Title
On analog simulation of ionization cooling of muons

Permalink
https://escholarship.org/uc/item/2wx4c3n5

Author
Xie, Ming

Publication Date
2001-06-18
On Analog Simulation of Ionization Cooling of Muons

Ming Xie
Lawrence Berkeley National Laboratory
Berkeley, California 94720, USA

Presented at 2001 Particle Accelerator Conference
Chicago, USA, June 18 - 22, 2001
To be published in the conference proceedings

This work was supported by the Director, Office of Science, Office of High Energy and Nuclear Physics, High Energy Physics Division, of the U.S. Department of Energy under contract No.DE-AC03-76SF00098.
On Analog Simulation of Ionization Cooling of Muons

Ming Xie, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract

Analog simulation, proposed here as an alternative approach for the study of ionization cooling of muons, is a scaled cooling experiment, using protons instead of muons as simulation particles. It is intended to be an effective and flexible, quick and inexpensive experiment for the understanding and validation of unprecedentedly complicated cooling physics, for the demonstration and optimization of various elaborated techniques for beam manipulation in 6D phase space. It can be done and perhaps should be done before the costly and time-consuming development of extremely challenging, muon-specific cooling technology. In a nutshell, the idea here is to build a toy machine in a playground of ideas, before staking the Imperial Guard of Napoleon into the bloody battlefield of Waterloo.

1 INTRODUCTION

A muon collider [1] is possible only if ionization cooling works effectively in reducing the huge 6D phase space volume of muons inherent from creation. Currently, ionization cooling is investigated through three approaches: theory, digital simulation, and a demonstration experiment [2]. To understand that there is a need for yet another approach of investigation, let us conceptually divide our R&D objectives into two parts: physics and technology.

The first part includes understanding and validation of ionization cooling physics, as well as demonstration and optimization of various elaborated techniques for beam manipulation in 6D phase space. The second part involves developing and testing specific technology and hardware required for muon cooling, such as superstrong solenoid, high field lithium lens, robust liquid \(H_2 \) absorber, and high gradient acceleration structure.

Apparently, the first part has to be done first, for if it turns out to be negative, there would not be a need to carry out the second part that is bound to be costly and time-consuming. Otherwise, questions arise. Are we really confident that the study on the first part would not lead to exclusion on physics ground of the feasibility of the required cooling? Furthermore, could the study on the first part would not lead to exclusion on physics ground of the feasibility of the required cooling?

My responses to both questions are negative. First, we must recognize that the complexity of the problem we are dealing with is unprecedented in accelerator physics, when taking into account the reality of non-paraxial beam manipulation, strong nonlinearity, and possibly space charge effects, let alone optimization of various techniques for emittance exchange. Second, theory on complicated subject is often based on simple and idealized models, and digital simulation, when integrated to be inclusive, is often too complicated to be conclusive, thus experiment is highly desirable as a benchmark and a reality check for both.

Instead of advocating a full-fledged demonstration experiment [2], which is itself a major development of muon-specific technology, for physics validation, we propose an alternative experimental approach, analogy simulation, which requires little or no technology development. Specifically, analog simulation is a scaled cooling experiment, using protons instead of muons as simulation particles for easier source production, beam handling and cooling diagnostics. With proper choice of parameters, analog simulation can be designed as an effective and flexible, quick and inexpensive experiment to extract essential physics.

Of course, proton and muon are different in numerous aspects, such as mass, lifetime, and nuclear interaction through matters, but the effects due to these differences can be scaled or normalized to a large extent in a broad sense, therefore, essential physics can still be extracted. As such, proton cooling can be used as a benchmark for the development of cooling theory and digital simulation. It can also offer insights and guidelines to optimal component and system designs for ionization cooling of muons. In the game of “scaled experiment”, what we can learn and benefit from are limited only by our own imagination.

