Title
SYNTHESIS OF AN ENCAPSULATED ARSENIC ANION VIA REACTION OF ARSENIC ACID WITH A LINEAR CATECHOLAMIDE-3 4-LICAM

Permalink
https://escholarship.org/uc/item/2zf405gd

Authors
Fish, R.H.
Tannous, R.S.

Publication Date
1983-10-01
SYNTHESIS OF AN ENCAPSULATED ARSENIC ANION VIA REACTION OF ARSENIC ACID WITH A LINEAR CATECHOLAMIDE-3, 4-LICAM

R.H. Fish and R.S. Tannous

October 1983
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Synthesis of an Encapsulated Arsenic Anion via Reaction of Arsenic Acid with a Linear Catecholamide-3,4-LICAM

Richard H. Fish* and Raja S. Tannous
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

ABSTRACT

The reaction of arsenic acid with 3,4-LICAM provides the first example of an encapsulated arsenic anion. The structural features of this compound, presumed to have an octahedral configuration around the arsenic, was confirmed by 13C nmr, IR, UV and FAB mass spectroscopy as well as elemental analysis.
The molecular characterization of inorganic and organometallic compounds present in fossil fuel precursors and their products has become increasingly more important as our synthetic fuel industry develops. The chief reasons being that these compounds are thought to be responsible for the poisoning of process catalysts and their presumed effects on man and his environment.¹

We have recently characterized inorganic arsenic and organoarsenic compounds in oil shale², shale oil³, and oil shale retort waters⁴, and these studies have provided that arsenate (AsO₄⁻³), and methyl- and phenylarsonic acids, ² and ³, are present in the above mentioned fossil fuel precursor and products.

While the molecular characterization of these arsenic compounds is an important first step in understanding their biogeochemical origin and their presence in fossil fuel products, the ultimate aim of removing them from these complex matrices utilizing innovative methods remains as a predominate goal of our program. In this regard, we recently reported on a novel method that used substituted catechols as models for the above-stated goals with the characterized organoarsenic compounds, ² and ³.⁵

Similar reactions with ¹ have focused on a class of linear catecho-lamid compounds (LICAM) synthesized by Raymond et al.⁶a-¹ to be used eventually for the removal of iron and actinide metal ions in clinical applications. We were particularly interested in ³,⁴-LICAM, ⁶b, a ligand with three catechols on a linear amide chain, that could potentially coordinate in an octahedral configuration around an arsenic anion and that could be placed in a polymeric backbone for removal of ¹ from
In this Note, we wish to report on the reaction of 3,4-LICAM, 4, with 1 to provide a novel encapsulated arsenic anion, 5 (X=H), (Eq. 1).

\[
\begin{align*}
 &\text{OH} &\text{OH} \\
 &\text{C-N(CH}_2)_3\text{-N-(CH}_2)_4\text{-N-C} &\text{H}_3\text{AsO}_4 \\
 &\text{C=O} &\text{H}_2O \\
 &\text{OH} &
\end{align*}
\]

4

\[
\begin{align*}
 &\text{C-N-CH}_2\text{-CH}_2 &\text{CH}_2 \\
 &\text{N-CH}_2\text{-CH}_2 &+ 4\text{H}_2\text{O} \\
 &\text{O} &
\end{align*}
\]

5

RESULTS AND DISCUSSION

The ligand, 4, reacted with 1 in an aqueous ethanol solution and after work-up gave a white powder (83%) which had a decomposition point at 275-276°C. The material was analyzed spectroscopically by 13C nmr, IR, UV, FAB-MS as well as elemental analysis to provide evidence for the structure designated as, 5 (X = H), in Equation 1. A tetraammonium salt (X = benzylidimethylphenylammonium) and the PPN salt were also prepared; but unfortunately, were not found to be suitable for single crystal x-
ray studies.

