Lawrence Berkeley National Laboratory
Recent Work

Title
NUCLEAR REACTIONS OF URANIUM INDUCED BY 5.7-Bev PROTONS; RADIOCHEMICAL YIELDS OF LIGHT ELEMENTS

Permalink
https://escholarship.org/uc/item/2w57f4gz

Author
Carnahan, Chalon Lucius.

Publication Date
1957-10-01
NUCLEAR REACTIONS OF URANIUM INDUCED BY 5.7-Bev PROTONS; RADIOCHEMICAL YIELDS OF LIGHT ELEMENTS
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
NUCLEAR REACTIONS OF URANIUM INDUCED BY 5.7-Bev PROTONS;
RADIOCHEMICAL YIELDS OF LIGHT ELEMENTS

Chalon Lucius Carnahan
(Master's Thesis)

October 1957

Printed for the U. S. Atomic Energy Commission
NUCLEAR REACTIONS OF URANIUM INDUCED BY 5.7-Bev PROTONS;
RADIOCHEMICAL YIELDS OF LIGHT ELEMENTS

Contents

Abstract. .. 3
I. Introduction ... 4
II. Experimental Procedures 6
 A. Target Arrangement. 6
 B. Target Materials 6
 C. Beam Monitors 6
 D. Chemical Procedures 7
 E. Sample Mounting 15
III. Treatment of Data 16
 A. Cross-Section Calculations 16
 B. Beta Counting 17
 C. Gamma Counting 18
 D. Decay Characteristics 19
IV. Results and Discussion 22
Acknowledgments .. 30
References ... 31
NUCLEAR REACTIONS OF URANIUM INDUCED BY 5.7-Bev PROTONS;

RADIOCHEMICAL YIELDS OF LIGHT ELEMENTS

C. L. Carnahan

Radiation Laboratory and Department of Chemistry
University of California, Berkeley, California

October 1957

ABSTRACT

Uranium was bombarded with 5.7-Bev protons. Formation cross sections are reported for products in the mass region $7 < A < 66$. The peak yields for each mass number were found to occur along the stability line or slightly to the neutron-excess side of it. The data fit in well with current ideas concerning processes involved in high-energy nuclear reactions.
NUCLEAR REACTIONS OF URANIUM INDUCED BY 5.7-Bev PROTONS; RADIOCHEMICAL YIELDS OF LIGHT ELEMENTS

C. L. Carnahan

Radiation Laboratory and Department of Chemistry
University of California, Berkeley, California

I. INTRODUCTION

Since the completion of the Bevatron at Berkeley, studies have been made of the fission-spallation products of several elements when exposed to a 5.7-Bev proton beam. These target elements include uranium, copper, tantalum, indium, and several light elements. Shudde studied products from uranium in the mass region $52 < A < 210$; this work is concerned with very light products, in the mass region $7 < A < 66$. It was considered desirable to extend the data on uranium into the low-mass region at a high bombarding energy in order to obtain a more complete description of the processes involved in high-energy nuclear reactions.

In the last several years, as particle-accelerating machines of higher energies have become available, many radiochemical studies of nuclear reactions have been made. Several reasonably complete summaries of these studies have been compiled and are available in the literature.

At low incident-particle energies ($E_p \lesssim 50$ Mev) the observed results can be explained quite adequately by the Bohr compound-nucleus theory. This model describes a nuclear reaction as taking place in two steps: (a) the incident particle is absorbed by the target nucleus, forming a compound system, while the kinetic energy of the projectile is distributed among the other nucleons; (b) the compound system decays according to various possible modes of particle emission, independently of the method of formation. The first step is a relatively "slow" process; the kinetic energy of the incident particle is distributed during a time that is long compared with the time required for the particle to traverse the nucleus.
At higher incident-particle energies \((50 \text{ Mev} < E_p < 400 \text{ Mev})\) the data are no longer consistent with the compound-nucleus model. Excitation functions at these higher energies vary more slowly than would be predicted from a compound-nucleus mechanism. Serber has advanced the hypothesis that at higher energies the kinetic energy of the incoming particle is dissipated in collisions with individual nucleons, resulting in a nucleon cascade which occurs in a time comparable to the time required for the incident particle to traverse the nucleus. Nucleons are knocked out of the nucleus with a continuous distribution of energies up to that of the incident particle, leaving the nucleus with a wide range of excitation energies. The nucleon cascade is then followed by a relatively slow de-excitation process in which nucleons and light fragments are evaporated. The increase with energy of the mean free path of a nucleon in the nucleus causes the nucleus to become increasingly transparent to the incident particle as the bombarding energy is raised, and thus the amount of excitation imparted to the nucleus increases only slowly. Studies by Folger, Stevenson, and Seaborg on the fission of uranium by \(340\text{-MeV protons}\) and the high-energy studies by Lindner and Osborne indicate that at high energies fission is preceded by the evaporation of up to 25 nucleons, and that several different species may contribute to the total fission yield.

At incident-particle energies above \(400 \text{ Mev}\), other trends become evident. Products that require large amounts of excitation energy for their formation show steeply rising excitation functions. Meson production also becomes significant in this energy region. Wolfgang and others have introduced the term "fragmentation" to describe a process in which \(\pi\) mesons are produced and reabsorbed, depositing large amounts of excitation energy in relatively small zones within the nucleus. Light fragments are then emitted in a time that is short compared with the lifetime of a compound nucleus; these fragments subsequently de-excite by evaporation. It is expected that the fragmentation process plays an increasingly important role in the production of light species (and their heavy partners) as the bombarding energy is raised into the multi-Bev region.
II. EXPERIMENTAL PROCEDURES

A. Target Arrangement

The usual target arrangement was a stack of four foils: a 1-mil aluminum guard foil, a 3-mil aluminum monitor foil, another 1-mil aluminum guard foil, and a 5-mil uranium target foil. The total thickness of this foil stack was 270 mg/cm². When products lighter than aluminum were to be examined, a uranium guard foil was placed between the second aluminum guard foil and the target foil.

All foils were precisely machined to dimensions of 0.746 to 0.749 in, by 2 ± 1/16 in. The edges of the stacked foils were aligned as carefully as possible with the aid of a magnifying glass, and the foils were held together with several small pieces of scotch tape. The foil stack was then inserted into a lucite holder which was attached to an aluminum probe head designed to fit the Bevatron target ram. The foil stack protruded 1.25 in. beyond the end of the lucite holder. After bombardment the foils were removed from the holder and used for radiochemical analysis.

