Title
Crops, Nitrogen, Water: Are Legumes Friend, Foe, or Misunderstood Ally?

Permalink
https://escholarship.org/uc/item/2w07d5h2

Authors
Adams, MA
Buchmann, N
Sprent, J
et al.

Publication Date
2018-03-17

DOI
10.1016/j.tplants.2018.02.009

Peer reviewed
Biological nitrogen fixation (BNF) by crop legumes reduces demand for industrial nitrogen fixation (INF). Nonetheless, rates of BNF in agriculture remain low, with strong negative feedback to BNF from reactive soil nitrogen (N) and drought. We show that breeding for yield has resulted in strong relationships between photosynthesis and leaf N in non-leguminous crops, whereas grain legumes show strong relations between leaf N and water use efficiency (WUE). We contrast these understandings with other studies that draw attention to the water costs of grain legume crops, and their potential for polluting the biosphere with N. We propose that breeding grain legumes for reduced stomatal conductance can increase WUE without compromising production or BNF. Legume crops remain a better bet than relying on INF.

The Nitrogen and Water Problems of Global Agriculture

Crops fulfill the vast majority of global food requirements for both humans and livestock. However, projected increases in population will require the production of more nitrogen (N) fertilizer to support crops, which will consume an even greater proportion of currently available fresh water and energy [1], a difficult problem known as the energy–water–food nexus [2].

The production [industrial nitrogen fixation (INF) via the Bosch-Haber process] and use of fertilizer will generate even more greenhouse gas emissions [3,4]. According to current estimates only ~50% of applied fertilizer N is captured by crops [4], with much of the remaining 50% driving pollution of the biosphere, with sometimes disastrous results [5]. The economic cost of this pollution has been estimated to be in the hundreds of billions of US dollars annually in the USA [6] and Europe [7].

Warnings have also been raised [8] that the world is approaching the limit in terms of water availability for agriculture. This has been emphasized by reports of alarming and unsustainable drawdown of groundwater to support irrigated agriculture in developing countries, as well as in the USA and elsewhere [9]. Changes in seasonal patterns and amounts of rainfall in many cropping areas are reinforced by model predictions of future distributions of rainfall that are not well matched to the current spatial distribution of crops globally. These mismatches pose particular problems for developing countries [10–13]. Already, crop production comprises the great majority of freshwater use by humans worldwide. For example, the annual US soybean [Glycine max (L.) Merr.] crop alone consumes more water than evaporates from the entire Great Lakes (MI, USA), the largest group of freshwater lakes on earth [14].

In this context, discussions about the roles of leguminous crops in N and water budgets at a range of scales assume global significance. Legume crops, with their distinctive ability for biological nitrogen fixation (BNF), are grown worldwide in broad-acre, as well as small-holder agriculture. Grain legume seeds (e.g., pulses, beans) and other foods (e.g., those derived from

Highlights

- Rates of biological nitrogen fixation (BNF) via crop legumes remain low by comparison with amounts of nitrogen (N) added in fertilizer produced using industrial nitrogen fixation (INF). This remains a key sustainability issue on a global scale.

- Lumping BNF and INF together as sources of N pollutants ignores the strong end-product inhibition that regulates BNF, but not INF. Mitigating the pollutant costs of overuse of INF is presently impractical.

- The intrinsic water use efficiency (WUE) of crop legumes is generally greater than that of non-legume crops, but we make poor use of this knowledge in agriculture. Breeding programs for legumes, with well-defined goals and trait metrics, could greatly enhance the WUE of current global agriculture.

Mark A. Adams,1,2,* Nina Buchmann,3 Janet Sprent,4 Thomas N. Buckley,5 and Tarryn L. Turnbull2

1Swinburne University, PO Box 218, Hawthorn, VIC 3122, Australia
2Centre for Carbon Water and Food, The University of Sydney, 380 Werombi Road, Camden, NSW 2480, Australia
3ETH Zurich, Universitätstrasse 2, 8092 Zürich, Switzerland
4Division of Plant Sciences, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, UK
5Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

*Correspondence: maadams@swin.edu.au (M.A. Adams).
soybeans) have been staples for hundreds of years and longer, in regions ranging from the middle-east and northern Africa, through significant parts of Asia, to South America [15]. So important are grain legumes to global food supplies that the 68th United Nations General Assembly declared 2016 the International Year of Pulses.