The 13C nmr spectrum of the acid ($X = H$), 5, is shown in Figure 1 along with the ligand 4. Clearly, the arsenic anion has a more simplified 13C nmr spectrum than the ligand, 4. The carbonyl region, -160-170 ppm, should contain three carbonyl resonances, however, 4 has more carbonyl lines (-6-8) indicative of a possible role of geometrical isomers (syn and anti isomers with 8 possible carbonyl resonances). Thus, upon arsenic coordination, the carbonyl region is somewhat simplified (3-4 carbonyls) with resonances at 163.6, 164 (shoulder), 168, and 169.6 ppm. The aromatic carbons with hydroxyl groups in the ligand, 4, (-140-152 ppm) should show six resonances; however, many more are evident, while the arsenic compound, 5, has six phenolic carbons at 140, 143, 143.4, 144, 145, and 150 ppm. The remaining aromatic carbons are in the 110-135 ppm range (12) for 5, while the methylene carbons (0-50 ppm, not shown in Fig. 1) were somewhat masked by the solvent, dimethylsulfoxide-d_6.

The UV spectra of both 4 and 5 are shown in Figure 2, and indicate that on formation of the arsenic anion a pronounced shift from 314 nm ($\varepsilon = 6,576$) for 4 to 304 nm ($\varepsilon = 9,001$) for 5 ($X = H$) occurs. A similar occurrence was observed by Raymond et al. 6b,g in the coordination of ferric ion with a sulfonated 3,4-LICAM, where the extinction coefficient rises and the wave length decreases upon complexation of all six phenolic oxygens. The fast atom bombardment (FAB) mass spectrum (glycerol) of 5 ($X = H$) shows a small parent ion at m/e 623 (2.5%) and ions at 625 ($M+2$, 5%) and 626 ($M+3$, 16%).
The above mentioned data is supportive of structure, 5, with a presumed octahedral configuration around the arsenic, and represents the first isolated encapsulated arsenic anion structure yet reported. The only other synthesis of a catechol-arsenic anion compound was for catechol itself,7 and a single crystal x-ray study provided unequivocal evidence for the distorted octahedral symmetry around arsenic.8 While we were unable to prepare a suitable crystalline derivative for x-ray analysis of 5, a Drieding model indicates that the triscatecholate coordination of 4 around arsenic can readily occur.

Finally, in recent experiments we have placed 4, and catechol itself, on a polymer support (10% cross-linked chloromethylated polystyrene-divinylbenzene) and have been able to quantitatively remove arsenate, 1, from an aqueous ethanol solution, which verifies the usefulness of this approach in possible synthetic fuel applications.9

EXPERIMENTAL

Materials and Instrumentation

The 400 MHz and 250 MHz nmr spectrometers for 1H and 13C (at 100 MHz) nmr spectra were located at the NBS-NML high field nmr facility located at NBS, Gaithersburg, MD, and the Department of Chemistry at the University of California, Berkeley respectively. A Cary 219 UV-VIS spectrophotometer - Apple II computer combination was used for the ultraviolet spectra and a Perkin-Elmer 1330 for infrared spectra. The FAB-MS of 5 (suspended in glycerol) was obtained on an MS-50 located in the Department of Chemistry, U.C. Berkeley. Elemental analysis were also obtained from the Chemistry Department's microanalytical laboratory.
The 3,4-dihydroxybenzoic acid, thionyl chloride, boron tribromide and spermidine were purchased from Aldrich Chemical Co.

Preparation of ligand, 46b

In a 100 ml flask equipped with a drying tube was placed 4.55 g (25 mmole) of 2,3-dimethoxybenzoic acid and 24.5 g (0.206 moles) of thionyl chloride. The reaction mixture was stirred at room temperature for 2 hr., after which the solution was rotary evaporated to give a white solid. The solid was then dissolved in benzene (30 ml, thrice) and rotary evaporated to give the benzene soluble acid chloride. The acid chloride was dissolved in 20 ml tetrahydrofuran along with 3.5 g (34.6 mmole) of triethylamine and 1.66g (11.4 mmoles) of spermidine. The reaction mixture was refluxed for 20 hr. under nitrogen (important to exclude both air and water) and then rotary evaporated to give an oil that was dissolved in chloroform. The chloroform solution was washed with 50 ml of 0.1 N hydrochloric acid, 50 ml of deionized water and 50 ml of 10% sodium hydroxide and then again with deionized water and hydrochloric acid. The chloroform layer was dried over anhydrous magnesium sulfate, filtered and rotary evaporated.

