Title
POTENTIAL ENERGY SURFACES FOR ION-MOLECULE REACTIONS. INTERSECTION OF THE 3A2 AND 2B1 SURFACES OF NH2-.

Permalink
https://escholarship.org/uc/item/2zc0s20m

Author
Schaefer III., Henry F.

Publication Date
1976-04-01
POTENTIAL ENERGY SURFACES FOR ION-MOLECULE REACTIONS. INTERSECTION OF THE 3A_2 AND 2B_1 SURFACES OF NH_2^+

Charles F. Bender, James H. Meadows, and Henry F. Schaefer III

April 1976

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Potential Energy Surfaces for Ion-Molecule Reactions. Intersection of the 3A_2 and 2B_1 Surfaces of NH$_2$$^+$

Charles F. Bender
Laser Division
Lawrence Livermore Laboratory
University of California
Livermore, California 94550

and

James H. Meadows and Henry F. Schaefer III
Department of Chemistry
and
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720
Abstract

The $N^+ + H_2$ system is one of the few ion-molecule reactions for which detailed molecular beam studies have been carried out. To complement this experimental research, we have performed a theoretical study of two of the low-lying NH$_2^+$ potential energy surfaces. The intersection and avoided intersection (for C$_s$ geometries) of the lowest $3A_2$ and $3B_1$ surfaces allows a pathway by which the ground state of NH$_2^+$ may be accessed without a potential barrier. The electronic structure calculations employed a double zeta plus polarization basis set, and correlation effects were taken into account using the newly developed Vector Method (VM). To test the validity of this basis, additional self-consistent-field studies were performed using a very large contracted gaussian basis

$N(13s 8p 3d/9s 6p 3d)$, $H(6s 2p/4s 2p)$. The $3A_2$ surface, on which N^+ and H_2 may approach, has a surprising deep potential minimum, ~ 60 kcal/mole, occurring at $r_e(NH) \sim 1.26 \, \text{Å}$ and $\theta_e(HNH) \sim 43^\circ$. Electron correlation is responsible for about 15 kcal of this well depth, which appears fairly insensitive to extension of the basis set beyond the double zeta plus polarization level. The line of intersection (or seam) of the $3A_2$ and $3B_1$ surfaces is presented both numerically
and pictorially. The minimum energy along this seam occurs at \(\sim 51 \text{kcal} \) below separated \(\text{N}^+ + \text{H}_2 \). Thus for sufficiently low energies one expects \(\text{N}^+ - \text{H}_2 \) collisions to provide considerable "complex formation". Further molecular beam experiments at such low energies (< 0.5 eV) would be of particular interest.
Introduction

Simple ion-molecule reactions have provided some of the most fascinating examples to date of the interplay between different potential energy surfaces of a single chemical system\(^1\). Most noteworthy in this regard are the molecular beam studies of Mahan and coworkers\(^2\)-\(^4\), who have carefully investigated, among other systems, the C\(^+\) + H\(_2\), N\(^+\) + H\(_2\) and O\(^+\) + H\(_2\) reactions. These reactions are particularly appealing as prototypes, since they are sufficiently simple to be studied by both electronic structure theory\(^5\) and classical\(^6\) or semiclassical\(^7\) dynamics. In addition, the use of qualitative electronic correlation diagrams\(^1\),\(^8\) has also proven very helpful in understanding these simple reactions, and alternatively the experiments may serve as testing grounds for simple molecular orbital theory.

A reasonable starting point for our discussion is the N\(^+\) + H\(_2\) electronic state correlation diagram of Fair and Mahan\(^3\). This diagram is reproduced with their permission in Figure 1. As discussed by Fair and Mahan (and elsewhere\(^9\),\(^10\) in regard to the C\(^+\) + H\(_2\) reaction) the key feature in the interpretation of low energy (say less than \(\sim 3\) eV) molecular beam results is the intersection of two low-lying potential energy surfaces. For the N\(^+\) + H\(_2\) case (in C\(_{2v}\) symmetry) these are the \(3B_1\) and \(3A_2\) surfaces. The \(3B_1\) state is known\(^11\)-\(^14\)
to be the ground state of NH$_2^+$, the nitrenium ion, while the 3A_2 state is less understood. However, on the basis of orbital symmetry considerations1,8 and earlier theoretical work9 on C$^+$ + H$_2$, the 3B_1 surface is expected to be quite repulsive as the N$^+$ initially approaches H$_2$. The deep well of the 3B_1 surface is "protected" from N$^+$ - H$_2$ collisions on the same surface by means of this large barrier. However, the 3A_2 surface should be either much less repulsive9 or attractive10 as N$^+$ approaches H$_2$. And since the two surfaces are both of $^3A''$ symmetry as soon as the N$^+$ ion moves off the H$_2$ perpendicular bisector, the C_{2v} crossing of surfaces becomes an avoided intersection. If there are points along this crossing of 3B_1 and 3A_2 surfaces which lie at energies near or below the N$^+$ + H$_2$ asymptote, then there exists a barrier-free pathway