For readers interested in other aspects of legumes and BNF, there are many recent reviews. Newcomers to the field, are referred to [16] for an overview of legume crops and their environmental and production significance. Other reviews focus on the bacterial and actino-rhizal aspects of BNF under global change [17], BNF in non-legumes [18], and optimizing BNF via coordinated development and metabolism of legume host and rhizobial symbiont [19]. A comprehensive overview of the evolution of BNF and efforts to ‘engineer’ symbiotic relationships between organisms capable of BNF and host plants is given in [20–23]. The authors of [24] explored links between plant N and phosphorous (P) status and the persistence of BNF by legumes. Broader perspectives are offered by reviews of limited-transpiration trait(s) and their potential use in agriculture (including non-legumes and legumes) [25], and of the biogeography of agricultural and nonagricultural legume species and that of their N-fixing symbionts [26]. Finally, a major compilation of a global data for grain legume production includes a range of attributes that can be used to help identify many of the key features of legume crops [27].

Given this breadth of other studies, we focus here on just two key issues for legumes: (i) BNF and nitrogen use efficiency (NUE) in annual and perennial cropping systems, and (ii) water use efficiency (WUE) of grain legumes and non-legume annual crops.

Biological Nitrogen Fixation and Nitrogen Use Efficiency of Crops: A Discussion

NUE of cropping systems is generally a large subject, and well beyond the scope of this review. Nonetheless, it is worth noting that ‘mass balance’ approaches to quantifying N inputs, pools, and losses at the ecosystem scale have made valuable contributions to our understanding of why some practices produce negative environmental outcomes via ‘surplus’ N (e.g., [28,29]). A recent synthesis [30] highlighted that such surpluses are especially evident within the early phases of economic growth, and tend to decline as growth proceeds.

Profundely negative environmental effects of increased concentrations of reactive N in the biosphere have led some researchers to call into question the often assumed benefits of replacing INF with legumes and BNF. Rosenstock et al. [31] posed the ‘friend or foe’ question of tree legumes within agroforestry systems, but concluded that concerns about exacerbation of fertilizer additions of reactive N to the environment lacked support. For cropping systems, however, Battye et al. [32] lumped BNF in with INF in as being harmful to the environment. The key example used by Battye et al. [32] (and by others) is that of soybean production in North America, and to a lesser extent in Brazil.

At a global scale, rates of BNF by crop legumes are notoriously difficult to quantify. Nearly all large-scale estimates of crop fixation rely on converting the N content of either grain yield or above-ground biomass (very few include estimates of N in belowground biomass) to an amount of fixed, via an estimated proportion of the N derived from the atmosphere (%Ndfa). Jensen et al. [33] cited a figure of 33–46 Tg of N due to BNF by crop legumes. Fowler et al. [34] cited a range (as previously estimated by Herridge et al. [35] and Peoples et al. [36], based on the Food and Agriculture Organization (FAO) data for crops) of 50–70 Tg of N with a median value of 60 Tg of N. Lassaletta et al. [37] calculated a much lower figure (around 25 Tg of N), despite adjusting for belowground N.
As noted [34], none of these estimates is more than that estimated for preindustrial BNF, even though the preindustrial figure is also seriously questionable.