2 BASIC COOLING THEORY

We review basic concepts and results of ionization cooling theory, with a focus on Robinson-Liouville theorem [3, 4]. This preparation is necessary for later discussions and direct comparisons of coolings of protons and muons. Assuming upright ellipses, normalized 6D emittance is,

\[\varepsilon_6 = \varepsilon_x \varepsilon_y \varepsilon_z , \]

where under paraxial approximation

\[x' = \frac{dx}{dz} \ll 1, \quad y' = \frac{dy}{dz} \ll 1, \quad \delta_p = \frac{\sigma_p}{p} \ll 1, \]

normalized 2D emittances are

\[\varepsilon_x = \beta \gamma \sigma_x \sigma_{x'}, \quad \varepsilon_y = \beta \gamma \sigma_y \sigma_{y'}, \quad \varepsilon_z = \beta \gamma \sigma_z \delta_p , \]

The fractional differentials then satisfy

\[\frac{d\varepsilon_6}{\varepsilon_6} = \frac{d\varepsilon_x}{\varepsilon_x} + \frac{d\varepsilon_y}{\varepsilon_y} + \frac{d\varepsilon_z}{\varepsilon_z} . \]

Following Palmer [5], we classify all average effects as cooling and all stochastic effects as heating

\[\frac{d\varepsilon_x}{\varepsilon_x} = \frac{d_h \varepsilon_x}{\varepsilon_x} + \frac{d_c \varepsilon_x}{\varepsilon_x} , \]

and define partition numbers for cooling and heating by

\[J_x = \frac{d_c \varepsilon_x / \varepsilon_x}{dp/p}, \quad K_x = \frac{d_h \varepsilon_x / \varepsilon_x}{dp/p} . \]
Cooling in 2D phase space requires \(J_x + K_x > 0 \), since \(dp < 0 \) in an absorber. Likewise in 6D, we have
\[
\frac{d\epsilon_6}{\epsilon_6} = (J_6 + K_0) \frac{dp}{p},
\]
where \(J_6 = J_x + J_y + J_z, K_0 = K_x + K_y + K_z \). Cooling in 6D phase space requires \(J_0 + K_0 > 0 \).

Next, we derive partition numbers for each dimensions. For transverse cooling it is easy to show that \(J_x = 1 \) and \(J_y = 1 \). To find \(J_z \), we start from an alternative expression, \(\epsilon_z = c\sigma_t\sigma_v \), derived with \(\sigma_z = \beta\sigma_t, \sigma_v = \beta\sigma_\eta, \eta = \beta\gamma, \)
\[d\gamma = \beta d\eta \). Since \(\sigma_t \) is constant, we have
\[
\frac{1}{\epsilon_z} \frac{d\epsilon_z}{dz} = \frac{1}{\sigma_v} \frac{d\sigma_v}{dz}.
\]
Then, using the relation \([1, 5]\)
\[
\frac{1}{\epsilon_z} \frac{d\epsilon_z}{dz} = \frac{d}{d\gamma} \left(\frac{d\gamma}{dz} \right),
\]
and electronic stopping power of Bethe \([6]\)
\[
\frac{d\gamma}{dz} = -\frac{\alpha_s L_s}{m\beta^2}, \quad L_s = \ln(b_s\eta^2) - \beta^2,
\]
we obtain the longitudinal cooling partition number
\[
J_z = -2 + \frac{2[1 + \eta^2 \ln(b_s\eta^2)]}{\gamma^2 L_s},
\]
where \(\alpha_s = 4\pi r_e^2 n_e, b_s = 2m_e c^2 / I, m = m_0 m_e, \) \(m \) is the rest mass of beam particle, \(m_e \) and \(r_e \) are the rest mass and classical radius of electron, \(n_e \) is electron volume density and \(I \) is average ionization energy of the absorber.

The heating effects in an absorber include multiple scattering \([6]\) which induces an angle spread
\[
\sigma_{x'} = \sqrt{\frac{(1 + Z) L_b \alpha_s h}{m\beta\eta}},
\]
and straggling \([6]\) which induces a momentum spread
\[
\delta_{ps} = \sqrt{\frac{(1 + \eta^2/2)\alpha_s h}{m\beta\eta}},
\]
where
\[
L_b = \ln \left(\frac{183}{Z/3} \right),
\]
which is related to radiation length by \([6]\)
\[
X_0 = \frac{\pi}{\alpha\alpha_s(1 + Z)L_b},
\]
\(\alpha \) is the fine structure constant, \(h \) is the thickness and \(Z \) is the atomic number of the absorber. Given initial and final momentum of the particle, the absorber thickness can be determined by
\[
a_s h = \int_{\eta_f}^{\eta_i} \frac{m\eta^3 \, d\eta}{\sqrt{1 + \eta^2(1 + \eta^2) \ln(b_s\eta^2) - \eta^2}}.
\]

