Adaptive Sampling for Marine Microorganism Monitoring

Title

Permalink
https://escholarship.org/uc/item/2x64v9w9

Authors
Zhang, Bin
Sukhatme, Gaurav
Requicha, Aristides A. R.

Publication Date
2004-05-05

Peer reviewed
Adaptive Sampling for Marine Microorganism Monitoring

Bin Zhang, Gaurav S. Sukhatme and Aristides A. G. Requicha
Computer Science Department
University of Southern California
Los Angeles, CA 90089
Email: binzhang@cs.usc.edu, gaurav@usc.edu, requicha@usc.edu

Abstract—We describe the design and construction of an underwater sensor actuator network to detect extreme temperature gradients. We are motivated by the fact that regions of sharp temperature change (thermoclines) are a breeding ground for certain marine microorganisms. We present a distributed algorithm using local communication based on binary search to find a thermocline by using a mobile sensor network. Simulations and experiments using a mote test bed demonstrate the validity of this approach. We also discuss the improvement in energy efficiency using a submarine robot as a data mule. Comparisons between experimental data with and without the data mule show that there are considerable energy savings in the sensor network due to the data mule.

I. INTRODUCTION

With advances in processor and radio technologies, low-price wireless sensor and actuator networks are becoming available. With this new technology, a large number of low cost sensors and actuators can be deployed to provide focused in-situ sensing. The integration of local processing and storage allows nodes within such a network to not only provide raw data but also draw inferences and provide high level information. Wireless sensor networks have many applications, such as habitat monitoring [2] [10], battle field target tracking, in-situ exploration of gaseous biosignatures [4] and chemical plume tracking [8]. In this paper, we focus on a particular application: Marine Microorganism Monitoring, which we introduce next.

Microorganisms such as Phytoplankton are exceedingly small (2-3μm) and are distributed in the ocean at varying spatial scales. It is not practical to locate them by measuring their density everywhere. Both from the point of view of locating marine microorganisms, and from the point of view of studying their behavior, it is beneficial to study how their numbers and location are correlated with chemical (e.g. nutrient concentration) and physical parameters (e.g. temperature, light intensity) in the marine environment. There are two major factors that are important to the growth of microorganisms: light intensity and nutrients. In the ocean, the former comes from above (sunlight) and the latter comes from below. At a certain depth, there is a good balance between light intensity and nutrients, and the density of certain microorganisms may be expected to be high. In the ocean, such a region could be a thermocline, a zone where seawater temperature drops rapidly. This sharp change in temperature acts as natural barrier to nutrient diffusion.

Given the hypothesis that marine microorganisms bloom at a thermocline (a physically measurable phenomenon), we focus on the detection and localization of a thermocline in an underwater environment. We propose a decentralized approach - distributed binary search - to localize a thermocline using a wireless sensor actuator network. The spatial gradient of temperature induces a scalar field over all locations underwater. Formally a thermocline is a level set of this field (a locus of points in the environment) with the property that no other level set has a greater value. In practice we look for a family of level sets whose field values exceed some pre-specified threshold. This paper presents two key achievements:

1) We describe an adaptive sampling algorithm based on binary search for the network to reliably detect a thermocline. The algorithm is based purely on local communication, and has been implemented and tested in experiments underwater.

2) We experimentally establish and characterize the network energy savings due to the usage of a robot submarine as a data mule for the sensor network.

II. THE ADAPTIVE SAMPLING ALGORITHM: DISTRIBUTED BINARY SEARCH

Our goal is to develop an algorithm for sensor networks working underwater where communication range is very limited. Given the immense size of the ocean and the tiny size of microorganisms, it is not practical to achieve high sampling density by increasing the density of sensors. By allowing the nodes to move, we can achieve high resolution with significantly lower sensor density.

The basic idea of our approach is sampling by divide and conquer. In this paper we address the problem in one dimension, namely depth. Suppose we have n nodes deployed in a vertical array where the topmost node is connected to the external world (is an ‘edge node’). Each node has its own processor, memory, temperature sensor and radio. However, the communication range is limited and each node can only communicate with its nearby nodes. Each node also has a pressure sensor. Since the change of water pressure is linear in the change of depth, by measuring the pressure around it, the node is able to estimate its depth. We also assume that nodes are able to
change their depth. This can be achieved by change the buoyancy of the node.