B. Target Materials

Natural uranium foil was used as the target material. Spectrographic analysis showed the presence of 0.005% iron, 0.001% nickel, and 0.0001% manganese. The aluminum foil contained approximately 0.5% silicon, 0.05% iron, and 0.01% magnesium. Impurities present in these amounts make negligible contributions to the products formed from the uranium and aluminum foils during a bombardment.

C. Beam Monitors

In order to calculate cross sections for the products formed from uranium, it was necessary to have some measure of the number of protons striking the actual target area. This was accomplished by comparing the activities of the various nuclides formed in the uranium
foil with the Na24 activity formed in the aluminum monitor foil by the reaction Al27 (p,3pn) Na24. The monitor foils were allowed to cool for about 24 hours, and then their radiations were counted directly in a proportional counter. The 15.0-hour Na24 activity was the only one observed in these foils after the shorter-lived activities had died out.

A number of workers have determined cross sections for the reaction Al27 (p,3pn) Na24 from threshold up into the Bev region. In this work the cross section was assumed to be constant from 2.0 to 5.7 Bev and equal to 10.5 millibarns. The error in this value is estimated as ±30%.

In the early stages of this work nickel was separated from the uranium foil in each bombardment and the cross section for the reaction U238 (p,--) Ni65 was determined relative to the 10.5-mb cross section for Al27 (p,3pn) Na24. This was done with the idea of eventually using Ni65 as an internal monitor in bombardments in which it would be undesirable to employ a stack of aluminum foils. The radiochemical purification procedure for nickel was relatively simple, and the 2.56-hour Ni65 activity could very easily be resolved from the gross decay curves.

One bombardment was carried out with a bare 5-mil uranium foil as the target; the results obtained using Ni65 as the internal monitor agreed well with results obtained previously using the external aluminum monitor. A value of 2.8 mb was found for the reaction U238 (p,--) Ni65 at 5.7 Bev; this is in good agreement with Shudde's data.

D. Chemical Procedures

In all the chemical procedures used in this work the uranium target foil was dissolved in concentrated HNO\textsubscript{3} containing known quantities of various elements acting as inert carriers for the radioactive species to be investigated. The resultant solution was then adjusted to 4 M in HNO\textsubscript{3} and the uranyl nitrate was extracted with a mixture of 30% tributyl phosphate and 70% carbon tetrachloride. The elements to be investigated were then separated chemically from the aqueous phase. Most of the chemical purifications used are modifications of those used by other workers.
The purified precipitates were dried and mounted, and after counting were analyzed by the Analytical Chemistry Group to determine the chemical yields.

Beryllium

Beryllium was first removed as the hydroxide with ammonia. The precipitate was dissolved in concentrated HCl, Fe(III) was added, and the solution was made almost neutral with NaOH. It was then poured slowly with vigorous stirring into another cone containing enough 20% NaOH to give the resultant solution a base concentration of about 5%. The solution was digested and the Fe(OH)$_3$ was centrifuged out. One milligram more of Fe(III) was added to the supernate, the mixture was stirred vigorously, and then it was centrifuged. The Fe(OH)$_3$ was saved for recovery of any beryllium that might have been carried down. The supernate containing beryllate ion was neutralized with HCl, and Be(OH)$_2$ was reprecipitated with ammonia. This precipitate was dissolved in 3 N NaOH and the Fe(OH)$_3$ scavenging step was repeated. A saturated solution of NH$_4$Cl was added to the supernate from the Fe(OH)$_3$ scavenge, and the mixture was digested to reprecipitate Be(OH)$_2$, which was centrifuged, washed, and redissolved in the minimum amount of HCl. About 15 ml of a pH-6 Na$_2$SO$_3$-NaHSO$_3$ buffer was added. Beryllium was extracted into 30 ml of a 0.4 M solution of thenoyltrifluoroacetone in benzene with vigorous stirring for 20 minutes. The organic phase was then washed twice with water, twice with 8 N HNO$_3$, once with water, twice quickly with 1 N NaOH, and once quickly with water. Beryllium was then re-extracted into a 2:1 mixture of concentrated formic acid-concentrated HCl. This mixture was neutralized and Be(OH)$_2$ was precipitated with ammonia, washed with water, and dried. Chemical yields were about 30%.

Sodium

Sodium was removed from the target solution by precipitating NaCl from a solution saturated with HCl in an ice bath. The NaCl was dissolved in water; ferric, barium, and lanthanum carriers were added; NH$_3$ was bubbled through the solution; and a small amount of a freshly
prepared saturated solution of \((\text{NH}_4)_2\text{CO}_3\) was added. Potassium, rubidium, and cesium holdback carriers were added to the supernate, which was then saturated with HCl in an ice bath. The precipitate of NaCl was centrifuged and redissolved in water. This solution was made 0.5 N in HCl, copper carrier was added, and CuS was precipitated with \(\text{H}_2\text{S}\). The supernate was boiled to remove \(\text{H}_2\text{S}\), and NaCl was precipitated with HCl, then redissolved in water. This solution was made slightly ammoniacal; calcium, zinc, and magnesium carriers were added, a freshly prepared ammonium phosphate solution was added; and the mixture was centrifuged. To the supernate were added nickel and manganous carriers. The solution was saturated with \(\text{H}_2\text{S}\) and centrifuged, and the supernate was boiled. Potassium, rubidium, and cesium carriers were added and the solution was saturated with HCl in an ice bath to precipitate NaCl. The NaCl was dissolved and reprecipitated. The final precipitate was washed twice with ether and filtered. Chemical yields were 40% to 60%.