Assuming \(\sigma_x \) will not change significantly through the absorber, the transverse heating can be related to the angle spread induced by multiple scattering through \([1, 5]\)
\[
\frac{1}{\epsilon_x} \frac{d\epsilon_x}{dz} = \frac{\beta \beta_\perp}{2\epsilon_x} \frac{d\sigma_x^2}{dz},
\]
where \(\beta_\perp \) is the beta function. In case of a solenoid field, \(\beta_\perp = \alpha_g m\eta / B_x \), where \(\alpha_g = 2m_e c/\epsilon \). From Eqs.(2,3,5), transverse heating partition number is
\[
K_x = -\frac{\epsilon_0}{\epsilon_x} \epsilon_0 = \frac{\beta \beta_\perp (1 + Z)L_b}{m L_x}.
\]

Similarly, the longitudinal heating partition number due to straggling can be derived from Eqs.(1,2,4)
\[
K_z = -\frac{1 + \gamma^2}{4m\delta_{ps}^2 \gamma L_s}.
\]

Summarizing all results on partition numbers gives
\[
J_0 = \frac{2[1 + \eta^2 \ln(b_s\eta^2)]}{\gamma^2 L_s},
\]
\[
J_6 + K_0 = J_6 \left[1 - \left(\frac{\delta_0}{\epsilon_p} \right)^2 \right] - \frac{\epsilon_0}{\epsilon_x} - \frac{\epsilon_0}{\epsilon_y},
\]
\[
\delta_0^2 = \frac{\alpha_g (1 + \gamma^2)}{8m \ln[1 + \eta^2 \ln(b_s\eta^2)]}.
\]

To maintain cooling in 6D, the minimum transverse emittance is constrained by \(J_0 + K_0 = 0 \), yielding
\[
\frac{2\epsilon_0}{\epsilon_{min}} = J_6 \left[1 - \left(\frac{\delta_0}{\epsilon_p} \right)^2 \right],
\]
and correspondingly
\[
\sigma_{x'min} = \frac{\epsilon_{min}}{\eta \beta_\perp}, \quad \sigma_{xmin} = \sqrt{\frac{\beta_\perp \epsilon_{min}}{\eta}}.
\]

It must be noted that the simple theory presented here is based on approximations that are not necessarily valid, thus should be used only qualitatively as guidelines.

3 METHODOLOGY

The ultimate goal of a scaled experiment is to validate physics first without having to commit time and resource into technology development which may or may not be useful in the end depending on the verdict of physics validation. Driven by such a goal, our design philosophy is first to make the scaled experiment as convenient, flexible, and inexpensive as possible, and then to extract as much essential physics as possible through ingenious scaling and benchmark with theory and digital simulation.
An example is given in Table 1 for proton cooling with Be foil. For comparison, a typical case [1] is given in Table 2 for muon cooling with liquid H_2. In both cases, it is seen that cooling in 6D phase space is possible since $J_6 > 0$, but cooling in longitudinal phase space is impossible without emittance exchange since $J_z = J_6 - 2 < 0$ below minimum ionization. It is noted that we have used a much lower solenoid field and a much easier-to-handle absorber for proton cooling. As a result, both $\sigma_{x\text{min}}$ and $\sigma'_{x\text{min}}$ have larger values for proton beam. However, if we use the same solenoid field ($B_s = 15$T) and absorber (liquid H_2) for proton as for muon, we would have $\sigma_{x\text{min}} = 2.5$mm and $\sigma'_{x\text{min}} = 76$mr for proton beam. In calculations, we have used $I = 64$eV, $n_e = 4.95 \times 10^{23}$/cm3 for Be, and $I = 22$eV, $n_e = 0.423 \times 10^{23}$/cm3 for liquid H_2.

