.41$ V) cannot reduce water to hydrogen. However, structural modifications of the electron acceptor39 and/or lowering the pH of the medium might lead to hydrogen production. These aspects are currently being explored.

CONCLUSIONS

The SiO$_2$ colloid interface offers a powerful means for the stabilization of the photoproducts from photoinduced electron transfer reactions. Therefore much higher quantum yields can be obtained with the assistance of the colloid than in homogeneous systems.

Surface potentials correlate well with quantum yields for both silica and micellar interfaces, indicating that it is the high surface potential of the SiO$_2$ particles that is responsible for their unique activity. Even further stabilization of photoproducts might be achieved by designing multi-negatively charged compounds as reactants.

To reach the ultimate objective of the photodecomposition of water, the back-reaction of intermediate photoproducts must be prevented long enough for the process of hydrogen and oxygen evolution to take place. The use of high surface potentials to achieve this stabilization may be a productive course to follow.

Acknowledgement. This investigation was supported, in part, by the Director, Office of Basic Energy Research, Office of Basic Energy Sciences, Division of Chemical Sciences of the U.S. Department of Energy under Contract W-7405-ENG-48 and by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).
FIGURE LEGENDS

Fig. 1 Propylviologen radical, PVS\(^{-}\), formation as a function of light adsorbed. All experiments were performed at pH 9.8. \([\text{Ru(bipy)}^{2+}]_{3} = 6 \times 10^{-5} \text{M}, [\text{PVS}^{0}] = 1 \times 10^{-3}, \text{and } [\text{TEA}] = 1 \times 10^{-3} \text{M.}\)

(a) 0.2\% SiO\(_2\) colloidal system; (b) homogeneous system; (c) NaLS micellar system \([\text{NaLS}] = 1.5 \times 10^{-2}\); (d) NaLS micellar system with added salt, \([\text{NaCl}] = 0.1 \text{ M.}\)

Fig. 2 Schematic function of SiO\(_2\) particles in photosensitized electron transfer process.

Fig. 3 Transient absorbance changes of PVS\(^{-}\) followed at 602 nm. Experiments were performed at pH 9.8. \([\text{Ru(bipy)}^{2+}]_{3} = 6 \times 10^{-5} \text{M}, [\text{PVS}^{0}] = 1 \times 10^{-3} \text{M.}\)

(a) homogeneous system; (b) 0.2\% SiO\(_2\) colloidal system.

Fig. 4 Propylviologen radical, PVS\(^{-}\), formation as a function of ionic strength in the SiO\(_2\) colloid. Experiments at pH 9.8.

\([\text{Ru(bipy)}^{2+}]_{3} = 6 \times 10^{-5} \text{M}, [\text{PVS}^{0}] = 1 \times 10^{-3}\).

[TEA] = 1 \times 10^{-3} \text{M and 0.2\% SiO}_2. (a) No added NaCl;

(b) \([\text{NaCl}] = 0.01 \text{ M;}\) (c)\([\text{NaCl}] = 0.1 \text{ M;}\) (d)\([\text{NaCl}] = 0.5 \text{ M.}\)

Fig. 5 Quantum yield for propylviologen radical, PVS\(^{-}\), formation as a function of the surface potential of negatively charged interfaces. (\(\bigcirc\)), SiO\(_2\) colloid; (\(\blacklozenge\)), NaLS micellar system.

Fig. 6 Association of Ru(bipy)\(^{2+}\)_3, methyl red and PVS\(^{0}\) with SiO\(_2\) particles as determined by flow dialysis. Experiments were performed at pH 9.8 as described in the experimental section. The concentration of Ru(bipy)\(^{2+}\)_3, methyl red and PVS\(^{0}\) added to the upper chamber was 8 \times 10^{-3} \text{M. SiO}_2 was added at the time
indicated. In Fig. 6a, (1) 0%, (2) 0.03%, (3) 0.24%, (4) 0.75% of SiO$_2$. In Fig. 6b and 6c the concentration of SiO$_2$ was 0.75%.

$[\text{DTMA}]= 2 \times 10^{-2}$ M. (a) Ru(bipy)$_3^{2+}$; (b) methyl red; (c) PVS$^\circ$.
REFERENCES AND NOTES

 b) Kühn, H. J. Photochem. 1979, 10, 111.
3. a) Willner, I., Ford, W. E., Otvos, J. W. and Calvin, M., in "Bio-
 electrochemistry", Keyzer, H. and Gutmann, F., Eds., Plenum Press,
 1980, 533.
 1979, 62, 1345.
 1978, 2, 547.
 1978, 61, 2720.
 d) DeLaive, P. J., Sullivan, B. P., Meyer, T. T. and Whitten, D. G.,

11. For general reviews see:

31. The detailed flash photolytic study will be published elsewhere.

36. Ref. 34, Chapter 3, p. 42-85.

Laane, et al.

(1)
Laane, et al.

FIGURE 1
Laane, et al.

FIGURE 2

Laane, et al.
Laane, et al.

FIGURE 3
Laane, et al.

FIGURE 4
Laane, et al.

FIGURE 5
Laane, et al.

FIGURE 6
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.