Magnesium

Magnesium was initially removed by the addition of \((\text{NH}_4)_2\text{HPO}_4\) to the ammoniacal target solution to precipitate MgNH\(_4\)PO\(_4\). The precipitate was dissolved in the minimum volume of HCl, the solution was adjusted to 0.1 M in HCl, and the mixture was passed through a 6-mm-by-10-cm column packed with Dowex-50 cation-exchange resin. The eluate was discarded. The column was washed with water and magnesium was eluted with 6 N HCl. CuS and then Fe(OH)\(_3\) scavenges were performed upon this eluate. The supernate from the hydroxide scavenge was adjusted to pH 4 with acetic acid; calcium, strontium, and barium carriers were added; and the oxalates were precipitated with saturated oxalic acid. The oxalate precipitation was repeated twice. The supernate containing magnesium was evaporated to dryness, excess oxalate was destroyed with HNO\(_3\), and the residue was dissolved in water. MgNH\(_4\)PO\(_4\) was precipitated from this solution and the whole procedure was repeated. The final MgNH\(_4\)PO\(_4\) precipitate was washed twice with water and twice with ethanol. Chemical yields were about 20%.
Silicon

Silicon was present in the target solution as fluosilicate ion. Boric acid was added to complex the fluoride ion and silicic acid gel was precipitated by digestion of the solution with concentrated HClO₄. The gel was dissolved in NaOH solution and a titanium scavenge was performed. The solution containing silicate ion was then acidified with HCl and digested with HClO₄ to reprecipitate silicic acid. The solution, scavenging, and reprecipitation steps were repeated twice. The final silicic acid precipitate was washed with dilute HCl, water, and ethanol. Yields were about 50%.

Phosphorus

Phosphorus, as phosphate, was removed from the target solution by precipitating zirconium phosphate. This precipitate was washed with water and dissolved in 0.2 ml of 48% HF. To this solution were added 10 ml of 3 N HCl and one milligram of As(V) carrier. The mixture was saturated with H₂S while being heated in a steam bath. Lanthanum carrier was added to the supernate to precipitate LaF₃. To this precipitate were added 4 ml of concentrated HNO₃ and 5 ml of ammonium molybdate reagent. The ammonium phosphomolybdate precipitate was dissolved in 0.5 ml of NH₄OH. Ten milliliters of water and 4 drops of 30% H₂O₂ were added, and the solution was stirred vigorously. Zirconium phosphate was precipitated from this solution by the addition of 10 ml of concentrated HCl followed by zirconium carrier. The zirconium phosphate was separated and the procedure was repeated twice, the second time only through the precipitation of ammonium phosphomolybdate. This precipitate was dissolved in 1 ml of concentrated NH₄OH; then 2 ml of citric acid solution (0.5 g/ml) plus 10 ml of magnesia mixture were added. NH₄OH was added dropwise until MgNH₄PO₄ started to precipitate, and then 4 ml of NH₄OH were added in excess. The mixture was allowed to stand in an ice bath for 10 minutes. The MgNH₄PO₄ was centrifuged off, washed with 1:20 NH₄OH, and redissolved in dilute HCl. The precipitation of MgNH₄PO₄ was then repeated and the final precipitate was washed with 1:20 NH₄OH, 50% ethanol, and 95% ethanol. Chemical yields were about 30%.
Sulfur

Sulfur, as sulfate ion, was separated by precipitating BaSO$_4$ from the target solution, which had been made 1 N in HCl. This precipitate was metathesized for 30 minutes in a steam bath with a 20% NaOH solution saturated with Na$_2$CO$_3$. The supernate was then neutralized with HNO$_3$ and scavenged with Fe(OH)$_3$ and La(OH)$_3$. The supernate from the hydroxide scavenge was made slightly acidic and a AgCl scavenge was performed. To the solution containing sulfate ion were then added Se(IV) and Te(IV) carriers followed by about 1 g of chromous acetate. The mixture was digested and filtered. BaSO$_4$ was precipitated from the filtrate with BaCl$_2$, and the metathesis was repeated. The solution containing sulfate ion was acidified, the selenium and tellurium scavenges were repeated, and BaSO$_4$ was reprecipitated. This final precipitate was washed with water and ethanol. Chemical yields were 20% to 45%.

Chlorine

The target foil was placed in a small distilling flask along with the chlorine carrier (NaCl). Concentrated HNO$_3$ was added and the system was immediately closed. The liberated gases were passed into a receiving vessel containing 5 ml of 6 N NaOH solution plus several drops of H$_2$O$_2$. The distilling flask was heated for several minutes after the target foil had completely dissolved. The solution in the receiving vessel was neutralized with HNO$_3$, and then made slightly basic with NH$_4$OH. Fluoride carrier was added and CaF$_2$ was precipitated by the addition of Ca(NO$_3$)$_2$ solution. The supernate was made 0.5 N in HNO$_3$, bromide carrier and about 0.3 g of ammonium persulfate were added, and the solution was boiled until all the Br$_2$ had been evolved. AgCl was then precipitated by the addition of excess AgNO$_3$. The centrifuged AgCl was dissolved in concentrated NH$_4$OH, and Fe(III) (as the nitrate) was added to precipitate Fe(OH)$_3$. Holdback carriers of copper, nickel, cobalt, and zinc were added to the supernate and the solution was acidified with HNO$_3$. Excess silver ion was added to the acidic solution to ensure complete precipitation of the AgCl. The final precipitate was washed with water and acetone. Chemical yields were about 60%.
Potassium

The target solution was adjusted to pH 5 with acetic acid and cooled in an ice bath, and $K_3Co(NO_2)_6$ was precipitated by the addition of excess $Na_3Co(NO_2)_6$. The precipitate was washed and dissolved in 1 ml of concentrated HCl. HNO$_2$ was boiled off, the solution was diluted to 10 ml, and a CuS scavenger was performed. H$_2$S was boiled out of the supernate; ferric, lanthanum, and barium carriers were added; the solution was made ammoniacal; and 1/2 ml of saturated ($NH_4)_2CO_3$ solution was added. Nickel and manganous carriers were added to the supernate and the solution was saturated with H$_2$S. After centrifuging, the supernate was acidified with HCl and boiled, and the chlorides and ammonium salts were destroyed by evaporating to dryness with HNO$_3$. Cesium and rubidium holdback carriers were added before the evaporation. The residue was taken up in 5 ml of 72% HClO$_4$ and the mixture was evaporated to dryness. Again, 5 ml of HClO$_4$ were added to the residue and the mixture was washed into a small heavy-walled cone with several portions of chilled absolute ethanol. The cone was cooled in an ice bath and the precipitated KClO$_4$ was centrifuged off. This precipitate was dissolved in a small amount of water, the solution was evaporated to dryness, and the evaporation and precipitation with KClO$_4$ were repeated. The final KClO$_4$ precipitate was filtered and washed with ethanol. During one of the runs an extra step was incorporated into the procedure. Following the first HClO$_4$ precipitation, the KClO$_4$ was dissolved in water, cesium and rubidium carriers were added, and the solution was passed through a 6-mm-by-12-cm column packed with acid-washed Duolite C-3 cation-exchange resin. Potassium was eluted from the column with 0.1 N HCl, a process which took an inconveniently long time. With this concentration of acid a good separation can be achieved between potassium and rubidium; when a higher concentration was used in order to reduce the elution time, it was found that potassium and rubidium came off at best very close together, and, in a few cases, together. Also, the use of a flame photometer was required in order to determine which fractions contained potassium. The method was rather time-consuming and did not seem to give an appreciable improvement in radiochemical purity, therefore it was not used in subsequent bombardments.
Calcium