Table 1: Example of Proton through Be

<table>
<thead>
<tr>
<th>E_k (MeV)</th>
<th>p (MeV/c)</th>
<th>η</th>
<th>J_6</th>
<th>B_s (T)</th>
<th>β_\perp (cm)</th>
<th>$\Delta E_k/E_k$ (%)</th>
<th>h (µm)</th>
<th>δ_0 (%)</th>
<th>δ_p (%)</th>
<th>$\sigma_{x\text{min}}$ (mm)</th>
<th>$\sigma'_{x\text{min}}$ (mr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>75</td>
<td>0.08</td>
<td>0.44</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>0.47</td>
<td>1.2</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>75</td>
<td>0.08</td>
<td>0.44</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>0.47</td>
<td>1.2</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>0.47</td>
<td>1.2</td>
<td>5</td>
<td>22</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>0.47</td>
<td>1.2</td>
<td>5</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 2: Example of Muon through Liquid H_2

<table>
<thead>
<tr>
<th>E_k (MeV)</th>
<th>p (MeV/c)</th>
<th>η</th>
<th>J_6</th>
<th>B_s (T)</th>
<th>β_\perp (cm)</th>
<th>$\Delta E_k/E_k$ (%)</th>
<th>h (cm)</th>
<th>δ_0 (%)</th>
<th>δ_p (%)</th>
<th>$\sigma_{x\text{min}}$ (mm)</th>
<th>$\sigma'_{x\text{min}}$ (mr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>200</td>
<td>1.9</td>
<td>1.7</td>
<td>15</td>
<td>8.9</td>
<td>10</td>
<td>38</td>
<td>0.87</td>
<td>1.3</td>
<td>5</td>
<td>351</td>
</tr>
<tr>
<td>200</td>
<td>1.9</td>
<td>1.7</td>
<td>15</td>
<td>8.9</td>
<td>10</td>
<td>10</td>
<td>38</td>
<td>0.87</td>
<td>1.3</td>
<td>5</td>
<td>351</td>
</tr>
<tr>
<td>1.3</td>
<td>5</td>
<td>351</td>
<td>439</td>
<td>46.6</td>
<td>51</td>
<td>17</td>
<td>38</td>
<td>0.87</td>
<td>1.3</td>
<td>5</td>
<td>351</td>
</tr>
</tbody>
</table>

An important parameter for the scaled experiment is proton energy. To avoid severe beam loss through an absorber, proton energy should not be too high to cause excessive nuclear interaction [7, 8], or too low to induce significant charge exchange [7]. Residual effects of these proton-specific interactions can be removed or normalized, noting that angular and energy characteristics of these interactions are distinctly different from those caused by the intrinsic ionization process. In addition, requirements on beam focusing and re-acceleration are relaxed at lower energy. In the range of a few MeV, proton interaction with Be foil has been well studied [9].

The concept of “scaled experiment” should be understood and exploited to our full advantage in the broadest sense. In Table 1 and Table 2, scaling is applied broadly over particle type and energy, absorber type, cooling rate and time, and relative position on ionization curve. To extend the concept further, one may speculate even scaling from cooling to heating or vice versa. As shown in Table 1, the equilibrium emittance of ionization cooling is much larger than what can be produced with available proton sources. To demonstrate cooling, source emittance has to be increased first. This can be accomplished easily through the very same ionization process, for example, by placing an absorber foil in a high-β_\perp region. Behavior of heating, if well benchmarked with theory and digital simulation, should also tell us a lot about cooling.

An important advantage of analog simulation is that various difficult issues of beam dynamics can be studied over a wide range of scaled parameter space in a controlled fashion. For example, effects of non-paraxial beam and non-linearity on emittance exchange can be studied gradually in strength as proton emittance is increased from a small initial value, a convenient control knob not available with muons. In addition, space charge effects can be studied adiabatically by varying proton current. Finally, the flexibility of analog simulation, as a toy machine which can be transformed and outfitted quickly, provides a convenient platform for testing various different cooling techniques [10] and searching for the optimal configuration.

4 CONCLUSIONS

One day in Berkeley, I got a fortune cookie [11], it says: “if you have a difficult task, give it to a lazy man — he will find an easier way to do it”. Enlightened, I hereby give it a try. This work was supported the U.S. Department of Energy under contract No.DE-AC03-76SF00098.

5 REFERENCES