Battye et al. [32] drew upon previous data [35,36] and the same FAO database as used by others (e.g., [34]), reaching an estimate of 43 Tg of N, with a range of 30–51 Tg. They then suggested that BNF is now increasing much more quickly than in the past 100 years, largely on the basis of rapidly increasing areas of soybean. However, many studies (e.g., [37]) have shown that NUE increases rapidly (and possibly exponentially) with the proportion (%) of BNF’s contribution to total N inputs to soil (reaching a plateau at ~60%) and, conversely, falls linearly with increasing use of mineral N fertilizer. The differences between Battye et al. [32] and Lassaletta et al. [37] can be better understood by closer consideration of other recent studies [38]. Gelfand and Robertson [38] used isotopic data to assign tissue N to either a BNF or soil N origin. In support of many previous studies (e.g., [37]), they found a linear decrease in contributions of BNF to plant N with increasing rates of mineral N fertilizer. Other key results were that annual contributions of BNF to soybean crops in the USA were around 3.5 Tg of N, and globally around 10 Tg of N (Battye et al. [32] estimated 25 Tg N). Moreover, the contribution of BNF to whole plant N was reported to fall from around 85% without fertilizer, to around 35% at rates of fertilizer application > ~80 kg N ha⁻¹. Differences in estimated rates of BNF among studies (e.g., [32,37,38]) are at least partly due to methodological difficulties and the often variable quality of crop-based data. In this methodological context, it is worth noting that for natural ecosystems, a major study [39] has recently and substantially revised down estimated rates of BNF in some of the world’s most N-rich ecosystems: wet tropical forests (c.f., [40]).

What is clear, however, from large-scale studies of agriculture [37,38] and from decades of detailed physiological and biochemical studies, is that BNF is usually (albeit not always) sensitive to feedback from soil N (Figure 1). In a study of a range of herbaceous legumes that grow in the Bay area of California, BNF was strongly downregulated by moderate additions of N fertilizer [41]. In a study using manures as a source of organic N, BNF was downregulated relative to no N treatments [42]. The precise mechanism of regulation within root nodules remains an active area of research. There is good evidence that accumulation of ureides in nodules is a corollary to slowing rates of BNF (see [43]), but accumulation of other amino acids may also be involved [44]. The source(s) of the ureides and amino acids (leaf tissues or nodules) is an open question and may be species specific. Irrespective of exact process(es), end-product regulation of BNF offers tremendous advantages as a low-cost mechanism for regulating farm and ecosystem N budgets and preventing pollution.

‘Lumping’ of BNF with INF as a cause of environmental pollution (sensu [32]) seems unwarranted, given the evidence that accumulation of end-products of BNF (largely amino-N) acts as a potent regulator of the process. Furthermore, we lack hard evidence that BNF itself produces ‘excess N’. Instead, and provided crop legumes are not augmented with INF, there is every prospect of maintaining balanced N budgets when crop legumes are used as both a source of grain and N. Recent detailed analysis of the N balance of legume-based cropping systems in Europe [45] showed that for a typical legume–cereal rotation, there was little N (a few kg ha⁻¹) that could not be accounted for in the crop or soil (i.e., no surplus N). As noted [38]: ‘Results underscore the unnecessary expense and environmental burden of adding N fertilizer to modern soybean varieties’. We acknowledge that there are other problems associated with monoculture cropping over large areas, and that some (e.g., tillage) can compound N pollution risks.

Recent studies of interactions of legumes with drought further emphasize the significance of feedback from environmental conditions to rates of BNF. Legumes are frequently noted as being
‘drought sensitive’, to the extent that farmers can be wary of growing them under dry seasonal conditions. A strong, N-based response to drought (accumulation of amino acids) was interpreted [45] as being a potential mechanism to account for slowing rates of N fixation for the perennial legume Medicago. For grain legumes, a very similar response was noted for Cicer [46], while Phaseolus accumulated ureides in foliage (but not nodules) under drought conditions that also inhibited BNF [47]. The clear responses of N metabolism to drought (enhanced concentrations of the same metabolites involved in the inhibition of BNF under conditions of excessive soil N) support an argument that BNF is under strong control by external availability of N and water.

Water Use Efficiency of Grain Legume versus Non-Legume Crops: A Meta-analysis

Trait analysis has become a popular tool in ecology and evolution of native plants [48,49], while traits such as WUE have guided plant breeding in agriculture for decades [50–52]. A recent trait study compared wild and cultivated species for photosynthesis and leaf N [53] and concluded that cultivated species have not yet surpassed the biological limit on N use (for photosynthesis) established by wild species.