The search space is 1D, and is divided into regions. Every node uses its ability to move to explore one such regions. The process is refined by splitting regions into halves i.e. binary search. Each node communicates with its neighbors and tries to persuade them that the thermocline lies within its search region. A process of data aggregation is enacted on the route from each node to the user to combine the conclusions (about the thermocline location) arrived at by the various nodes.

A. Binary Search

Binary search is exploited to find local temperature gradient maxima. At initialization, each node n_i collects temperature data at both end points of its search space, i.e., the upper-most point and lower-most point. The temperature and the depth at each point, t_i, t_b, p_i and p_b, are noted. Then, the node changes its depth and moves to $\frac{t_i + t_b}{2}$, where it collects a new temperature reading t and depth p. The new point divides the search space of node n_i into two parts, the upper part and the lower part. The differences of the new reading and the two previous readings are calculated.

$$\Delta t_t = |t_t - t|$$
(1)

and

$$\Delta t_b = |t_b - t|.$$ \hspace{1cm} (2)

If $\Delta t_t > \Delta t_b$, the lower part is discarded, and t_b, p_b are replaced by t, p. Otherwise, the upper part is discarded, and t_t, p_t are replaced. The remaining part of the search region is the new search region. This process is repeated until termination conditions are satisfied (based on sensing resolution).

B. Data Aggregation

Data Aggregation [9] is an important approach to improve the energy efficiency for sensor networks, which is critical if the sensor networks need to operate continuously for a long time without human attendance. Instead of sending raw data directly to users, some data processing is done ‘in network’, and only the processed data is sent back. Normally, the size of the latter is much less than that of the former. We define four messages for data aggregation:

BUILD-ROUTING-TREE
REGISTRATION
QUERY-MAX-GRADIENT
GRADIENT-REPORT

Messages **BUILD-ROUTING-TREE** and **REGISTRATION** are used to temporarily build a tree expanding all the nodes in the network. **BUILD-ROUTING-TREE** is used to initialize the process while **REGISTRATION** is used to build the tree. **QUERY-MAX-GRADIENT** is the original query from the user and is used to query nodes on maximum gradient. The last message is the most important, and it is the basis of data aggregation. The format of **GRADIENT-REPORT** is as follows:

```c
typedef struct {
    short pos;
    short tempDiff;
    short id;
    short posDiff;
    short temp;
} Gradient_t;
```

```c
typedef struct {
    char num;
    Gradient_t gradients[MAX_NUM];
    short discardThreshold;
    short discardAreaSize;
    short crc;
} ReportGradient;
```

This message indicates the maximum gradient (tempDiff), its location (pos), the node who found it (id) and current resolution (posDiff). **MAX_NUM** defines the maximum number of max gradient one message can report.

In our approach, before data aggregation starts, a routing tree needs to be built. On receiving an initialization message from a user, one node, such as node A in fig1(a), sends the message **BUILD-ROUTING-TREE** with its own ID and the boundaries of its search space to its neighbors to initialize the construction of the routing tree. We assume that each node already knows its search space and the reliable communication range under water before run time. Any node receiving that message, for example node B, would first check the maximum distance between A and B. If the maximum distance is less than the reliable communication range and B does not have a parent, it sends the message **REGISTRATION** to node A. If the message successfully reaches node A, node B sets A as its parent. Otherwise, node B will wait for another **BUILD-ROUTING-TREE** message.

On receiving the message **REGISTRATION**, node A would put node B in its child list. Then node B forwards the message **BUILD-ROUTING-TREE** to its own neighbors and waits for **REGISTRATION** messages. If a node does not receive any registration, it is a leaf. Finally, a tree is built and the node which received the query from users would be the root, as shown in fig1(b). Though nodes are able to move, each of them moves just within a small area, i.e. individual search space. The edge of the routing tree only exists between two nodes between which the maximum distance is less than the reliable communication range. So, the movement of the nodes would not affect routing tree, and hence the routing tree would be valid throughout the execution of the algorithm.