Calcium was precipitated from the ammoniacal target solution as CaCO$_3$. The precipitate was dissolved in the minimum volume of HNO$_3$, the solution was diluted to 10 ml with water, and a AgCl scavenge was performed. The supernate was adjusted to 0.1 M in HCl and a CuS scavenge was performed. The supernate was boiled to remove H$_2$S, ferric carrier was added, and Fe(OH)$_3$ was precipitated by the addition of NH$_4$OH. Nickel and cobalt carriers were added to the ammoniacal supernate and the solution was saturated with H$_2$S. The supernate from the basic sulfide scavenge was boiled and then a 4% solution of (NH$_4$)$_2$C$_2$O$_4$ was added. The CaC$_2$O$_4$ precipitate was dissolved in a small amount of dilute HNO$_3$, and barium and strontium carriers were added. Thirty milliliters of white fuming HNO$_3$ was added and the mixture was cooled in an ice bath. The mixed barium and strontium nitrates were centrifuged off and the supernate, containing calcium, was evaporated to 1 to 2 ml. Barium and strontium carriers were added to the supernate and the treatment with fuming HNO$_3$ was repeated. The supernate was evaporated to 2 to 3 ml and made up to 30 ml with water. This solution was made ammoniacal and CaC$_2$O$_4$ was precipitated by the addition of (NH$_4$)$_2$C$_2$O$_4$. The precipitate was dissolved in HNO$_3$ and 2 ml of 1 M NaBrO$_3$ solution was added. This solution was diluted to 30 ml and made strongly ammoniacal; then CaCO$_3$ was precipitated by the addition of (NH$_4$)$_2$CO$_3$. The CaCO$_3$ was dissolved in HNO$_3$ and the solution was diluted to 25 ml. Lanthanum carrier was added and La(OH)$_3$ was precipitated by the addition of NH$_4$OH. Finally, CaC$_2$O$_4$ was precipitated from the supernate by the addition of (NH$_4$)$_2$C$_2$O$_4$, and was washed with water and ethanol. Chemical yields were about 20%.

Manganese

Manganese carrier was added to the target solution as manganous ion. The 4 M HNO$_3$ solution from the uranium extraction was evaporated to dryness with HCl to destroy the HNO$_3$. The residue was taken up in water and the resulting slightly acidic solution was saturated with SO$_2$ to ensure that all the manganese was present as manganous ion. After boiling of the solution to expel excess SO$_2$, excess solid KBrO$_3$ was added.
and the mixture was heated until MnO₂ precipitated. The MnO₂ was dis-
solved in concentrated HCl. This solution was boiled to expel Cl₂, and
was then passed through a 6-mm-by-10-cm column packed with Dowex A-2
anion-exchange resin previously washed with concentrated HCl. The eluate
was evaporated to reduce its volume and was made 1 N in HCl. Silver car-
rier was added and the AgCl was removed by centrifugation. The super-
natant solution was then scavenged with CuS. The supernatant from this
operation was evaporated to dryness with HNO₃. The residue was dissolved
in water and the solution was made 0.1 N in HNO₃. Excess solid NaBiO₃
was then added to oxidize manganous ion to permanganate. NaOH was added
until the solution had a pH of 10, and a Fe(OH)₃ scavenging was performed.
The supernate was made 1 N in HNO₃ and the permanganate was reduced to
the plus-two state by the addition of oxalic acid. Excess solid KBrO₃
was added and the solution was heated until MnO₂ precipitated. This
precipitate was washed with dilute HNO₃ and the purification procedure
was repeated. After the second purification cycle the MnO₂ was dis-
solved in dilute HNO₃ containing some H₂O₂, the solution was diluted to
10 ml with water, and MnO₂ was reprecipitated with KBrO₃. The final
precipitate was washed with water and acetone. Chemical yields were
less than 20%.

Iron

The target solution containing ferric ion as carrier was made
basic with NH₄OH. The Fe(OH)₃ that precipitated was washed and then
dissolved in a small volume of concentrated HCl. Five milligrams of
gallium carrier was added and the solution was passed through a 6-mm-by-
10-cm column packed with Dowex A-2 anion-exchange resin previously washed
with concentrated HCl. The column was washed once with 12 N HCl and once
with 6 N HCl, and iron was eluted with 0.5 N HCl. Molybdenum, gallium,
antimony, arsenic, germanium, tellurium, and tin carriers were added to
the eluate and the solution was saturated with H₂S. The supernate was
made basic with NH₄OH and was again saturated with H₂S. The FeS pre-
cipitate was dissolved in the minimum volume of concentrated HNO₃.
Tungsten and barium carriers were added, a few drops of concentrated
H₂SO₄ were added, and the precipitate was discarded. Five milligrams of
gallium carrier was added to the supernate and Fe(OH)$_3$ was precipitated by the addition of NaOH. The Fe(OH)$_3$ was dissolved in concentrated HCl. The solution was made 7.5 N in HCl and the iron was extracted into isopropyl ether. The ether phase was washed with 7.5 N HCl and was then evaporated over water. Molybdenum, gallium, antimony, tin, and germanium carriers were added to this solution and Fe(OH)$_3$ was precipitated by the addition of NaOH. The Fe(OH)$_3$ was dissolved in HCl and the extraction and precipitation steps were repeated. The purified Fe(OH)$_3$ was washed with water and was filtered. Chemical yields were 30% to 50%.