![Figure 1](image-url)

Figure 1. Rates of BNF are Related to Rates of Applied Fertilizer N and NUE. Generalized relationships (e.g., [33–35, 42, 90]) between biological nitrogen (N) fixation (depicted as % of plant N derived from the atmosphere (Ndfa)) and (A) N application rate, and (B) N use efficiency for legumes. Abbreviations: BNF, biological nitrogen fixation; NUE, nitrogen use efficiency.
In physiological terms, WUE can be defined as the ratio of the net rate of carbon fixation (A), to the stomatal conductance to water vapor (gₛ; a function of stomatal aperture and density [54]). This is usually described as an intrinsic measure (WUEi) of the efficiency of exchange of CO₂ for water at the leaf surface. Whereas crop transpiration efficiency (yield/water inputs) is influenced by soil and landscape hydrology, WUEi is a purely plant-based trait and has long been regarded as an important target for plant breeding [50–52]. Theoretically, WUEi should improve with the availability of N, provided that N results in enhanced production or activity of the major photosynthetic enzymes and pigments. For example, Rubisco, the major enzyme responsible for carbon fixation, may account for up to 25% of crop leaf N [55] and is a major target for genetic improvement [56]. Enhanced photosynthetic capacity could allow plants to acquire more carbon per unit of water transpired, either by enhancing A without increasing gₛ, or by maintaining A whilst diminishing gₛ (e.g., by modifying stomatal density [57] or selecting for stronger reduction of gₛ at high evaporative demand [58]). A controlled-environment study of WUEi in soybean noted that gₛ, much more than A, dictates WUEi [14]. Another recent study showed that the expected benefits of rising atmospheric CO₂ concentration did not eventuate, owing to modified stomatal function and canopy energy balance [59]. One of very few direct comparisons of C₃ grasses (including cereals) with legumes, revealed that A was related to N per unit leaf area (Nₑₐₑₑ) for both groups, but that A was consistently greater in C₃ grasses than in legumes [60]. A meta-analysis of legumes and non-legumes in natural ecosystems [61] showed that WUEi in legumes is more tightly linked to leaf N than is the case for non-legumes.

Using an approach similar to those used in other meta-analyses (e.g., [53]), we synthesized leaf trait data for annual grain legume and non-legume crops using meta-analysis of the existing literature [62–93]. We used a parsimonious approach, only accepting data that met key criteria (Box 1). On the basis of the general literature on leaf traits (incorporating natural ecosystems), we hypothesized that leaf N (Nₑₐₑₑ) would be a strong predictor of light-saturated A (Aₑₐₑₑ) and gₛ for all crop species. Given evidence [61] that legumes differ from non-legumes in their relationships of Nₑₐₑₑ to WUEi, we also hypothesized that grain legume crops would show stronger relations between these variables than non-legumes.

Box 1. Leaf Nitrogen and Water Use Efficiency for Agricultural Legumes

We completed a global meta-analysis of published literature that contains both a measure of leaf nitrogen content and a measure of leaf water use efficiency for agricultural legumes: Cajanus cajan (pigeon pea), Cicer arietinum (chick pea), Glycine max (soybean), Lens culinaris (lentil), Lupinus spp. (lupin), Medicago spp. (alfalfa/lucerne), Phaseolus vulgaris (common bean), Vicia faba (bread bean/faba bean), and Vigna unguiculata (cowpea); and agricultural non-legumes with C₃ metabolism: Avena sativa (oat), Brassica spp. (canola), Gossypium spp. (cotton), Helianthus annuus (sunflower), Hordeum vulgare and Hordeum jubatum (barley), Oryza spp. (rice), and Triticum spp. (wheat).