$$^3A_2 \rightarrow ^3A'' \rightarrow ^3B_1$$

for the formation of ground state NH$_2^+$ from separated N$^+$ plus H$_2$. Such a pathway for the analogous situation with respect to C$^+$ + H$_2$ has been recently demonstrated unequivocally in the important theoretical work of Pearson and Roueff10.

In their communication Pearson and Roueff10 bring to light a critical ingredient in the proper theoretical treatment of this problem. That is, polarization functions5 (d functions on carbon and p functions on the hydrogen atoms in their case) critically affect the energy at which the seam or line of intersection occurs. Their finding is pertinent
to the present discussion since Gittins and Hirst15 have recently reported single configuration self-consistent-field (SCF) results for $N^+ + H_2$ using a basis set which is quite well-chosen and flexible16,17 but lacks polarization functions. Gittins and Hirst conclude that access to the deep $^3\text{B}_1$ potential well may be possible with only a small barrier, on the order of 4 kcal/mole. By comparison of the effects of polarization functions in the $C^+ + H_2$ system9,10, it would appear likely that this barrier should disappear completely. The present paper, then, builds on the Gittins-Hirst work15 but goes well beyond it for the $N^+ + H_2$ system by the use of larger basis sets and the direct inclusion of correlation effects. These two theoretical extensions should allow for a meaningful comparison with the molecular beam experiments of Fair and Mahan3.

Theoretical Approach

Two basis sets of contracted gaussian functions5,17 were used here. The first was a standard Huzinaga-Dunning double zeta plus polarization (DZ + P) set, designated N(9s 5p 1d/4s 2p 1d), H(4s 1p/2s 1p). The polarization function exponents were 0.8 (nitrogen d functions) and 1.0 (hydrogen p functions), and a scale factor of $\xi = 1.2$ was used on the hydrogen s functions. This first basis is essentially the same (except for the obvious replacement of the C basis by one appropriate
to N) as that used by Pearson and Roueff10, and was used for both SCF and configuration interaction (CI) calculations.

Since we were initially quite surprised by Pearson and Roueff's demonstration10 of the critical importance of polarization functions, it was decided to carefully test whether further extensions of their basis would be of qualitative importance to the shape of the N+ + H\textsubscript{2} potential surfaces. Therefore, following the recent work of Meadows18 on CH\textsubscript{2}, a very large basis was adopted: N(13s 8p 3d/9s 6p 3d) and H(6s 2p/4s 2p). The polarization functions had gaussian orbital exponents $\alpha = 1.6, 0.8, \text{and} 0.3$ for the nitrogen d functions and $\alpha = 1.4 \text{and} 0.25$ for the hydrogen p functions based on past experience5,19-23. The nitrogen sp functions and hydrogen s functions were the appropriate primitive gaussian basis sets of van Duijneveldt22, contracted to provide maximum flexibility in the valence region. That is, the five s functions with largest orbital exponents α_{i} were grouped together according to the nitrogen atomic 1s orbital, and an analogous procedure followed for the three nitrogen p functions with largest exponents. Based in part on Clementi and Popkie's study23 of the water molecule with many basis sets, we estimate that the present basis set for NH\textsubscript{2}+ should yield total energies within 0.005 hartrees ($\sim 3 \text{ kcal}$) of the Hartree-Fock limits for the $^{3}\text{A}_{2}$ and $^{3}\text{B}_{1}$ potential surfaces. Relative errors, of course, should be much smaller.
The electron configuration for the two states of primary interest are