The oil was then dissolved in 75 ml of methylene chloride and placed in a round bottom flask equipped with a stirring bar, a nitrogen inlet and a dropping funnel containing 6 ml of boron tribromide in 50 ml of methylene chloride. The boron tribromide was added slowly and after addition the reaction mixture was stirred at room temperature overnight under nitrogen. To the reaction mixture was added slowly 50 ml of deionized water with stirring for 3 hr. The precipitate was washed with deionized water and diethylether and recrystallized from methanol/water
to give an oil that was dissolved in methanol and rotary evaporated (thrice). The oil was washed well with diethyl ether and dried under vacuum (P₂O₅) to give 3.5 g (55%) of 4, m.p. 267-270°C [lit 267-270]⁶b. The UV spectrum (DMSO) shows absorptions at 314 nm (ε = 6,576) and 291 nm (ε = 4,948).

Preparation of 5 (X=H)

In a 25 ml two-neck flask equipped with a reflux condenser with drying tube and a nitrogen gas inlet was placed 26 mg (0.11 mmole) of arsenic pentaoxide along with 0.5 ml of water. This was refluxed for a few minutes to form arsenic acid, H₃AsO₄, and to this was added 373 mg (0.67 mmole) of 4 in 15 ml 100% ethanol and the reaction mixture refluxed for 20 hr. The work-up included solvent evaporation and washing the resulting solid thoroughly with methanol and with diethyl ether to provide 118 mg (83% yield) of a white powder which was dried under vacuum (P₂O₅) and had a mp of 275-276°C (dec).

A ¹³C nmr spectrum (DMSO-d₆) at 100 MHz gave the following resonances: (C=O), 169.7, 168, 164.3 (shoulder) and 163.6. (Aromatic C-OH), 149.7, 145.4, 144.4, 143.4, 143, 140. (Aromatic C) 118.7, 117.5, 117, 116.3, 115, 113.8, 112.5, 111.3, 110, 109, 108, (CH₂) 0-50? The UV spectrum of 5 (X = H) in DMSO had a maximum absorption at 304 nm (ε = 9,001) and a minimum at 291 nm (ε = 7,480), while infrared (KBR) bands were found at 2950, 2880, 1642, 1486, 1453, 1384, 1310, 1220, 1145, 1115, 995, 900, 850, 790, 748, 720-650, 600, 415, 335, 320, and 310 cm⁻¹.

The fast atom bombardment mass spectrum (MS-50, glycerol) provided ions at m/e 623 (M; 2.5%) 625 (M+2, 5%) and 626 (M+3, 16%). Anal.
Preparation of the Benzyldimethylphenylammonium Salt of 5

In a round-bottom flask was placed 200 mg (0.362 mmoles) of 4, 67.3 mg (0.362 mmoles) sodium arsenate and 269 mg (1.03 mmoles) of benzyldimethylphenylammonium chloride dissolved in 60 ml of 50% aqueous ethanol. The reaction mixture was refluxed for 24 hr. and then the solvent was reduced to half its volume and refrigerated. The precipitate that formed was filtered and the filtrate was again reduced in volume and refrigerated. This method produced 100 mg (33%) of product. Attempts to obtain suitable crystals of the tetraammonium salt for x-ray studies were unsuccessful. The infrared (KBR) spectrum provided the following bands at 1650, 1505, 1490, 1480, 1245, 1215, 1115, 1060, 995, 887, 842, 790, 770, 750, 685, 595, 570 and 415 cm\(^{-1}\). Anal. Calcd. for \(C_{28}H_{26}O_{9}N_{3}As\cdotH_{2}O\) (monohydrate): C, 52.40; H, 4.57; N, 6.55. Found: C, 52.39; H, 4.67; N, 6.50.