We identified relevant literature for each species of interest by screening the Web of Science and Google Scholar search engines for ‘nitrogen’ combined with any of the following keywords: WUE, water use efficiency, photosynth*, gas exchange, and stomatal conductance. We also included relevant citations documented in these articles. We constructed a dataset for 24 legumes and 28 non-legumes from field, pot, and controlled-environment studies, where leaf nitrogen content per unit area (Nₑₐₑₑ g m⁻²), or nitrogen per unit mass together with a measure of leaf mass per unit area) was reported concurrently with intrinsic water use efficiency (WUE, μmol CO₂ mol⁻¹ air) or both light-saturated photosynthesis (Aₑₐₑₑ μmol CO₂ m⁻² s⁻¹) and stomatal conductance to water vapor (gₛ, mmol air m⁻² s⁻¹) so we could calculate WUEi. We included only well-fertilized controls, owing to paucity of studies that include all variables of interest whilst manipulating exogenous (N).

Shapiro-Wilk tests showed the data from the literature [62–93] for Aₑₐₑₑ, gₛ, and WUE, were significantly non-normal (skewed to the right); log₁₀ transformations improved normality distributions of these data. We used Pearson correlations to determine the nature of bivariate relationships between measures of water use efficiency and leaf nitrogen content.
Bivariate analyses of this data set [62–93] show that increased leaf N confers increased WUEi in grain legumes (Figure 2A). Non-legume crops show no change in WUEi over a wide range of N_{area} (Figure 2D). Instead, leaf N drives A for non-legumes (Figure 2E) to the extent that N_{area} explains almost a quarter of the variation in A_{sat} for these crops [in contrast to grain legumes in which A_{sat} is unrelated to N_{area} (Figure 2B)]. Neither grain legumes nor non-legumes adjust g_{s} with varying N_{area} (Figure 2C,F). These patterns among N_{area}, WUEi, A_{sat}, and g_{s} for grain legumes all mirror those of legumes found in native ecosystems [61].

In a recent controlled-environment study [93], WUEi was largely invariant to N supply in both grain legume and non-legume annual agricultural crops. However, multivariate analyses revealed a clear differentiation between grain legumes and non-legumes in how A_{sat} and g_{s} contribute to WUEi. In non-legumes, g_{s} dominated variation in WUE_{i} irrespective of externally

Figure 2. Leaf N, Carbon Fixation, Stomatal Conductance, and WUE. Relationships between N_{area} (gm⁻²) and WUEi (μmol CO₂ mol⁻¹ H₂O), light-saturated photosynthesis (A_{sat} μmol m⁻² s⁻¹), and stomatal conductance (g_{s} mol m⁻² s⁻¹) for agricultural crops from the literature [55–86] for both legumes (A–C) and non-legumes (D–F). Pearson correlations for log-transformed data, slopes are shown for significant relationships only (* P < 0.01). Abbreviations: A_{sat}, Light-saturated carbon fixation; g_{s}, stomatal conductance; N_{area}, nitrogen per unit leaf area; WUEi, intrinsic measure of water use efficiency.
supplied N concentration. In grain legumes, and in contrast to annual non-legumes, A_{sat} remained a significant source of variation in WUE$_i$. The significance of A_{sat} declined as the external supply of N increased (Figure 3). For grain legumes, enhanced Rubisco amount or activity cannot be eliminated as a cause of enhanced WUE. This is a point of clear distinction from non-legume crop species, where variation in N$_{\text{area}}$ explains almost 25% of the variance in A (e.g., Figure 2E). Selecting physiological traits will allow breeding programs to produce lines of grain legumes that will support more sustainable agricultural practices: practices with reduced requirements for water and N.

Past syntheses [94] and meta-analyses [48,49] support predictions that enhanced leaf N can improve WUE, but those analyses have not focused on crop species, nor have they separated grain legumes from other crop species. In agreement with meta-analysis of legumes in native ecosystems [61], the synthesis here suggests that grain legumes grown as crops have consistently better WUE if they have greater N per unit leaf area (N$_{\text{area}}$). Extrapolating the relationship between WUE$_i$ and N$_{\text{area}}$ for grain legumes, to match the upper limit in N$_{\text{area}}$ for native legumes, would result in a 20% gain in WUE$_i$ (see Figure I in Box 2).

