Lawrence Berkeley National Laboratory
Recent Work

Title
DIRECT MEASUREMENT OF THE MAGNETIC MOMENT OF PLUTONIUM-239

Permalink
https://escholarship.org/uc/item/3155h3sp

Authors
Faust, John
Marrus, Richard
Nierenberg, William A.

Publication Date
1965-03-23
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
DIRECT MEASUREMENT OF THE MAGNETIC MOMENT OF PLUTONIUM-239

John Faust, Richard Marruc, and William A. Nierenberg

March 23, 1965
DIRECT MEASUREMENT OF THE MAGNETIC MOMENT OF PLUTONIUM-239†

John Faust, Richard Morrus, and William A. Nierenberg

Department of Physics and Lawrence Radiation Laboratory
University of California
Berkeley, California

March 23, 1965

The magnetic moment of Pu²³⁹ has been the subject of experimental work for about a decade. The original measurement was performed by Bleaney et al.¹ in 1954. They concluded that \(\mu_1(239) \) equals ±0.4(2) nm on the basis of paramagnetic resonance studies. An atomic-beam measurement by Hubbs et al.² of the hyperfine structure in the \(^3F_4 \) state of the free atom yielded \(\mu_1(239) = ±0.02 \) nm with the assumption of pure Russell-Saunders coupling. Subsequently several determinations based on optical hyperfine structure were made, particularly by the Bellevue group (Refs. 3, 4, and 6). The results of all these measurements are summarised in Table 1. It should be emphasised that all of these values of \(\mu_1(239) \) are inferred from measurements of magnetic dipole hyperfine constants \(A \) according to the relation \(\mu_1(239) = 14 \frac{A}{H_B} \), where \(H_B \) is the magnetic field at the nucleus, \(I \) is the nuclear spin and equals 1/2, and \(J \) is the electronic angular momentum. Hence all of these determinations rest on assumptions concerning the magnetic field at the nucleus.

Recently, an analysis of the hyperfine structures (hfs) of the states arising from the \(^3F \) level was undertaken by Baurhe and Judd.⁷ These authors showed that the \(A \) values of these states could be understood if contributions to \(H_B \) arising from core polarisation and the breakdown of Russell-Saunders coupling were taken into account. The size of the Casimir correction factors indicated that relativistic effects are negligible. They
concluded that $\mu_1(239) = 0.17 (0.04)$ mm. Armstrong's recent calculations of relativistic effects in the hyperfine structure of these states are based on a Hartree-Fock central field. 8) He shows that these effects may be the dominant contribution to the hfs. However, they have the same J dependence as the core polarization and would not interfere with the fit of Bausch and Judd. Only a measurement of the hyperfine anomaly could decide whether core polarization or relativistic effects are dominant.

In this note we report the result of a direct measurement of $\mu_1(239)$ by the method of triple resonance in an atomic beam. 9) The atomic-beam flop-in method was employed and is described elsewhere. 10) For a hyperfine structure system of $I = 1/2$, $J = 1$, the normal flop-in transition, which we denote as a, has the quantum numbers $F = 3/2$, $m_F = 1/2 \leftrightarrow F = 3/2$, $m_F = -3/2$. The end hairpins were always set at the frequency corresponding to the center of the resonance line of a. The hyperfine constants determining these frequencies are taken from the data of Hubbs et al. 2) The two transitions that are sensitive to the nuclear moment we denote by a and b and have the quantum numbers $F = 3/2$, $m_F = 1/2 \leftrightarrow F = 3/2$, $m_F = 3/2$ and $F = 3/2$, $m_F = -3/2 \leftrightarrow F = 1/2$, $m_F = -1/2$, respectively. These transitions are of the type $\Delta m_I = \pm 1$ and $\Delta m_J = 0$ in high field, and in the high-field limit the resonant frequencies are given by

$$v = \pm 2 + 2 \mu_0 H,$$

where μ_0 is the Bohr magneton and H is the applied field. Therefore the field dependence of the resonant frequency is a precise, direct measure of the nuclear moment.