Besides the parent id and child list, each node also keeps three other variables: **selectedChildList**, Δp_d, and Δp_b. **selectedChildList** keeps the list of active children. Together with Δp_d, Δt_d define the maximum temperature gradient discarded in the past. Δt_d is initial-
can go to sleep, saving energy.

be the area with global maximum gradient. So, any other
searching and negotiation. If they do not have to forward
those areas. In this way, many nodes will be suppressed and
come inactive. That is, they would stop local maximum
area with estimated gradient less than that can not have
assumed that the area with estimated gradient
the global maximum gradient, either, and it is safe to drop

REPORT to its parents, node B updates the variable

subregion

p

t

is

accommodate, those with the greater temperature gradient
observation. The candidate thermoclines would be exam-
ined, including the one calculated by node B itself. Any
node, and forward the messages from one to another, thus
acting as a data mule. Motion consumes energy; but we
assume that a process exists to recharge the robot when it
would move from the neighborhood of the root to the active
node, and forward the messages from one to another, thus
acting as a data mule. Motion consumes energy; but we

D. Improvement with a Data Mule

After the first one or two steps of the distributed binary
search, most nodes become inactive. However, they have
to be awake if they are on the path from the active nodes
to the root of the routing tree since they are needed to
forward messages from the active node to the users. When
binary search is running, the nodes in the network can be
divided into three groups, as shown in 1(c). The nodes
labeled black are active nodes while the white ones are
inactive nodes and may go to sleep. The gray nodes are
the nodes which are not active but lie on the path from an
active node to the root. Those nodes must keep awake to
forward messages. If we can create a short cut from the
active nodes to the root, all other nodes can go to sleep,
and energy can be saved.

Because radio signals attenuate rapidly underwater, long
range communications may not be achieved by using radio.
One way to solve this problem is to use sound instead radio
for communication. Another way is to use a messenger, a
robotic node that can move itself autonomously. This robot
would move from the neighborhood of the root to the active
node, and forward the messages from one to another, thus
acting as a data mule. Motion consumes energy; but we
assume that a process exists to recharge the robot when it
surfaces, and do not analyze it further here. Given such a
process we ask if the introduction of a data mule reduces
energy consumption of the static network.
III. Simulations

In this section, we discuss the simulations of the distributed binary search. In our simulation, 4 nodes were deployed along one vertical line. Each node has the abilities mentioned in section 2, such as communication, limited mobility. The reliable communication range is set to be 70 cm, and the width of the search space of each node is 30 cm. The temperature profile was simulated by the following formula

\[T = \frac{k_T}{1 + \exp(k_Z \cdot (Z - Z_0))} \]

where \(T \) is temperature, \(Z \) is depth, \(Z_0 \) is the center of the thermocline and \(k_T \) and \(k_Z \) are scaling parameters. In our simulation, \(k_T \) and \(k_Z \) are 200 and 0.02 respectively. Fig 2(a) demonstrates the typical temperature profile and fig 2(b) demonstrates the temperature gradient versus depth.

At the beginning of each simulation, the 4 nodes are at depth 0, 30, 60, and 90 cm and waiting for commands. A client program starts the algorithm by sending the query messages to one of the 4 nodes. The simulation was repeated 30 times and each time we chose a different thermocline. To be more specific, the center of the thermocline, \(Z_0 \), changed from 20 cm to 50 cm. We collect the estimated depth of the thermocline and compare it with the actual one, \(Z_0 \). Fig 2(c) demonstrates the distribution of the estimation errors.

From fig 2(c), we see that the errors of 50% estimations were less than 5mm, and those of 90% estimations were less than 15mm. Given the \(k_T \), \(k_Z \) above, the maximum gradient along the depth is 1. When \(|Z - Z_0| < 15 \), the gradient is greater than 0.9778. That is, the gradient difference is less than 2.22%. So, the error of ±15 is acceptable.

IV. Experiments

A. Experimental Setup

We have built an experimental test bed (fig 3) to validate the distributed binary search algorithm. The test bed consists of 5 Mica2 motes, one PC and one linear actuator with controller.