Figure 3. Is WUE Better Related to Carbon Fixation or Stomatal Conductance? Proportional contributions by quotients g_s (filled) and A_{sat} (hatched) in explaining variance in WUE$_i$ for legume and non-legume agricultural crops from the literature [59-90] and a controlled environment comparison of the response of physiological traits to nitrogen application [90]. Stepwise multiple regressions were performed on data; *$P < 0.001$. Abbreviations: A, Carbon fixation; g_s, stomatal conductance; WUE$_i$, intrinsic measure of water use efficiency.
The meta-analysis presented here shows agricultural (grain) legumes accumulate N in foliage to concentrations well above those needed for photosynthesis, a result which is also similar to that for woody legumes in natural ecosystems [61]. Much of this leaf N is eventually remobilized to fill seeds. As an example, between 30% and 70% of seed N originated in leaf N for *Pisum sativum* [95]. Manipulating membrane-related transport mechanisms to enhance the sink for N in grain legume seeds has been shown to upregulate growth [96,97] in addition to a range of metabolic processes. These points fit well the 20-year-old observation by Hardwick [98], that rates of photosynthesis tend to follow seed development in grain legumes, rather than the reverse. Coupled with evidence that enhanced N transport to seeds promotes growth, and that the carbon:N ratio of phloem sap of legumes is generally conserved, it is reasonable to propose that engineering an enhanced ability to store N in seeds could well enhance rates of carbon fixation by legumes, a variant of the well-known, and increasingly well-elucidated, sink limitation of photosynthesis (Box 2) [99–101].

Box 2: Opportunities for Plant Breeding

Legumes’ greater demand for CO₂ via photosynthesis could provide large (2.5-fold) increases in WUE if legumes were instead bred for reduced *gₛ*, i.e., conservative water use, rather than for maximum *A* (Figure I). Breeding programs for legumes, especially for seasonally dry climates, have traditionally focused on rapid development to avoid ‘terminal drought’ [102]. Such an approach may or may not incorporate properties of WUE. In temperate environments, it has been proposed for soybeans [14] that selecting for reduced stomatal conductance and then breeding in enhanced photosynthetic capacity could enhance WUE. The data presented here support extension of this to drier regions, insofar as it is matched by enhanced nitrogen filling of seeds (sink strength). Furthermore, the data suggest that breeding for conservative water use will be robust to external N supply. The legacy of decades of traditional breeding of non-legume crop species for growth, via a focus on photosynthetic carbon fixation, is evidenced by conservation across native and crop species of the relationship between *A* and *Nₜₐₚ*. That legumes are fundamentally different in this respect (e.g., [61]), as well as showing an equally strongly conserved relationship between WUE and *Nₜₐₚ*, is a guide to both further research and to current and future breeding programs.

Figure 1. Potential Gain in WUE From Different Approach to Breeding. Simulated gains in intrinsic water use efficiency (WUE) that would result from breeding legumes with reduced stomatal conductance (*gₛ*). Lines represent *gₛ* versus WUE, relationships observed for four legume species. Key: circles, *Vicia faba*; diamonds, *Glycine max*; squares, *Lupinus alba*; triangles, *Cicer arietinum*. (See [90] for further detail.) Abbreviation: WUE, intrinsic water use efficiency.
Concluding Remarks and Future Perspectives

The availability of water and N will regulate agricultural yields across the globe in the coming decades. The intricate coupling of water and N use in legume grain crops commands further research: we need to fully elucidate the causes of stronger relationships of WUE to N\textsubscript{area} for grain legumes than for non-legumes and then exploit these relationships to help sustainably feed the world (see Outstanding Questions).

In a review of resource use efficiency and climate resilience, Carmo-Silva et al. [103] noted that a negative relationship between Rubisco activase and Rubisco content could cancel out potential benefits for WUE of additional allocation of N to the latter. At a molecular level, and in the absence of considerations of N, drought downregulates many photosynthesis-related genes, possibly enhancing WUE, and aiding survival via a slowing of growth [104]. Further possible contributors to enhanced WUE in legumes arise from clear links between leaf N and enhanced rates of respiration and the energy required for a range of processes, including carbon and N metabolism and storage (in seeds) and N acquisition.