\[
\begin{align*}
\text{state 1:} & & 1a_1^2 & 2a_1^2 & 1b_2^2 & 3a_1 & 1b_1 & \quad 3B_1 \\
\text{state 2:} & & 1a_1^2 & 2a_1^2 & 3a_1^2 & 1b_2 & 1b_1 & \quad 3A_2
\end{align*}
\] (2)

and restricted SCF theory\(^{24,25}\) has been applied to both of these states. We also note that the first excited electronic state of NH\(_2^+\) is of \(1A_1\) symmetry and several two-configuration

\[
C_1 \ 1a_1^2 \ 2a_1^2 \ 1b_2^2 \ 3a_1^2 + C_2 \ 1a_1^2 \ 2a_1^2 \ 1b_2^2 \ 1b_1^2
\]

SCF studies of this state were also made. Finally, it should be noted that the source of the large barrier in the \(N^+ + H_2\) \(3B_1\) approach is the fact that for large \(N^+ - H_2\) separations the

\[
1a_1^2 \ 2a_1^2 \ 3a_1^2 \ 1b_1 \ 4a_1 \quad 3B_1
\] (5)

configuration, rather than (2), dominates the wave function.

A number of direct SCF comparisons of the two basis sets were made. Here we report two such tests, the first with the \(N^+\) and \(H_2\) species separated by a distance \(R = 100\) bohr radii. \(R\) is the distance between the \(N^+\) ion and the \(H_2\) bond midpoint,
while r will designate the H-H internuclear separation. For
\(R = 100, \ r = 1.4 \) (essentially the equilibrium internuclear
separation of \(H_2 \)) the \(^3A_2 \) SCF energies are \(-55.01159 \) and
\(-55.02123 \) hartrees, the difference being \(0.00964 \) hartrees
or \(6.0 \) kcal/mole. Secondly we report a point near the equi-
librium \(^3A_2 \) geometry, namely \(R = 2.0 \) and \(r = 1.8 \) bohr, where
the two basis sets yield SCF energies \(-55.07823 \) and \(-55.09157 \)
hartrees. The difference in the latter case is somewhat larger,
\(0.01334 \) hartree or \(8.4 \) kcal/mole. It is certainly not
suprising that the near Hartree-Fock basis yields somewhat
lower relative energies as \(N^+ \) and \(H_2 \) approach. And if SCF
basis set errors are directly transmitted to CI results,
one would expect our DZ + P basis to yield CI dissociation
energies for \(N^+ - H_2 \) about 2.5 kcal less than the exact
values. Of course, in the present case, the uncertainties
in our treatment of the correlation problem are roughly of
that same order of magnitude. In any case the potential surface
differences arising from the two basis sets are small, about
an order of magnitude less than those found by Pearson for \(CH^+ \) in
going from the DZ to the DZ + P basis set.

Electron correlation was taken into account variationally
using the newly developed vector method (VM) of Bender and
coworkers\(^{26} \). The CI calculations were carried out with the
early version of the VM code. That is, all Slater determinants
differing by one or two spin orbitals from (2) for the \(^3B_1 \)
calculations or (3) for the 3A_2 calculations were included. In this way 1810 and 1824 determinants were respectively employed in the 3B_1 and 3A_2 variational procedures. The above was carried out with the usual restriction that the $1a_1$ orbital (essentially nitrogen 1s) be doubly occupied in all determinants. It is now well-established that such a CI procedure will provide at least 90% of the attainable valence shell correlation energy in cases (such as the present) where the wave function is qualitatively described by a single determinant SCF wave function.

Use of the near Hartree-Fock basis was restricted to the location of the equilibrium geometries of the 3A_2, 3B_1, and 1A_1 electronic states. With the DZ + P basis, a regular grid of points (available from the authors on request) for both the 3B_1 and 3A_2 states was mapped out. These were all combinations of $R = 3.0, 2.5, 2.0, 1.75, 1.5, \text{and} 1.25$ bohrs with $r = 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, \text{and} 2.6$ bohrs for a total of $6 \times 8 = 48$ points on the surface. To provide a reference point for the relative energies quote hereafter, we note that for the 3A_2 state $R = 100$, $r = 1.4$, the SCF and CI energies with the DZ + P basis were -55.01158 and -55.12329 hartrees. Thus for separated N^+ plus H_2 the calculated correlation energy is 0.111708 hartrees. As we will see, the correlation energy increases as the N^+ and H_2 are brought together.
Singlet-Triplet Separation in the Nitrenium Ion

