Title
DISCOVERY OF A NEW MENDELEVIUM ISOTOPE

Permalink
https://escholarship.org/uc/item/30v1q2nm

Authors
Phillips, L.
Gatti, R.
Chesne, A.
et al.

Publication Date
1958-08-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
DISCOVERY OF A NEW MENDELEVIUM ISOTOPE

L. Phillips, R. Gatti, A. Chesne, L. Muga, and S. Thompson

August 1958
DISCOVERY OF A NEW MENDELEVIUM ISOTOPE

L. Phillips, R. Gatti, A. Chesne, L. Muga, and S. Thompson

Radiation Laboratory and Department of Chemistry
University of California, Berkeley, California

August 1958

Helium ion bombardments of 253E have resulted in the identification of a new isotope of mendelevium (element 101) with mass number 255. The isotope decays by orbital electron capture to 255Pm, with a half life of approximately 1/2 hour. The daughter isotope was identified by its alpha energy (7.08 Mev) and half-life (21.5 hours). Mendelevium-255 may also decay by alpha branching with an energy of 7.34 Mev, but the evidence for this is not conclusive.

Bombardments were carried out at the 60-inch cyclotron at Crocker Laboratory using a modified version of the target probe previously described. Helium ion energies of 24, 29, 36, and 42 Mev were obtained with intensities of the order of 5 microamperes on a target area of 0.07 cm2. Approximately 2×10^{12} atoms of 253E were electroplated on the target area of a 1.0 mil gold foil. During the course of the experiments, the amount of einsteinium decayed to a value of 3×10^{11} atoms. The transmuted nuclei were caught on a catcher foil adjacent to the target area using standard recoil techniques. To determine the recoil and chemical yield, a known amount of 244Cm was included in the target so that the 246Cf and 245Cf produced by the helium ion beam would serve as a monitor.

The earliest experiments were confined to a search for short-lived alpha emitting isotopes of mendelevium. Two methods were used to obtain the actinide fraction. In the first method, a gold catcher foil (0.2 mg/cm2) was dissolved in aqua regia, and the gold was removed by passing the solution (in...
2 M HCl) through a Dowex-1 anion resin column. In the second method, the recoil nuclei were caught on a thin Mylar film (0.5 mg/cm²) which subsequently was placed on a platinum plate and ignited to destroy the organic matter. The sample was transferred to a 50-channel alpha pulse height analyzer for observation of the alpha groups.

In the investigation for longer lived isotopes, the gold catcher foil was dissolved and the gold removed as described above. The actinide fraction was evaporated to dryness, redissolved in 0.05 M HCl and sorbed on a Dowex-50 (12% cross-linked) cation resin column. The actinides were then eluted in sequence with 0.25 M ammonium alpha-hydroxy isobutyrate solution (pH = 4.68). The mendeleevium and fermium elution positions were internally calibrated by adding thulium and yttrium tracers. A 7.08 Mev alpha group, decaying with a half-life of 21 hours, was observed in the mendeleevium and fermium fractions. In order to establish that the 7.08 Mev alpha group in the mendeleevium fraction was due to electron capture decay from mendeleevium, the mendeleevium fraction was transferred to a second cation column and again separated into mendeleevium and fermium fractions. The 7.08 Mev alpha group was observed in both new fractions. It was concluded that in the time interval between cation columns, Fm²⁵⁵ grew in as a result of the electron capture decay of Mv²⁵⁵. A half-life of the order of 1/2 hour was estimated for the electron capture decay of Mv²⁵⁵. In a parallel determination, the observations of spontaneous fission events from Fm²⁵⁶ in the mendeleevium and fermium fractions, confirmed the decay of Mv²⁵⁶ by electron capture. Approximately 100 times as many fission events were seen in one experiment as compared to the number previously reported. A revised half-life of 1.5 hours was measured for the electron capture decay of Mv²⁵⁶.

A 7.34 Mev alpha group, decaying with a half-life of approximately 3/4 hours, was observed in only the mendeleevium fraction. This alpha group appeared in low
intensities at all bombardment energies and was therefore interpreted as
possibly being due to alpha decay branching of Mv255 (Table 1).

The cross-sections for the formation of Mv256 and Mv255 at the various
helium ion energies are given in Table 1. Included also, are the overall for-
mation cross-sections of Fm256, Fm255, and Fm254, uncorrected for possible
contribution from the electron capture decay of the mendelevium isotopes. A
revised spontaneous fission half-life of 160 \pm 10 minutes is reported for Fm256
(Fig. 1).

Eighteen separate experiments were done in this series of bombardments.
The observable half-life range for an alpha emitting isotope of mendelevium,
formed with 1 millibarn cross-section, was approximately 5 minutes to 1.5
months.

We would like to give our thanks to the Chemistry Division Instrumentation
Group for their aid with the electronic counting equipment. We should also like
to thank the crew of the Crocker Laboratory 60-inch cyclotron for the
dependable service encountered during our bombardments.

REFERENCES

1. M. Jones, R. P. Shuman, J. P. Butler, G. Cowper, T. A. Eastwood, and
2. B. G. Harvey, A. F. Chetham-Strode, A. Ghiorso, G. R. Choppin, and
3. S. G. Thompson, M. L. Muga, to be published at the Proceedings of the
4. A. Chetham-Strode, Jr., Light Isotopes of Berkelium and Californium
(thesis), UCRL-3322 (1956).
5. A. Ghiorso, B. J. Harvey, G. R. Choppin, S. G. Thompson, and G. T. Seaborg,
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Mode of Decay</th>
<th>Half-Life</th>
<th>Cross-Section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 Mev</td>
</tr>
<tr>
<td>Nv^{256}</td>
<td>Electron Capture</td>
<td>~ 1.5 hr</td>
<td>~ 0.1 mb</td>
</tr>
<tr>
<td>Nv^{255}</td>
<td>Electron Capture</td>
<td>~ 1/2 hr</td>
<td>~ 1 mb</td>
</tr>
<tr>
<td></td>
<td>7.3 Mev α</td>
<td>~ 3/4 hr</td>
<td>~ 0.2 mb</td>
</tr>
<tr>
<td>Fm^{256}</td>
<td>Spontaneous Fission</td>
<td>160±10 min</td>
<td>~ 0.1 mb*</td>
</tr>
<tr>
<td>Fm^{255}</td>
<td>7.08 Mev α^{(1)}</td>
<td>21.5 hr^{(1)}</td>
<td>~ 0.4 mb*</td>
</tr>
<tr>
<td>Fm^{254}</td>
<td>7.20 Mev α^{(1)}</td>
<td>3.24 hr^{(1)}</td>
<td>~ 0.5 mb*</td>
</tr>
</tbody>
</table>

(1) Reference 1.
* These are over-all cross-sections.
ψ Activity insufficient for calculation of cross-section.
Spontaneous-fission half life of Fm256

160 ± 10 minutes

End of bombardment
Started counting in pulse analyzer