Nickel

The target solution containing nickel carrier was made basic with NH$_4$OH, a saturated solution of dimethylglyoxime was added, and the nickel dimethylglyoxime precipitate was filtered off, washed, and dissolved in the minimum volume of concentrated HNO$_3$. The solution was boiled, diluted with water, and adjusted to a pH of 1. A AgCl scavenge was performed; this was followed by a mixed copper and palladium sulfide scavenge. The supernate was boiled to expel H$_2$S, ferric carrier was added, and Fe(OH)$_3$ was precipitated by the addition of NH$_4$OH. Nickel dimethylglyoxime was precipitated from the supernate by the addition of dimethylglyoxime, and the purification procedure was repeated. The purified nickel dimethylglyoxime was washed with dilute NH$_4$OH, water, and ethanol. Chemical yields were 30% to 60%.

E. Sample Mounting

The final purified precipitate was washed into a filter chimney with an inside diameter of 18.5 mm. The precipitate was collected on a circle of Whatman Filter Paper No. 42 of 7/8-in. diameter, supported by a 7/8-in. diameter sintered glass frit. The total sample area was 2.7 cm2. After washing, the precipitate was dried for 15 minutes at 110°C. The filter paper holding the sample was then placed on a 1-in.-square piece of double-sided masking tape which had previously been centered
on a standard aluminum sample holder, 2.5 by 3.5 in. by 350 mg/cm2. A 1-in.-square piece of rubber hydrochloride film (0.6 mg/cm2) was then placed over the sample and stuck on the edges to the masking tape. With this arrangement portions of the sample could not be lost during the counting operations.

The aluminum monitor foils were cut into three pieces of equal size and each piece was mounted on an aluminum plate with double-sided tape. These foils were not covered with rubber hydrochloride film.

III. TREATMENT OF DATA

A. Cross-Section Calculations

The rate of formation and decay of a single radioactive species during a bombardment is expressed by the differential equation

$$\frac{dN}{dt} = I_n \sigma - \lambda N,$$

where I is the number of protons hitting the target per unit time, n_t is the number of target nuclei per square centimeter, σ is the formation cross section of the product in square centimeters, λ is the decay constant of the product, N is the number of atoms of the product.

Under the conditions that the beam current I is constant and that N equals zero at the beginning of the bombardment, the above equation has the solution

$$\sigma = \frac{N^0 \lambda}{\ln t (1 - e^{-\lambda t})},$$

where t is the duration of the bombardment and N^0 is the number of atoms of the product present at the end of the bombardment.
In this study, all cross sections were compared with that for Na24 production in aluminum. Letting the subscript "i" denote the nuclide of interest and letting "2" denote Na24 produced in the aluminum foil, we have

$$\sigma_1 = \frac{A_1^0}{A_2^0} \cdot \frac{W_2}{W_1} \cdot \frac{M_i}{M_2} \cdot \frac{(1-e^{-\lambda_2 t})}{(1-e^{-\lambda_1 t})} \cdot \sigma_2,$$

where the A^0_i's are the disintegration rates at the end of bombardment, the w's are the weights of the foils used, the M's are the atomic weights of the foil materials.

Shudde gives an expression that is useful for the interrupted bombardments sometimes experienced on the Bevatron.1

B. Beta Counting

An end-window methane-flow proportional counter with an 1.0-mg/cm2 aluminized mylar window was used to count beta radiation.

Several corrections must be applied in converting observed counting rates to disintegration rates. Of these, the most important are geometry, air-and-window absorption, backscattering, self-scattering and self-absorption, radiation abundance, and chemical yield. Coincidence corrections for the type of counter used are negligible up through 10^5 counts per minute and were neglected. It was assumed that all beta particles that penetrated the counter window were counted.

Owing to the low activities encountered in this work, all samples, including monitors, were counted on the top shelf of the sample holder. It was calculated, from data provided by Dr. D. W. Barr,21 that this shelf has a geometry of 0.33.

The air-and-window absorption factors, f_w, were calculated by use of the formula

$$f_w = e^{-\mu x},$$

where x is the air-plus-window thickness in mg/cm2 and μ is the absorption
coefficients. Values for \(\mu \) were calculated by use of the formula provided by Gleason, Taylor, and Tabern,22

\[
\mu = 0.017 \ E_m^{-1.43},
\]

where \(E_m \) is the maximum beta-particle energy.

Backscattering factors, \(f_B \), were taken from Burtt's data for negatron backscattering.23 Positron counting rates were increased by 10% because the backscattering effect is smaller for positrons than for negatrons.24

Self-scattering and self-absorption factors, \(f_S \), were obtained from the data of Nervik and Stevenson.25

Data on radiation abundance and beta-particle energies were taken from the compilations by Hollander, Perlman, and Seborg,26 and by Way \textit{et al.}27 The correction factor for radiation abundance, \(f_A \), was unity for all the negatron emitters studied here.

With these correction factors, the expression for the disintegration rate of a nuclide is

\[
D = \frac{A}{0.33 \times f_w \times f_B \times f_S \times f_A \times Y},
\]

where \(D \) is the disintegration rate, \(A \) is the observed counting rate, and \(Y \) is the chemical yield.

\textbf{C. Gamma Counting}

For gamma-ray counting, a sodium iodide (thallium-activated) crystal 1.5-in. in diameter by 1-in. high was used with a 50-channel pulse-height analyzer. A thin beryllium window separated the crystal from the sample being counted.

Several corrections must be applied in converting gamma-ray counting rates to disintegration rates. They are counting efficiency, geometry, escape-peak loss, radiation abundance, and chemical yield.

Counting efficiencies for the size of crystal used at Berkeley have been determined by Kalkstein and Hollander;28 their data were used exclusively in this work.
Geometry factors were also taken from the data of Kalkstein and Hollander.28

The integrated photopeak counting rates were corrected for escape-peak loss by means of the data of Axel.29

Radiation abundances were taken from the compilation by Hollander, Perlman, and Seaborg.26

The disintegration rate of a nuclide is then related to its gamma-ray counting rate by the equation

\[D = \frac{A}{C_E \times G \times E_P \times R \times Y} \]

where \(D \) is the disintegration rate,
\(A \) is the observed counting rate,
\(C_E \) is the counting efficiency,
\(G \) is the geometry factor,
\(E_P \) is the correction for the escape-peak loss,
\(R \) is the radiation abundance,
\(Y \) is the chemical yield.

\[D \] \textit{Decay Characteristics}

\textbf{Beryllium}

The 478-kev gamma rays accompanying the decay of 53-day \(^{7} \text{Be} \) were counted in the gamma scintillation counter. The abundance of this radiation was taken to be 12\%.30 No beta activity was detected in the beryllium samples.