Before going on to the primary purpose of this research, let us take a brief digression. Although the \(^3B_1 - ^1A_1 \) separation in \(\text{NH}_2^+ \) is not known experimentally, there have been at least four theoretical predictions of this quantity. On the \textit{ab initio} side the groups of Morokuma11, Hayes12, and Harrison13 have predicted 45, 36, and 45 kcal/mole, with the \(^3B_1 \) state the lower lying in each case. More recently Haddon and Dewar14 have used their semi-empirical MINDO/3 method to predict 31 kcal for this quantity.

For comparison with these results, the near Hartree-Fock basis was used to predict the \(^3B_1 \) and \(^1A_1 \) equilibrium geometries. For the \(^3B_1 \) state the predicted structure was \(r_e(\text{NH}) = 1.018 \ \text{Å}, \theta_e(\text{HNH}) = 143.3^\circ \), corresponding to a total SCF energy of -55.22965 hartrees. The two-configuration SCF description (4) of the \(^1A_1 \) state yields \(r_e(\text{NH}) = 1.033 \ \text{Å}, \theta_e(\text{HNH}) = 108.2^\circ \) and a total energy of -55.18329 hartree. Thus the singlet-triplet separation \(\Delta E \) is predicted to be 0.04636 hartrees = 29.1 kcal/mole.

The best means of evaluating the reliability of the above prediction is by comparison of analogous theoretical procedures with experiment for \(\text{CH}_2 \), for which an accurate \(\Delta E (^3B_1 - ^1A_1) \) has recently become available27. The experimental value of 19.5 ± 0.7 kcal may be compared with the 10.9 kcal obtained18 for \(\text{CH}_2 \) by the method described in the previous paragraph. Thus it is evident that a two-configuration description of the \(^1A_1 \)
state overcompensates for the fact that the 3B_1 state has less correlation energy. For CH$_2$ the use of a single configuration SCF treatment of the 1A_1 state yields a separation of 24.8 kcal, too large as expected. More precisely the experimental result lies 61.9% of the way from the two-configuration 1A_1 result to the one-configuration 1A_1 result.

With the above in mind, we carried out single configuration ($1a_1^2 2a_1^2 1b_2^2 3a_1^2$) SCF calculations on NH$_2^+$, yielding r_e(NH) = 1.032 Å, θ_e(HNH) = 109.6°, and E = -55.15838. The singlet-triplet separation obtained in this way (44.7 kcal) is considerably greater than the two-configuration result, 29.1 kcal. It seems quit certain that the exact nitrenium separation lies between the two, and if the same 61.9% criterion is used, a semi-empirical prediction of 38.8 kcal is made. Partly because of the semi-empirical nature of our prediction and also because of the use of a Hartree-Fock limit basis, we suggest that the 38.8 kcal value is probably the most reliable prediction made to date.

Region of Intersection of the 3A_2 and 3B_1 Surfaces

Certainly the most interesting result found here is the rather deep potential well associated with the 3A_2 state of NH$_2^+$. Such a deep well is not anticipated from the C$^+\cdot$H$_2$ calculations of Liskow, Bender and Schaefer9 or the correlation diagram (Figure 1)
of Fair and Mahan. Such a well is implicit in the work of Pearson, but he does not report the predicted 2B_2 (analogous to the $NH_2^+ A_2$ state) dissociation energy relative to separated $C^+ + H_2$. We do know that Pearson's $CH^+ A_2$ state must be bound by at least 15 kcal, since that is the lowest energy at which the 2B_2 and 2A_1 electronic states are degenerate.