Motes [6] were designed at UC Berkeley to provide a platform for research on sensor networks. Mica2 is one of the new versions, and it consists of an 8-bit atmel AT-Mega128L microcontroller, 128k flash memory, CC1000 radio working at the frequency of 433MHz. Each mote has seven 10-bit multiplex ADC channels. By attaching...
The configuration of the test bed is shown in fig 3. Four of the five motes are attached to a rigid tether, which is, in turn, attached to the linear actuator. Each mote can communicate with its neighbors over the radio, and hence they compose a simple wireless sensor network. However, no mote can talk to all other motes underwater since the communication range of the radio reduces greatly underwater. For example, the top mote can not send a message to the bottom one directly. The fifth mote is the base station, which serves as the bridge between the PC and the sensor network. The PC is an interface between users and the network. During the experiments, a client program running on PC would start the algorithm and refine the estimation of the thermocline by sending QUERY-MAX-GRADIENT to the sensor network.

In section 2, we assumed that each node of the sensor network has a pressure sensor to measure the depth. We also assumed that each node has limited mobility. However, in our test bed, none of those node has pressure sensor, and it is obvious that all the nodes in the network share one degree of freedom. To implement the distributed binary search on our test bed, following methods are taken so that our test bed can simulate the system mentioned previously. When a node needs to move to a certain depth, it sends the PC a message, Motion-Command, which indicates the destination of the node. If this node is the only active node, on receiving the message, PC would control the linear actuator and move the node to that depth. After the movement is done, a message would be sent from the PC to the node to indicate that its requirement was fulfilled. We name this message as Motion-Done. However, there may be two or more active nodes. In this case, the Motion-Command messages are put in a queue. The PC picks one command from the queue each time, executes it and then send Motion-Done message to the node which sent the command.

The message Motion-Done contains information on current position of linear actuator. Since all the nodes are attached to the linear actuator, given the position of one node on the linear actuator and the position of the linear actuator, it is easy to compute the depth of the node. This is the way how each node measure its depth.

To save energy, message Motion-Done is actually combined with the message QUERY-MAX-GRADIENT, and the message Motion-Command is combined with the message GRADIENT-REPORT. In summary, the algorithm implemented on the test bed goes in the following way: After the routing tree is built, the client program send the QUERY-MAX-GRADIENT, which contains the initial position of the linear actuator, to the sensor network through the root of the routing tree. On receiving this message, each node calculates its current depth. Then, every node reads its thermistor and compute the gradient. After the interaction among the nodes, the reports from some nodes would arrive the PC. the client program would extract current estimation of thermocline from those messages. It also collects the Motion-Commands of those nodes and put them in the queue. After the PC executes the first Motion-Command, it would send the another QUERY-MAX-GRADIENT message to corresponding node. On receiving this message, the node calculates its current depth, and proceed one more step of the algorithm. When PC receive the message GRADIENT-REPORT from this node, it append the extracted destination to the rear of the queue, and execute the Motion-Command at the front of the queue.

Our algorithm is implemented atop TinyOS [6] and SMAC [13]. TinyOS is the operating system developed for motes; it provides a task scheduler as well as an API to the hardware, such as radio and ADC. SMAC is an implementation of radio stack [13]. With SMAC, the radio is put to sleep automatically, and the size of the message can be varied. All the experiments were carried in a tank filled with water. A thermocline was created by a heater in the tank. The heater was put in the water just beneath the surface so that water temperature is not constant along depth. As shown in fig 4, at depths between 200mm and 400mm, the temperature dropped rapidly, which is a thermocline.

B. Experimental Results

First, we conducted a series of experiments to test whether the distributed binary search is able to reliably localize the thermocline in the tank. 24 experiments were carried, and fig 5 shows the results of 4 of those experiments.

In each picture, the experimental results are shown as four curves with error bars. Each curve corresponds to one node. At each step of the binary search, every active node reports back where it believes the thermocline is, and the width of the thermocline. Each point on the curve is a candidate location of a thermocline and the associated error bar is the reported width. Inactive nodes do not report, and
Nodes 1 and 3, 2 and 4 are active in Fig. 5(c), while it only took 2 steps in other experiments.

C. Improvement with a Robotic Data Mule

As discussed in section 2, a data mule can create a short cut from the base station to the active nodes. A series of experiments were conducted to measure the energy saved by using a data mule.

