Title
Reliability of optic disk topographic measurements recorded with a video-ophthalmograph.

Permalink
https://escholarship.org/uc/item/2x18v9hq

Journal
American journal of ophthalmology, 98(1)

ISSN
0002-9394

Authors
Mikelberg, FS
Douglas, GR
Schulzer, M
et al.

Publication Date
1984-07-01

DOI
10.1016/0002-9394(84)90194-6

License
CC BY 4.0

Peer reviewed
RELIABILITY OF OPTIC DISK TOPOGRAPHIC MEASUREMENTS
RECORDED WITH A VIDEO-OPHTHALMOGRAPH

FREDERICK S. MIKELBERG, F.R.C.S.(C), GORDON R. DOUGLAS, F.R.C.S.(C),
MICHAEL SCHULZER, M.D., TOM N. CORNSWEET, PH.D., AND Kees WIJSMAN
Vancouver, Canada

The video-ophthalmograph records the topography of the optic disk via simultaneous stereoscopic images which are stored and analyzed with the help of a microcomputer. This information is used to generate the vertical cup-disk ratio, the vertical optic disk diameter, the cup volume, and the neuroretinal rim area. To determine the reliability of the data, we recorded information for one eye of each of five patients ten times to determine the interphotographic error variance. We also analyzed one photograph for each of five patients ten times to determine the intraphotographic variance attributable to repeated analysis of the same photograph. The interphotographic and intraphotographic coefficients of variation were 2% to 18% and 2% to 7% respectively for these measurements.

Material and Methods

The instrument—The video-ophthalmograph records the topography of the optic disk by recording simultaneous stereoscopic video images which are stored and analyzed with the help of a microcomputer. This technique does not require skilled operators and also has the advantage of bypassing the photographic process. Additionally, the results of optic disk measurements are available rapidly and sequential comparisons can be extracted from the digitized information.
ponents: an optical head, containing all of the optical system and some of the electronics along with the support for the patient's head and chin; the operator's desk, the pedestal of which contains most of the electronics; a televideo CRT monitor, on which the operator's instructions are displayed; a televideo keyboard on which the operator can type information and instructions; another CRT monitor on which the results are displayed; a light pen which the operator uses to control the instrument; and a floppy disc drive to store the results.

The optical system of the video-ophtalmograph performs three general functions. First, it illuminates the eye with infrared light and forms an image of the iris and pupil on an infrared-sensitive television camera, permitting the operator to perform coarse manual alignment of the instrument with respect to the pupil. This subsystem also permits automatic fine continuous alignment.

A second subsection of the optical system provides a fixation target for the patient. This target is a flashing white spot bright enough to be seen even when the eye is brightly illuminated with the measuring light. The position of the target is controlled by the operator to center the optic disk on the video screen.

The third optical subsystem illuminates the fundus with light and forms a simultaneous stereoscopic pair of images of the fundus on a sensitive television camera. The lights, motors, and cameras in the optical head are controlled by two computers inside the desk. These computers are controlled by the keyboard and the light pen. While the instrument is on all of the pictures and data are stored on a hard disc. At the end of a data-taking session the operator can store the pictures and data on 8-inch floppy discs.

Methods—Once the pictures and data are stored, the computer calculates the depths of points on the optic disk by measuring the distance between corresponding points of the simultaneous stereoscopic pairs, giving depth values with a theoretical sensitivity of 12 µm. This is performed for 1,600 points on the optic disk. The computer then calculates the vertical cup-disk ratio, neuroretinal rim area, cup volume, and vertical diameter of the optic disk (Figure). The operator indicates the optic disk margin by choosing four points at the horizontal and vertical margins to which the computer fits an ellipse that defines the edge. To calculate the vertical cup-disk ratio the computer defines the cup margin by subtracting 150 µm from the level at the optic disk margin along one meridian and then measuring the distance from the center of the optic disk along that meridian to that defined depth. This is repeated 51 times superiorly each degree along radii from 65 to 115 degrees and inferiorly each degree along radii from 245 to 295 degrees. The mean of these 102 measurements is the vertical cup-disk ratio.