\textbf{Sodium}

The negatron activity from 15.0-hour \(^{24} \text{Na} \) was detected in a proportional counter. In samples from long bombardments the 15.0-hour activity tailed into several counts per minute of a long-lived activity which decayed only slightly over a long period of time. This was
attributed to 2.6-year Na22, which decays 90% by positron emission. Both
the 0.51-Mev annihilation radiation and the 1.28-Mev gamma ray from the
decay of Na22 were easily detected on the scintillation spectrometer.

Magnesium

The only activity observed in the magnesium samples was 21.3-hour
Mg28. The negatrons from this nuclide were counted in equilibrium with
those from the 2.30-minute Al26 daughter. The counting was done on a
proportional counter.

Silicon

The silicon samples were counted in a proportional counter. The
only activity observed was that of 2.62-hour Si31, a negatron emitter.

Phosphorus

The phosphorus samples were counted in a proportional counter to
detect the negatrons from 14.4-day P32 and 24.8-day P33. Least-squares
analysis and Biller plots were used to resolve the two activities.

Sulfur

The first two sulfur samples examined in this work were separated
from foils that had been allowed to cool for several days after having
been bombarded. As a result, the only activity observed in these samples
was that of 37.1-day S35, which decays completely by negatron emission.
However, in two later bombardments the samples were purified and counted
immediately, and both showed the 170-minute activity of S38, which was
discovered recently by Nethaway and Caretto. The samples were counted
in a proportional counter, and the assignment of the 170-minute activity
to S38 was confirmed by using the scintillation spectrometer to detect
the 1.88-Mev gamma ray from the decay of this isotope.

Chlorine

The decay of 32.4-minute Cl34m was studied by observing the 510-
kev annihilation radiation from the positrons emitted in 100% of the
decays of this nuclide. The disintegration rate of Cl34m, as determined in this manner, was converted to the corresponding proportional-counter counting rate. The latter was then subtracted from the gross proportional-counter decay curves to give the combined activities of 37.3-minute Cl38 and 55-minute Cl39, which are both negatron emitters. The individual activities of Cl38 and Cl39 were then resolved by least-squares analysis.

Potassium

Least-squares analysis was used to resolve 12.5-hour K42 and 22.4-hour K43 from proportional-counter decay curves. An activity with a half-life of about 30 minutes was also observed in the potassium samples, and was attributed to 22-minute K44 and 34-minute K45. However, the data were never sufficient to resolve this short activity into two components.

Calcium

The calcium samples were counted in a proportional counter over a time sufficiently long so that the decay curves showed only the 164-day activity of the negatron emitter Ca45. This activity was subtracted from the gross decay curves and a least-squares analysis was done to separate the activities of 4.8-day Ca47 and its daughter, 3.43-day Sc47.

Manganese

The gross proportional-counter decay curves were easily resolved into the activities of 5.72-day Mn52 and 2.58-hour Mn56. Mn52 decays 33% by positron emission, and Mn56 decays by negatron emission.

Iron

The activities of 8.3-hour Fe52 and 45.1-day Fe59 were easily resolved from the proportional-counter decay curves. Fe52 decays 59% by positron emission and was counted in equilibrium with 21.3-minute Mn52m, which in turn decays 98.5% by positron emission. Fe59 is a negatron emitter.
Nickel

Only two activities were observed in the nickel samples. The negatron-emitting 2.56-hour Ni65 was easily resolved on proportional-counter decay curves from 56-hour Ni66, which was counted in equilibrium with 5.1-minute Cu66.

IV. RESULTS AND DISCUSSION

The cross sections measured are presented in Table I and are shown graphically in Fig. 1. Yields are in millibarns and are based on the value of 10.5 mb assumed for the reaction Al27 (p,3pn) Na24 at 5.7 Bev. Errors due to counting statistics, uncertainties in counting corrections, analysis of decay curves, etc., are estimated to be about ± 20%. This does not include the ± 30% error estimated for the absolute-cross-section standard.

The results obtained in this study, when combined with Shudde's work on uranium fission induced by 5.7-Bev protons, are consistent with present ideas concerning high-energy reactions. The cross sections measured by Shudde are presented in Table II.

At lower energies ($E_p \leq 0.40$ Bev) the products from bombardment of the heavier elements (e.g., lead, bismuth, thorium, and uranium) fall into several clearly defined mass regions. The spallation region includes nuclides within 30 or 40 units of A of the target; the formation cross sections of these nuclides decrease sharply with decreasing A. There is a corresponding region composed of extremely low-mass nuclides (neutrons, protons, and helium nuclei) which are the partners of the heavy spallation products; in this second region yields decrease sharply with increasing A. The fission region lies between these two regions and is separated from them by valleys of very low yields.
Table I

Cross sections for production of nuclides from uranium bombarded by 5.7-Bev protons