Using the near Hartree-Fock basis, the A_2 state of NH_2^+ is predicted by SCF theory to have an equilibrium geometry $r_e(NH) = 1.207\text{Å}, \theta_e(HNH) = 46.4^\circ$. This small bond angle is characteristic of the early approach of N^+ to H_2; and the predicted equilibrium geometry corresponds to a near Hartree-Fock energy 44.6 kcal below separated $N^+ + H_2$. Using the DZ + P basis the A_2 minimum is less precisely located since the grid (see previous section) is relatively sparse in this region (note that the density of grid points is greatest near the intersection of the A_2 and B_1 surfaces). With this disclaimer we note that the DZ + P SCF minimum is predicted by a 9-point fit to lie at $r_e(NH) = 1.25\text{Å}, \theta_e = 42^\circ$, with energy 44.3 kcal below separated $N^+ + H_2$. Realistically the true SCF minimum with this basis probably occurs about 2 kcal higher, when one considers the direct comparisons (between DZ+P and near Hartree-Fock basis sets) of the previous section. Similarly the CI equilibrium geometry is $r_e(NH) = 1.26\text{Å}, \theta_e = 43^\circ$, and lies 60.4 kcal below $N^+ + H_2$.

The lowest actual calculated point on the A_2 surface occurs at $R = 2.0$ bohrs, $r = 1.8$ bohrs (or $r(NH) = 1.161\text{Å}, \theta = 48.5^\circ$) for both SCF and CI methods. These points lie 41.8 and 56.8 kcal below the comparable asymptotic calculations and make it quite clear that electron correlation contributes ~15 kcal to the well depth. If in turn this 15 kcal is added to the near Hartree-Fock well depth of 44.6 kcal, one obtains 59.6 kcal as the
predicted dissociation energy relative to $N^+ + H_2$. In any case a value of ~ 60 kcal for the dissociation energy consistently appears on the basis of the present theoretical research. A dissociation energy this large (nearly 3 eV) must be considered surprising as it certainly cannot be justified in terms of a classical electrostatic picture.

The 3^3A_2 and 3^3B_1 surfaces are illustrated in Figures 2 and 3. Note, of course, that since the region of interest here is that near the intersection, the actual position of the 3^3B_1NH_2 equilibrium geometry is not included. The fact that the 3^3B_1 surface becomes very attractive in that direction is however quite clear. Also apparent is the large barrier (~ 75 kcal) associated with the Woodward-Hoffmann forbidden least motion insertion of N^+ into H_2. To complement the two contour maps and the line of intersection indicated on each, Table I gives some numerical values for the line of intersection.

It seems quite clear from previous work on the related $C^+ - H_2$ system that the C_2v approach along the 3^3A_2 surface is by far the most likely to lead to the bound NH_2^+ species. In this light one can make a rough picture of one important aspect of the dynamics. First, as Figure 2 implies, high energy C_2v collisions will tend to be unreactive. That is, with $r(H-H)$ fixed at 1.4 bohrs, the 3^3A_2 surface becomes quite repulsive rather quickly. For example, at $R = 1.5$ bohrs the surface lies 35 kcal above separated $N^+ + H_2$. Therefore a key feature leading to complex formation is the necessity that the collision
occur slowly enough that the H-H separation can become sufficiently large to reach the area of the line of intersection. Inspection of Figures 1 and 2 or Table I shows that the line of intersection reaches zero kcal relative energy at about \(R \approx 1.52 \) bohrs, \(r \approx 1.67 \). In other words the H-H separation must increase by nearly 0.3 bohrs \(\approx 0.15 \) Å for the line of intersection to become dynamically meaningful in low energy collisions.

A final noteworthy point is that the line of intersection for the \(\mathrm{N}^+ - \mathrm{H}_2 \) system passes through much lower relative energies (50 kcal vs 15 kcal) than the corresponding line of intersection for the \(\mathrm{C}^+ - \mathrm{H}_2 \) system.\(^\text{10}\) A naive interpretation of this comparison would suggest that at low energies one should observe more complex formation for the \(\mathrm{N}^+ \) than the \(\mathrm{C}^+ \) reaction. At this point, however, we believe that detailed dynamical studies are called for. This work on \(\mathrm{N}^+ - \mathrm{H}_2 \) and Pearson's research\(^\text{10}\) for \(\mathrm{C}^+ - \mathrm{H}_2 \) appear to provide rather accurate predictions of some of the crucial potential surface features, and the greatest uncertainties are now of a dynamical nature. Of course, more information concerning these surfaces would be welcome, especially concerning the slopes of the two lowest \(^3\mathrm{A}^\prime\prime \) surfaces (arising from \(^3\mathrm{A}_2 \) and \(^3\mathrm{B}_1 \) in \(\mathrm{C}_{2v} \) point group) in the region of their avoided intersection.
Acknowledgements