[Figure (Mikelberg and associates). Schematic diagram of the optic disk. A, B, C, and D indicate optic disk margins; line C-D is the vertical optic disk diameter, XY is the cup-disk ratio. The upper cross-hatched area is the neuroretinal rim area and the lower cross-hatched area represents the cup volume.]
The neuroretinal rim is the area between the cup margin and the optic disk edge for the meridians between 65 and 115 degrees superiorly and 245 to 295 degrees inferiorly. The volume of the cup is determined by forming an imaginary plane defined by the average of the top 16 points along each of eight vertical lines superiorly and the bottom 16 points along each of eight vertical lines inferiorly and measuring the volume under this retinal plane. The diameter of the optic disk is equal to the distance from the top to the bottom of the optic disk. The units of measurement are not absolute because the technique does not take into account the axial length of the eye.

To determine the reliability of the data obtained with the video-ophthalmograph, we recorded the data for one eye of each of five patients ten times at the same sitting. We then analyzed the ten records to generate the vertical cup-disk ratio, vertical optic disk diameter, cup volume, and neuroretinal rim area. These data were then analyzed statistically to determine the interphotographic error variance. We also analyzed one record for each of the five patients ten times. These data were analyzed statistically to determine the intraphotographic error variance attributable to repeated analysis of the same record.

RESULTS

We calculated the percent error as a proportion of the mean (coefficient of variation) as follows: $C.V. = \frac{\text{standard deviation}}{\text{mean of sample}}$. The coefficient of variation in the interphotographic and intraphotographic studies respectively was 11.2% and 3.9% for the cup-disk ratio, 2.4% and 1.9% for the optic disk diameter, 17.7% and 6.7% for the neuroretinal rim area, and 18.6% and 2.5% for the cup volume. The standard deviations for the cup-disk ratio were 0.067 and 0.024 for interphotographic and intraphotographic studies respectively (Table).

DISCUSSION

The video-ophthalmograph provides a quick and reliable method of determining the vertical cup-disk ratio and recording any changes in this measurement. Current clinical techniques produce interobserver and intraobserver differences in the cup-disk ratio. The frequency of intraobserver differences of 0.2 or greater was 28% in an experienced group of ophthalmologists. The frequency of inter-

<table>
<thead>
<tr>
<th>TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALYSIS OF VARIANCE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
<th>Mean ± S.D.</th>
<th>95% Confidence Interval</th>
<th>Coefficient of Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interphotographic Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cup-disk ratio</td>
<td>0.6 ± 0.067</td>
<td>0.055 to 0.083</td>
<td>11.2</td>
</tr>
<tr>
<td>Optic disk diameter</td>
<td>131 ± 3.2</td>
<td>2.6 to 4.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Rim area</td>
<td>2,438 ± 432</td>
<td>337 to 547</td>
<td>17.7</td>
</tr>
<tr>
<td>Volume</td>
<td>138,993 ± 25,244</td>
<td>20,859 to 31,982</td>
<td>18.6</td>
</tr>
<tr>
<td>Intraphotographic Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cup-disk ratio</td>
<td>0.61 ± 0.024</td>
<td>0.02 to 0.03</td>
<td>3.9</td>
</tr>
<tr>
<td>Optic disk diameter</td>
<td>130 ± 2.5</td>
<td>2.1 to 3.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Rim area</td>
<td>2,390 ± 161</td>
<td>134 to 203</td>
<td>6.7</td>
</tr>
<tr>
<td>Volume</td>
<td>134,306 ± 3,324</td>
<td>2,757 to 4,186</td>
<td>2.5</td>
</tr>
</tbody>
</table>
observer differences of 0.2 or greater was 25% with contact lens biomicroscopy. The video-ophthalmograph provides an objective means of recording this measurement with a standard deviation of 0.067. Therefore, with this instrument only 5% of repeat cup-disk measurements will differ by more than ± 0.13 (2 S.D.) and only 0.3% differ by ± 0.2 or more (3 S.D.).

Cup volume and neuroretinal rim area are quantities that cannot be easily estimated in a routine clinical examination. It has been shown that neuroretinal rim area may be more valuable than the cup-disk ratio in determining the presence of glaucomatous damage.7,26

Now that the reproducibility of this technique has been determined, we intend to correlate the cup-disk ratio recorded clinically with that obtained on the video-ophthalmograph. We plan to compare the neuroretinal rim area measured by planimetry with the video-ophthalmographic measurements. These measurements will then be compared to the findings on psychophysical tests in an attempt to determine the usefulness of this machine in differentiating normal subjects from patients with any stage of glaucoma.

Although the intraphotographic error is small enough to be acceptable, the interphotographic error is significant enough that it must be taken into account when measuring change in the optic disk as a feature of glaucoma. Attempts to reduce interphotographic errors should be made.

REFERENCES