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>$T_{1/2}$</th>
<th>E_γ</th>
<th>Cross section (millibarns)</th>
<th>Type of Yield*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be7</td>
<td>5.38</td>
<td>0.48</td>
<td>15.</td>
<td>C</td>
</tr>
<tr>
<td>Na22</td>
<td>2.67</td>
<td>1.28</td>
<td>2.4</td>
<td>C</td>
</tr>
<tr>
<td>Na24</td>
<td>1.58</td>
<td>2.7,1.3</td>
<td>12.</td>
<td>C</td>
</tr>
<tr>
<td>Mg28</td>
<td>2.13</td>
<td>1.35, 1.9</td>
<td>3.8</td>
<td>C</td>
</tr>
<tr>
<td>Si31</td>
<td>2.68</td>
<td>1.26</td>
<td>2.4</td>
<td>C</td>
</tr>
<tr>
<td>P32</td>
<td>14.5D</td>
<td>0.05</td>
<td>1.8</td>
<td>I</td>
</tr>
<tr>
<td>P33</td>
<td>25D</td>
<td>0.06</td>
<td>0.87</td>
<td>C</td>
</tr>
<tr>
<td>S35</td>
<td>87D</td>
<td>0.06</td>
<td>3.7</td>
<td>C</td>
</tr>
<tr>
<td>S38</td>
<td>?</td>
<td></td>
<td>0.77</td>
<td>C</td>
</tr>
<tr>
<td>Cl34m</td>
<td>3.4m</td>
<td>2.1, 1.1</td>
<td>1.1</td>
<td>C</td>
</tr>
<tr>
<td>Cl38</td>
<td>37m</td>
<td>2.1, 1.6</td>
<td>4.5</td>
<td>I</td>
</tr>
<tr>
<td>Cl39</td>
<td>55m</td>
<td>3.1</td>
<td>2.5</td>
<td>C</td>
</tr>
<tr>
<td>K42</td>
<td>12.5n</td>
<td>1.5, 2.2</td>
<td>2.5</td>
<td>C</td>
</tr>
<tr>
<td>K43</td>
<td>22h</td>
<td>1.6</td>
<td>4.5</td>
<td>C</td>
</tr>
<tr>
<td>K44,45</td>
<td><</td>
<td></td>
<td>2.9</td>
<td>C</td>
</tr>
<tr>
<td>Ca45</td>
<td>160D</td>
<td>0.05</td>
<td>5.6</td>
<td>C</td>
</tr>
<tr>
<td>Ca47</td>
<td>47D</td>
<td>1.3, 0.8</td>
<td>1.6</td>
<td>C</td>
</tr>
<tr>
<td>Mn52</td>
<td>57D</td>
<td>1.4, 0.9</td>
<td>1.3 (ground state only)</td>
<td>~ I</td>
</tr>
<tr>
<td>Mn56</td>
<td>2.58h</td>
<td>1.8, 2</td>
<td>7.1</td>
<td>C</td>
</tr>
<tr>
<td>Fe52</td>
<td>8h</td>
<td>1.4, 4</td>
<td>0.045</td>
<td>C</td>
</tr>
<tr>
<td>Fe59</td>
<td>45D</td>
<td>1.1, 1.4</td>
<td>3.7</td>
<td>C</td>
</tr>
<tr>
<td>Ni65</td>
<td>3.56h</td>
<td>1.5, 1.1</td>
<td>2.8</td>
<td>C</td>
</tr>
<tr>
<td>Ni66</td>
<td>56h</td>
<td>2</td>
<td>1.6</td>
<td>C</td>
</tr>
</tbody>
</table>

C and I are used to designate cumulative yields and independent yields, respectively.
Fig. 1. Experimentally measured cross sections (in millibarns) (stable nuclides are shaded).
Table II
Cross sections for production of nuclides from uranium bombarded by 5.7-Bev protons (measured by R. H. Shudde)

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Cross section* (millibarns)</th>
<th>Type of Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn52</td>
<td>0.68</td>
<td>~ I</td>
</tr>
<tr>
<td>Mn56</td>
<td>6.3</td>
<td>c</td>
</tr>
<tr>
<td>Pd59</td>
<td>2.3</td>
<td>c</td>
</tr>
<tr>
<td>Co61</td>
<td>6.5</td>
<td>c</td>
</tr>
<tr>
<td>Ni65</td>
<td>2.8</td>
<td>c</td>
</tr>
<tr>
<td>Ni66</td>
<td>1.25</td>
<td>c</td>
</tr>
<tr>
<td>Cu61</td>
<td>0.53</td>
<td>c</td>
</tr>
<tr>
<td>Cu64</td>
<td>5.4</td>
<td>I</td>
</tr>
<tr>
<td>Cu67</td>
<td>4.0</td>
<td>c</td>
</tr>
<tr>
<td>Zn69m</td>
<td>2.0</td>
<td>c</td>
</tr>
<tr>
<td>Zn72</td>
<td>0.68</td>
<td>c</td>
</tr>
<tr>
<td>Ga68</td>
<td>7.1</td>
<td>I</td>
</tr>
<tr>
<td>Ga72</td>
<td>5.4</td>
<td>~ I</td>
</tr>
<tr>
<td>Ga73</td>
<td>6.1</td>
<td>c</td>
</tr>
<tr>
<td>Mo99</td>
<td>42.</td>
<td>c</td>
</tr>
<tr>
<td>Ru103</td>
<td>28.</td>
<td>c</td>
</tr>
<tr>
<td>Ru105</td>
<td>28.</td>
<td>c</td>
</tr>
<tr>
<td>Ru106</td>
<td>25.</td>
<td>c</td>
</tr>
<tr>
<td>Pd109</td>
<td>23.</td>
<td>c</td>
</tr>
<tr>
<td>Pd111m</td>
<td>2.7</td>
<td>c</td>
</tr>
<tr>
<td>Pd111</td>
<td>7.2</td>
<td>c</td>
</tr>
<tr>
<td>Pd112</td>
<td>1.15</td>
<td>c</td>
</tr>
<tr>
<td>Ag110m</td>
<td>3.0</td>
<td>I</td>
</tr>
<tr>
<td>Ag111</td>
<td>21.5</td>
<td>c</td>
</tr>
<tr>
<td>Ag112</td>
<td>9.5</td>
<td>~ I</td>
</tr>
<tr>
<td>Ag113</td>
<td>15.</td>
<td>c</td>
</tr>
<tr>
<td>Ag115</td>
<td>7.3</td>
<td>c</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Cross section * (millibarns)</th>
<th>Type of Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd115m</td>
<td>9.5</td>
<td>C</td>
</tr>
<tr>
<td>Cd115</td>
<td>28.</td>
<td>C</td>
</tr>
<tr>
<td>Cd117m</td>
<td>13.</td>
<td>C</td>
</tr>
<tr>
<td>In111</td>
<td>5.9</td>
<td>C</td>
</tr>
<tr>
<td>In114m</td>
<td>4.8</td>
<td>I</td>
</tr>
<tr>
<td>Ba128</td>
<td>20.</td>
<td>C</td>
</tr>
<tr>
<td>Ba140</td>
<td>32.</td>
<td>C</td>
</tr>
<tr>
<td>La140</td>
<td>0.9</td>
<td>I</td>
</tr>
<tr>
<td>La132,133,141</td>
<td>29.</td>
<td></td>
</tr>
<tr>
<td>Ta178</td>
<td>5.9</td>
<td>I</td>
</tr>
<tr>
<td>Ta183</td>
<td>8.6</td>
<td>C</td>
</tr>
<tr>
<td>Pb204m_2</td>
<td>15.</td>
<td>~ I</td>
</tr>
<tr>
<td>Pb209</td>
<td>3.9</td>
<td>C</td>
</tr>
<tr>
<td>Pb212</td>
<td>0.47</td>
<td>C</td>
</tr>
<tr>
<td>Bi210</td>
<td>3.0</td>
<td>C</td>
</tr>
</tbody>
</table>