A robotic mote-based submarine (6) was developed in our lab [1], and it was used in our test bed as a data mule. The submarine is composed of a plastic container, a linear actuator controlling a cylinder, a pressure sensor and a Mica2 mote. The mote measures the pressure reading and controls the linear actuator. By changing position of the piston in the cylinder, the mote can change the buoyancy and hence can move the submarine up or down. The submarine is capable of depth regulation.

In sensor networks, the majority of the energy is actually consumed by the radio. According to the data sheet of Mica2, the current draw for full mode cpu is 8 mA while that for sending message is 27 mA. Therefore, the number of messages passed between nodes indicates the energy consumption, and hence indicates the life of the sensor network. We counted the number of messages sent and received by each nodes in two scenarios. In one scenario, the settings of the experiments are the same as the experiments described in the previous section. In another scenario, the data mule was used to reduce the number of messages exchanged.

Table 1 shows the experiments results. The experiment with the data mule was repeated 3 times and the numbers shown in the table are averages. The last row of the table shows the number of messages broadcasted, which are not counted as the received messages of individual nodes.

From the data we collected, it is obvious that the data mule reduced the number of messages exchanged between nodes, and hence saved the energy consumed. Most of the messages reduced belong to node 3 and node 4. In our experiments, node 4 is the node that is closest to the base station, and it is able to communicate with the base station directly. Node 2 and node 3 can communicate with node 4 directly but node 1 need node 3 to forward the messages to node 4. The thermocline is within the search space of node 1, and node 1 is the active node throughout the whole experiment. When there is no data mule, all the messages from and to node 1 must go though node 3 and node 4. So, in the first scenario, node 3 and node 4 sent and received lots of messages. When the data mule is used, a short cut was created between the base station and node 1. In this case, node 3 and node 4 did not send or receive any messages after the first step, when they became inactive. Finally, the messages sent and received by them reduced to almost half compared to the previous scenario.

V. DISCUSSION

A. Interpreting the Experimental Results

In the experiments described above, the outputs of the distributed binary search are all from one node. However, this may not always happen. In certain cases, more than one
node may report even if the resolution limit is reached, or
the difference between estimated gradient of the two sub-
search space is so small that the nodes can not distinguish
them with their 10-bit ADC. For example, in the simulation
where \(Z_0 = 300 \), both GRADIENT-REPORT messages
from node 1 and node 2 keep reaching basestation till the
end of the algorithm.

There are two interpretations for the case when more
than one node reports at the end of the algorithm. The first
interpretation is that there are more than one thermocline
and their gradient values are almost the same. In that
case, the nodes which reported are likely located far from
each other, and the reported areas are not adjacent to each
other. The other interpretation is that the thermocline is
at the border to adjacent search areas. The simulation
mentioned above is one example. In that case, those areas
are adjacent to each other. With a clustering algorithm, this
interpretation can be done automatically.

B. Analysis of the Number of Message Exchanged

If we assume that all the nodes in the network are
attached to one rod, and each node can only exchange
messages with its immediate neighbors, then the number
of messages exchanged between nodes can be calculated.

During the initialization phase, BUILDING-ROUTING-
TREE and INITIALIZATION need to be injected into
the network. Those two messages flood the network, and
any node receiving them forwards them. Additionally,
each node which gets the BUILDING-ROUTING-TREE
message needs to send at least one REGISTRATION
message. One exception is the node connected directly
to base station, and that node does not send the message
REGISTRATION. In our test bed, the PC needs to inform
each node of its position and hence 2 messages are injected,
one for the uppermost point and one for the lowermost
point. During the initialization phase, the node need to
move itself twice, the top position and bottom position,
and 2 messages would be sent from nodes to the PC. So,
during the initialization phase, each node, other than the
one that communicates to the base station directly, would
send \(2 + 2 + 2 = 6 \) messages.

