Title
Centralized Routing for Resource-Constrained Wireless Sensor Networks (SYS 5)

Permalink
https://escholarship.org/uc/item/30q628jx

Authors
Thanos Stathopoulos
Lewis Girod
John Heideman
et al.

Publication Date
2006
Centralized Routing for Resource-Constrained Wireless Sensor Networks

Thanos Stathopoulos, Lewis Girod, John Heidemann, Deborah Estrin, Karen Weeks
CENS Systems Lab, UCLA MIT CSAIL USC/ISI

CentralRoute: Centralized routing protocol for motes

Why centralized routing for motes

- **Heterogeneous systems:** Collections of motes and microservers working together
- **Utilize heterogeneity**: shift routing decisions from resource-constrained motes to resource-rich microservers

Centralized routing

- Addresses problems of distributed protocols
- Provides global view of the entire mote network at each sink

Heterogeneous Design Principle

Use the advantages of one platform to offset the disadvantages of another

Corollaries for mote routing:

- **Centralize** decision making on a microserver to make routing decisions based on a complete set of information
- **Reduce** memory requirements of motes
- **Program** a significant part of the protocol in a familiar and resource-rich 32-bit environment

Problems with Distributed Proactive Routing on Motes

Distributed Decision-Making with RAM Constraints

- **Mote-specific problems:**
 - Distributed decision making in conjunction with storage constraints leads to routing instabilities and inconsistencies
 - Limited RAM also creates scalability challenges in terms of network density and network size
- **Additional problems:**
 - **Proactive nature** leads to increased energy consumption
 - **Distance-vector** leads to count-to-infinity scenarios and routing loops

CentralRoute: Protocol Details and Performance

Protocol Details

- **Runs on both** motes and their sink (microserver)
 - Motes forward control data to microserver
 - Decision-making logic implemented exclusively on microserver
- **On-demand** protocol
 - Tree maintained by data packets
- **Dynamic single-sink** support
 - Sink selected at runtime
 - Motes only send data to (and keep state for) one sink at a time
 - Multi-sink ambiguity resolved in microserver tier
- **Source Routing** used in both directions

Tree Formulation

- Motes broadcast beacons only when they wish to join a tree
- Any motes attached to the tree forward join beacons towards shepherd via unicast
- Microserver picks best path using an ETX metric and sends a unicast source-routed reply to the mote
- Mote attaches to tree and uses the last mote on the reverse path as its parent

Performance

Improved connectivity at medium and high densities due to lack of per-mote neighbor state

Current status & Future Work

Current Status

- Deployed at Botanical Gardens.
- Field deployment at James Reserve pending

Future work

- Utilize global view & centralization nature to design a transmission scheduler for Cyclops image transfer over multiple hops