* Cross sections presented in Table II have been adjusted to a value of 10.5 mb for the monitor reaction. Shudde's original figures were based on a value of 8.3 mb.
As the bombarding energy is raised, several trends become evident. Comparisons of yields of products resulting from the bombardment of uranium with 340-Mev, 480-Mev, 3.0-Bev, and 5.7-Bev protons; of bismuth with 340-Mev, 480-Mev, 660-Mev, and 2.2-Bev protons; and of lead with protons in the energy range 0.6 to 3.0 Bev, show that as the bombarding energy is increased, significant changes occur in the yields-vs-mass curves. The over-all curves begin to "flatten out" with increasing energy, and the deep valleys between the fission and spallation regions progressively become shallower. Quantitatively, chain yields in the fission region tend to remain about the same within an order of magnitude, while the yields of products in the valleys may increase by several orders of magnitude. Wolfgang et al. have found that in bombardment of lead with 3.0-Bev protons the cross sections for forming a product of any mass number below the target mass are the same within an order of magnitude, in striking contrast with results obtained at lower energies. Thus the fission and spallation regions are no longer well-defined, and it is sometimes very difficult to assign specific mechanisms to the production of various nuclides.

These same trends are apparent when yields of products obtained in this work are compared with yields obtained from uranium at lower proton energies. The yield of Na at 5.7 Bev is 200 times as high as that at 0.34 Bev; the P yield is 250 times as high as at 0.48 Bev; the Fe yield is 20 times that at 0.34 Bev, while the yields of nickel isotopes are 2 to 5 times as high as at 0.34 Bev.

Wolfgang et al. have found that the excitation function for Na production from lead increased only from 2 mb to about 4 mb between 2.0 and 3.0 Bev, while the yields of P, Mg, and Fe leveled off at a value of about 0.5 mb in the same energy range. The yields of Na, P, and Mg obtained in this work are 6 to 9 times as high as the yields from lead at 3.0 Bev.

Caretto and Hudis have determined excitation functions for production of F and Na from various target elements at proton energies up to 6.0 Bev. The curves rise steeply from a threshold in the neighborhood of 0.5 Bev and begin to level off at values of the order of millibarns.
above 3.0 Bev. The sharp rise from a threshold at about 0.5 Bev suggests that a different mechanism comes into play in the Bev region, and lends credibility to the fragmentation mechanism. Curves of Na24 yields vs target mass for bombarding energies of 1.0 Bev, 2.0 Bev, and 6.0 Bev also exhibit interesting features. The curves all show discontinuities near mass 170. The curves for the two lower energies decrease steadily to this point and then rise steeply; the 6.0-Bev curve has a minimum near mass 100 and a slight peak at mass 170, after which the yields increase slowly. If one is willing to accept the meson-production-and-reabsorption process postulated by Wolfgang et al., the increasing yields for heavy target nuclei could be explained by saying that as the target mass (and nuclear size) increase, the mesons have a greater probability of being reabsorbed and making their energy available for fragmentation. The high yields from low-mass targets are probably due to the familiar cascade-evaporation mechanism.

With the evidence of Caretto and Hudis in mind, the yields from uranium at 5.7 Bev are not inconsistent with the much lower yields from lead at 3.0 Bev. Not only is there an energy effect, but also the higher mass of uranium would contribute to higher yields.

In connection with this, Pate and Friedlander have determined cross sections for a number of protactinium and astatine isotopes produced in the bombardment of uranium with 3.0-Bev protons. The protactinium yields are lower by factors of 2 to 4 than those at 340 Mev, while the yields of the neutron-deficient protactinium isotopes are very low and drop off sharply with distance from the stability line. (Some of the cross sections reported are 0.17 mb for Pa227, 0.64 mb for Pa228, and 2.4 mb for Pa229. On the other hand, the yields of astatine isotopes (At209, At211) with approximately the same neutron-proton ratios as the very light protactinium isotopes are of the order of a millibarn. The astatine yields, relative to the protactinium yields, are difficult to explain in terms of spallation followed by successive alpha decays. However, if it is assumed that relatively large fragments are broken off from an excited protactinium nucleus in a fast process, producing high yields of entities in the region of astatine, then correspondingly high
yields would be expected in the low-mass region. High yields are indeed observed in the low-mass region in this work and in other high-energy studies mentioned previously.

Close examination of the data presented in Table I, combined with some admittedly crude interpolations, indicates that the maximum yields for each mass number occur along the stability line or slightly to the neutron-excess side of it. This is consistent with the fragmentation mechanism. This mechanism would be fast compared with the lifetime of a compound nucleus, and the neutron-proton ratios in the initial fragments are expected to be the same as in the undisrupted nucleus. Thus light fragments (A ~ 40) would be initially neutron-rich. In the de-excitation process the evaporation cascade would tend first toward the stability line and then, owing to the low Coulomb barriers toward proton emission in this region, along the stability line.
ACKNOWLEDGMENTS

I wish to express my gratitude to Professor Glenn T. Seaborg, under whose guidance this work was performed, and to Dr. Earl K. Hyde and Dr. Lester Winsberg for their interest and helpful service. I would also like to thank Dr. Rex H. Shudde, Dr. Albert A. Caretto, and Dr. James R. Grover for many valuable discussions and suggestions. In addition, my sincere appreciation is extended to Dr. Edward Lofgren and the Bevatron operating group for their cooperation; to David R. Nethaway and Dr. Albert A. Caretto for their data on sulfur-38; and to Dr. Eugene Huffman, Eugene Lee, Edward Jeung, and Karl Marhenke for the chemical analyses of many samples.

I also wish to thank the United States Rubber Company for furnishing me with a United States Rubber Company Fellowship during part of this work.

This work was performed under the auspices of the United States Atomic Energy Commission.
REFERENCES

2. Donald W. Barr, Nuclear Reactions of Copper Induced by 5.7-Bev Protons (Thesis), UCRL-3793, May 1957.

18. Manfred Lindner, Radiochemical Procedures in Use at the University of California Radiation Laboratory (Livermore), UCRL-4377, Aug. 1954.

38. A. A. Caretto and J. Hudis, to be published.