Preparation of the Bis(triphenylphosphoranylidene)ammonium Salt of 5 (X = PPN)

In a round-bottom flask was placed 200 mg (0.362 mmoles) of 4, 67.3 mg (0.362 mmoles) sodium arsenate and 269 mg (1.03 mmoles) of benzyldimethylphenylammonium chloride dissolved in 60 ml of 50% aqueous ethanol. The reaction mixture was refluxed for 24 hr. and then the solvent was reduced to half its volume and refrigerated. The precipitate that formed was filtered and the filtrate was again reduced in volume and refrigerated. This method produced 100 mg (33%) of product. Attempts to obtain suitable crystals of the tetraammonium salt for x-ray studies were unsuccessful. The infrared (KBR) spectrum provided the following bands at 1650, 1505, 1490, 1480, 1245, 1215, 1115, 1060, 995, 887, 842, 790, 770, 750, 685, 595, 570 and 415 cm\(^{-1}\). Anal. Calcd. for \(C_{43}H_{44}N_{4}O_{9}As\cdot2.5\ H_{2}O\), C, 52.64; H, 5.57; N, 6.36. Found C, 52.57; H, 5.67; N, 6.64.

Preparation of the Bis(triphenylphosphoranylidene)ammonium Salt of 5 (X = PPN)

In a round-bottom flask was placed 50 mg (.08 mmoles) of 5 (X=H) and 48 mg (.08 mmoles) of bis(triphenylphosphoranylidene)ammonium chloride dissolved in 10 ml of dimethylsulfoxide and stirred for 2 hr. The DMSO was removed under vacuum and the remaining precipitate was dissolved in methylene chloride and filtered. Removal of the methylene chloride was followed by a benzene and methanol wash to give 25 mg (25%) of product. All attempts to obtain crystals for x-ray analysis were met with failure. The infrared (CH\(_2\)Cl\(_2\)) provided the following bands at
3630, 3060, 2953, 2844, 1645, 1580, 1550, 1485, 1450, 1440, 1252, 1222, 1120, 1024, 682, 550, 539 cm\(^{-1}\). Anal. Calcd. for \(\text{C}_{64}\text{H}_{56}\text{N}_{4}\text{O}_{9}\text{P}_{2}\text{As}_{4}\text{H}_{20}\), C, 62.29; H, 5.19; N, 4.54; P, 5.03. Found: C, 62.29; H, 4.75; N, 4.61; P, 4.81.

ACKNOWLEDGEMENTS

We thank Dr. Ken Raymond for helpful discussions and reprints concerning his work on LICAM Chemistry. The studies at LBL were supported by the Assistant Secretary of Fossil Energy and Division of Oil, Gas and Shale Technology, and the Bartlesville Energy Technology Center (Project Manager, Dr. Dexter Sutterfield) of the U.S. Department of Energy under contract no. DE-AC03-76SF00098.
REFERENCES

(5) Fish, R.H.; and Tannous R.S. Organometallics 1982, 1, 1238.

d) Harris, W.R.; and Raymond, K.N. Ibid. 1979, 101, 6534.

(9) Fish, R.H.; and Tannous, R.S. (in preparation).
FIGURE CAPTIONS

Figure 1 13C nmr spectrum (100mz) of (A) Arsenic anion (X=H) compound 5 and (B) 3,4-LICAM, 4, in DMSO-D$_6$. The region from 100-170 ppm includes the carbonyl region, ~160-170 ppm, aromatic carbon-hydroxyl, ~140-152, aromatic carbon, ~110-135 ppm, while the methylene carbons, ~0-50 ppm, were masked by the solvent and are not included.

Figure 2 Ultraviolet spectrum of compounds 4 (A) and 5 (O) in DMSO.
Figure 1
Figure 2

\[\triangle 4, \lambda = 314 (\epsilon = 6,576) \]
\[\circ 5, \lambda = 304 (\epsilon = 9,000) \]
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.