When the frequency applied to the center hairpin corresponds to the resonant frequency for either of these transitions, the detector registers an increase in signal.
The data were analysed as follows: we combined the observed resonances of Hubbs et al. with our triple-resonance data and on the IBM-7094 made a least-squares fit according to the Hamiltonian

$$H = A(JI) - g_J \mu_0 \mathbf{J} \cdot \mathbf{H} - g_I \mu_0 \mathbf{I} \cdot \mathbf{H}.$$ \hspace{1cm} (2)

The data of Hubbs et al. essentially determine the values of A and g_J, whereas our data fix the value of g_I. The value obtained in this way is

$$\mu_I(239) = +0.200(4) \text{ nm},$$

where a correction for diamagnetic shielding has been made. The data fit is shown in Table II. The results for the triple resonance only are given.

Our value of $\mu_I(239)$ is within the limits of error set by Bauche and Judd. We are currently trying to extend our measurements to the isotope Pu241. If the hypothesis of large amounts of core polarization is correct, then a large hyperfine anomaly should exist in these isotopes.

The value of the $\mu_I(239)$ has also been calculated by Mottelson and Nilsson44 on the basis of the Nilsson model, to be -0.4 nm. Recently Rasmussen and Chiao42 have recalculated this moment using "quenched" g factors and obtained -0.06 nm. Hence there is a discrepancy in sign between the theoretical and experimental values.
FOOTNOTES AND REFERENCES

† Work supported by the U. S. Atomic Energy Commission.

8) Lloyd Armstrong, Jr., Lawrence Radiation Laboratory, Berkeley (private communication), 1965.

Table I. Prior measurements of $\mu_T(239)$.

<table>
<thead>
<tr>
<th>Group</th>
<th>Nuclear moment values (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleaney et al. a</td>
<td>0.4 (2)</td>
</tr>
<tr>
<td>Hubbs et al. b</td>
<td>0.024</td>
</tr>
<tr>
<td>Champeau and Gerstenkorn c</td>
<td>0.27(6)</td>
</tr>
<tr>
<td>Gerstenkorn d</td>
<td>0.24(6)</td>
</tr>
<tr>
<td>Korostyleva e</td>
<td>0.15(4)</td>
</tr>
<tr>
<td>Bauche et al. f</td>
<td>0.16(2)</td>
</tr>
</tbody>
</table>

a) See reference 1).
b) See reference 2).
c) See reference 3).
d) See reference 4).
e) See reference 5).
f) See reference 6).
Table II. Fit to the Hamiltonian

\[30(mc) = 5.139 \, \text{I}\text{J} - 1.4973 \, \mu_0 \text{I-H} + 2.15 \times 10^{-4} \, \mu_0 \text{I-H}. \]

<table>
<thead>
<tr>
<th>Transition</th>
<th>H(G)</th>
<th>Frequency (Mc) (v_{\text{exp}})</th>
<th>Residual (Mc) (v_{\text{theory}} - v_{\text{exp}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>10.000(5)</td>
<td>4.445(15)</td>
<td>0.001</td>
</tr>
<tr>
<td>b</td>
<td>10.000(5)</td>
<td>5.688(15)</td>
<td>-0.003</td>
</tr>
<tr>
<td>a</td>
<td>25.000(4)</td>
<td>4.865(15)</td>
<td>-0.003</td>
</tr>
<tr>
<td>b</td>
<td>25.000(4)</td>
<td>5.385(15)</td>
<td>-0.001</td>
</tr>
<tr>
<td>a</td>
<td>455.000(1)</td>
<td>5.050(15)</td>
<td>-0.002</td>
</tr>
<tr>
<td>b</td>
<td>455.000(1)</td>
<td>5.220(15)</td>
<td>-0.006</td>
</tr>
<tr>
<td>a</td>
<td>430.000(4)</td>
<td>4.997(10)</td>
<td>-0.002</td>
</tr>
<tr>
<td>b</td>
<td>430.000(4)</td>
<td>5.276(10)</td>
<td>-0.007</td>
</tr>
<tr>
<td>a</td>
<td>720.000(7)</td>
<td>4.945(20)</td>
<td>0.004</td>
</tr>
<tr>
<td>b</td>
<td>720.000(7)</td>
<td>5.360(20)</td>
<td>-0.005</td>
</tr>
<tr>
<td>a</td>
<td>720.000(7)</td>
<td>4.944 (3)</td>
<td>0.000</td>
</tr>
<tr>
<td>b</td>
<td>720.000(7)</td>
<td>5.366 (3)</td>
<td>0.001</td>
</tr>
</tbody>
</table>