Next we consider the binary search phase. At each step,
one message informing node position is sent from the
base station to active nodes and one MAX-GRADIENT-
REPORT would be sent from the active nodes to the base
station. If there is no data mule, every message is sent
multi-hop. Those nodes between the active nodes and base
station would receive and send 2 messages at each step. An
active node would only receive one and send one message
if it is not on the path from other active nodes to the base
station. Those inactive nodes not on the path do not have
to receive or send any message. So, the nodes which need
to forward messages between its children and its parent
would send and receive most messages. If we assume that
before the end of binary search, \(m \) nodes were selected as
active nodes, and the \(i \)-th active node reported \(k_i \) times.
The max number of messages sent and received by one
node are

\[
N_{\text{received}} = 6 + \sum_{i} 2k_i \\
N_{\text{sent}} = 6 + \sum_{i} 2k_i
\]

If there is a data mule, one short cut would be created
between the active nodes and the base station. In this
case, there are no nodes except the messenger on the
path between the active nodes and the base station, and
the nodes that would send and receive most messages are
the active nodes. Because those nodes would send and
receive one message at each step, the maximum number
of messages sent and received by one node are

\[
N_{\text{received}} = 6 + k \\
N_{\text{sent}} = 6 + k
\]

where \(k = \max(k_1, k_2, ..., k_m) \). Therefore, the data
mule reduce the number of messages exchanged between
nodes. The longer the system runs, the more the active
nodes, the more messages reduced by the data mule, and
the more energy saved. We reiterate that this does not imply
a net savings in energy - after all the data mule needs to
be recharged from time to time. However we believe this
is desirable (easier logistically to charge one robot instead
of many nodes).
VI. RELATED WORK

The problem most similar to the one studied here is edge detection, which has been studied for decades in the computer vision [5] community. Several approaches have been developed. However, given the density of the samples in images and without the constraint of energy consumption, gradient of any point can be calculate easily and the resolution is high.

Another similar problem, tracking chemical plumes, has been studied by [8]. A dual-space approach has been proposed to estimate the boundary of the chemical plumes. However, that approach is a centralized algorithm and all the node need to send the raw data to a computer before the algorithm can be executed.

Recently, [3] proposed three approaches for edge detection using a sensor network. The first approach is a statistical approach while the other two are based on a high pass filter and a classifier respectively. In all three approaches, each sensor gathers information from its neighbors, and independently determine whether it is on the edge of an event. One assumption taken by all those approaches is that every node in the network is able to detect a given event just by its own sensor reading. Unfortunately, this assumption is not always true. For example, in the case of thermocline localization, it is impossible to define high temperature and low temperature since they may correspond to the same thermistor reading in different places.

An approach based on hierarchical structure of “clusterheads” was proposed by [11] to estimate the boundary. With the hierarchical structure, fine resolution would be achieved alone the boundary, while the resolutions in homogeneous regions are coarse. However, with all the sensors static, the resolution of the boundary is still bounded by the density of sensors.

Data aggregation used in this paper is a well known method in sensor networking to reduce energy consumption. The idea of building a routing tree is due to the TinyDB work [9]. However, no history information was kept in TinyDB, and every query is flooded through the whole network. This is not an efficient way to locate a thermocline. So, we exploited the idea to keep historical information and only forward the query to the nodes which have the potential to affect the results. This is similar to the reinforcement on the path from source to sink used in Directed Diffusion [7].

VII. CONCLUSION AND FUTURE WORK

We have described an adaptive sampling algorithm based on binary search for the network to reliably detect a thermocline. The algorithm is based purely on local communication, and has been implemented and tested in experiments underwater. We have experimentally established and characterized the network energy savings due to the usage of a robot submarine as a data mule for the sensor network.

A limitation of the present approach is that it assumes a static thermocline. This is not unreasonable, since the thermocline created in the tank moves gradually (over a period of a few hours). However, after the thermocline moves, the whole algorithm needs to be executed again to re-locate it. We are working on a revised implementation of the algorithm, which would track the change of the thermocline with only a few relevant nodes involved. We are also working on extending the algorithm to generalized 3D sensor networks.

ACKNOWLEDGMENT

The author thank Carl Oberg, Vitaly Bokser and Gaurav Sharma for their help with the test bed and Prof. David Caron and Beth Stauffer for their comments. This work is funded in part by grants CCR-0120778, EIA-0121141, IIS-0139347 from the National Science Foundation.

REFERENCES