We thank Professor Bruce H. Mahan for helpful discussions, encouragement, and patience. We also benefited from many illuminating conversations with Dr. Peter K. Pearson. The computational burden was shared by the Lawrence Livermore Laboratory CDC 7600 and the Harris Corporation Series 100 minicomputer, supported by National Science Foundation Grants GP-39317 and GP-41509X.
References

1. B.H. Mahan, Accounts of Chemical Research, 1975, 8, 55.
 (Available from: Research Library, IBM Research Laboratory, San Jose, California 95193.)
Table I. Line of intersection of the lowest 3A_2 and 3B_1 potential energy surfaces of NH$_2$. These points are given in two coordinate systems for ease of interpretation. As noted in the text, R is the distance between the N$^+$ nucleus and the H$_2$ bond midpoint. Energies are configuration interaction (CI) energies relative to separated N$^+$ + H$_2$.

<table>
<thead>
<tr>
<th>R (bohrs)</th>
<th>r (bohrs)</th>
<th>r(N-H) Å</th>
<th>θ(HNH) degrees</th>
<th>Energy (kcal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.30</td>
<td>1.240</td>
<td>0.762</td>
<td>51.0</td>
<td>171.0</td>
</tr>
<tr>
<td>1.35</td>
<td>1.330</td>
<td>0.796</td>
<td>52.4</td>
<td>116.6</td>
</tr>
<tr>
<td>1.40</td>
<td>1.425</td>
<td>0.831</td>
<td>53.9</td>
<td>72.6</td>
</tr>
<tr>
<td>1.45</td>
<td>1.523</td>
<td>0.867</td>
<td>55.4</td>
<td>37.6</td>
</tr>
<tr>
<td>1.50</td>
<td>1.623</td>
<td>0.902</td>
<td>56.8</td>
<td>10.4</td>
</tr>
<tr>
<td>1.55</td>
<td>1.726</td>
<td>0.939</td>
<td>58.2</td>
<td>-10.4</td>
</tr>
<tr>
<td>1.60</td>
<td>1.834</td>
<td>0.976</td>
<td>59.6</td>
<td>-26.1</td>
</tr>
<tr>
<td>1.65</td>
<td>1.946</td>
<td>1.014</td>
<td>61.1</td>
<td>-37.3</td>
</tr>
<tr>
<td>1.70</td>
<td>2.061</td>
<td>1.052</td>
<td>62.4</td>
<td>-44.7</td>
</tr>
<tr>
<td>1.75</td>
<td>2.179</td>
<td>1.091</td>
<td>63.8</td>
<td>-49.1</td>
</tr>
<tr>
<td>1.80</td>
<td>2.301</td>
<td>1.130</td>
<td>65.2</td>
<td>-51.0</td>
</tr>
<tr>
<td>1.85</td>
<td>2.426</td>
<td>1.171</td>
<td>66.5</td>
<td>-50.8</td>
</tr>
<tr>
<td>1.90</td>
<td>2.556</td>
<td>1.212</td>
<td>67.9</td>
<td>-48.8</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Figure 1. Correlation diagram of Fair and Mahan3 for the N+ - H\textsubscript{2} system.

Figure 2. 3A\textsubscript{2} potential energy surface for NH\textsubscript{2}+. R(N-CM) is the distance from the nitrogen nucleus to the H\textsubscript{2} center of mass. Contours are labeled in kcal/mole relative to infinitely separated N+ plus H\textsubscript{2}. Note that contours energetically below 25 kcal are labeled in 5 kcal intervals, while those above 25 kcal are spaced by 25 kcal.

Figure 3. 3B\textsubscript{1} potential energy surface for NH\textsubscript{2}+. R(N-CM) is the distance from the nitrogen nucleus to the H\textsubscript{2} center of mass. Contours are labeled in kcal/mole relative to infinitely separated N+ plus H\textsubscript{2}. Note that contours energetically below 25 kcal are labeled in 5 kcal intervals, while those above 25 kcal are spaced by 25 kcal.
Figure 1
Figure 2
Figure 3
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.