The lowest hanging fruit is perhaps the flexibility in N allocation afforded legumes by BNF. For any plant, ability to up- or downregulate the supply of N to leaves, according to the light environment and to soil supplies of water and N, can confer extraordinary advantages for both WUE and NUE. The special case of legumes, with their distinctive ability to acquire atmospheric N, is deserving of much more detailed analysis. As just one example, we lack a clear understanding of the drivers of temporal variability in N allocation in different tissues, including crossmembrane N transport. Yet these understandings are easily improved.

It seems obvious that research needs to be directed towards understanding the combined WUE and NUE of major legume crops, and that current stop-gap measures are insufficient to prevent further degradation of global biogeochemical cycles. For example, N pollution following excessive additions of fertilizer to non-legume agricultural crops will remain a risk associated with food production, regardless of the energy source for INF. Similarly, the challenge of meeting the water needs for future crop production will remain, even if further groundwater reserves are tapped. Analyses of the ‘water footprint’ of legumes and other crops emphasizes that there are significant gains to be made (increasing production per unit of water consumed) through better understanding of fundamental aspects of plant biology and its management (e. g., [105]). While there is little evidence of a global increase in drought over the past 60 years [106], there is good evidence of changing amounts and seasonal distribution of rainfall in many of the world’s most important grain cropping areas (e.g., in USA [107]), and that this is already reducing crop yields in drier areas (e.g., in Australia [108]). Furthermore, projections of future climates strongly suggest an increase in drought in many regions [109]. Such changes may be partially offset by increased productivity per unit water transpired (e.g., [110]) due to the beneficial physiological effects of rising atmospheric CO\textsubscript{2} concentration. A greatly increased global area of legume crops, grown for their grain and for their N, and with further substitution of legume grains for cereal grains in human and animal diets, would reduce the water and energy demands of agriculture, while maintaining availability of protein. Such an increase would also help alleviate needs for alternative forms of protein, such as could be produced by insects [111].

Lumping BNF with INF as potential sources of polluting reactive N (sensu [32]) does help to highlight risks associated with excess additions of N to the biosphere, and, more specifically, to cropping systems (see also [30]). However, while BNF has strong regulatory feedbacks from both too much N and too little water in soils, human use of INF in non-legume cropping systems requires extraordinarily expensive and presently impractical monitoring and remediation. It
seems to us counterproductive to use such a collective description, as it distracts from the core problem of overuse of fertilizer N, and overreliance globally on INF. As noted by Zhang et al. [30], we do not yet know ‘how close to 100% efficiency the use of N inputs could become’, given continued economic development and current temporal patterns in NUE. However, the overwhelming weight of evidence suggests that NUE is strongly enhanced by replacing INF with BNF. The further WUE advantages conferred on legumes (relative to non-legumes) by the ability to both and up- and downregulate BNF according to changing availability of soil N, water, light, and even atmospheric CO2 concentration, are only just beginning to be recognized. As a gift of evolution, BNF is of inestimable value. Ensuring a sustainable supply of food on earth requires that we not misunderstand or misuse one of our strongest allies.

Author Contributions
M.A.A. devised the study with T.L.T. T.L.T. extracted the data for the meta-analysis and prepared the relevant figures. T.N. B. provided the model analysis of WUE. M.A.A. wrote the paper with input from all other authors.

Acknowledgments
We thank the Australian Research Council (LP130100183, DP150103863), the Grains Research and Development Corporation (US00082), the National Science Foundation (USA, 1557906), and the Swiss National Science Foundation (grant 40FA40_160406). ETH Zurich is thanked for its support to M.A.A. as a visiting Professor.

References
Trends in Plant Science

75. Li, Y. et al. (2012) Chloroplast downsizing under nitrate nutrition may exert a feed-forward stimulation of photosynthetic efficiency and productivity in Phaseolus vulgaris L. Nat. Commun. 3, 1083