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As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1

has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions

with massless drift-fluid electrons analogous to Chen and Parker [Phys. Plasmas 8, 441 (2001)]. Two

representative long wavelength modes, shear Alfv�en waves and resistive tearing modes, are verified in

cylindrical and toroidal magnetic field geometries. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4983320]

This article describes the verification of two important

MHD/fluid type, long-wavelength, electromagnetic modes

after the addition of an optional kinetic-fluid hybrid model to

the gyrokinetic particle-in-cell (PIC) code XGC1.1 This

work complements—as a more economical alternative—the

fully implicit, fully kinetic electromagnetic formulation, that

is also being developed for XGC1.2

The importance of MHD/fluid type electromagnetic

modes in magnetically confined fusion devices, which oper-

ate regularly at moderate to high b ¼ 2l0P=B2 (the ratio of

thermodynamic to magnetic pressure), is widely recognized.

Examples are neoclassical tearing modes,3 sawtooth oscilla-

tions,4 and edge localized modes (ELMs).5 Gyrokinetic elec-

tromagnetic codes such as GYRO,6,7 GS2,8 GENE,9 and

GEM10–12 have been available with increasing physics capa-

bility for more than a decade and have also been used to

study those modes. However, their application in long

wavelength MHD/fluid type instabilities has been difficult,

especially for PIC codes, due to the so called “cancellation

problem.”13,14 Recently, several methods were developed to

overcome the cancellation problem with kinetic electrons for

particle codes: the control variate method,15 a special split-

ting of the vector potential16,17 (used, e.g., by the EUTERPE

code), and the split-weight method12,18 (used in GEM, and

being further developed in GTS19). The XGC1 code1

recently demonstrated fully kinetic electromagnetic capabil-

ity without the cancellation problem2 using a fully implicit

electromagnetic scheme based on the work by Chen and

Chac�on.20–22 These methods are computationally expensive

for long wave length MHD/fluid type modes even without

the cancellation problem. The cheapest way to study these

modes is to use fluid electrons instead of electron particles.

Long wavelength electromagnetic physics in the global

edge region has so far been studied with fluid and MHD

codes (some of them with ad hoc kinetic ion effect) such as

BOUTþþ,23,24 M3D,25,26 M3D-C1,27,28 and JOREK,29,30

which neglect important effects that drive the plasma to a

non-thermal equilibrium. Since kinetic ion effects on fluid/

MHD modes as well as microturbulence are expected to be

important in the plasma edge region, e.g., for the physics of

edge localized modes (ELMs), kinetic ballooning modes

(KBM) and others, the fluid and MHD approach was

improved by coupling gyrokinetic ions to the massless elec-

tron fluid hybrid model utilized in the GEM code.10,11

Although the fluid treatment of the electrons drops some

important effects such as the trapped electron mode (TEM),

it is still attractive because its implementation is rather

straightforward without the cancellation issue, low k? fluid/

MHD modes are important for ELM activity, and it is eco-

nomical with computing time.

The fluid-kinetic hybrid version of the XGC1 code used

in this report combines gyrokinetic ions in the df formalism1

(which, if done correctly, can be made identical to the total-f

formalism31) with massless drift-fluid electrons.11,32 The

electron density continuity equation is given by

@dne

@t
¼ �n0 Bþ dB?ð Þ � r

r2
?Ak

el0n0B
þ

uk;i
B

 !

þdB? � r
j0
eB
� vE � r n0 þ dneð Þ

� 2n0

B3
B�rBð Þ � r/

þ 2

eB3
B�rBð Þ � rdPe; (1)

where B is the axisymmetric background magnetic field,

dB? ¼ rAk � b̂ is the perturbed magnetic field, b̂ ¼ B=B,

and Ak is the component of the perturbed vector potential

along the background magnetic field, l0 is the vacuum per-

meability, uk;i ¼
Ð

d3vvkdfi=n0 is the parallel ion fluid flow,

dfi is the perturbed ion guiding center distribution function,

ne ¼ n0 þ dne is the electron density, j0 ¼ b̂ � r � B=l0ð Þ is

the equilibrium current density, dPe ¼ edneT0;e is thea)Electronic mail: rhager@pppl.gov
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perturbed iso-thermal electron pressure, and vE ¼ 1
B b̂ �r/

is the E� B drift. We also used the relation uk;e ¼ r2
?Ak

� �
=

el0n0ð Þ þ uk;i. The time evolution of the perturbed vector

potential is given by the definition of the electric field and

Ohm’s law

@Ak
@t
¼ �b̂ � r/� Ek; (2)

Ek ¼ �
~b � r
en0

dPe �
dB?
en0B

� r P0;e � en0/ð Þ þ gejk: (3)

Here, ~b ¼ b̂ þ dB?=B; P0;e ¼ en0T0;e is the background

electron pressure, and jk ¼ en0 uk;i � uk;eð Þ. Finally, the gyro-

kinetic Poisson equation in the long wave length limit is

�r � �0v
e
r/ ¼ dni � dne; (4)

where v ¼ qi=kD;i

� �2 ¼ c=vAð Þ2 is the ion electric suscepti-

bility, qi is the ion gyro radius, kD;i is the ion Debye length,

and vA ¼ B= l0min0ð Þ1=2 is the Alfv�en speed. The ion density

is dni ¼
Ð

d3vhdfiiq, where h…iq indicates gyro-averaging.

The massless electron approximation is valid in the limit

vA=vt;e ! 0 or bemi=me � 1, where be ¼ 2l0Pe=B2.

The fluid equations are implemented by using a mixed

finite-difference (FD) finite-element (FE) method. Terms of

the form a � r and b̂ � r use a second order FD derivative.

Parallel derivatives are set up by field-line tracing and

exploiting the field-following property of the XGC

meshes.33,34 The Poisson equation and the Laplacian r2
?

retain only derivatives with respect to R and Z and are evalu-

ated with linear finite elements on a planar triangular mesh.

In the df formalism, the nonlinear terms in the electron

fluid equations, e.g., vE � rdne, are a potential complication

compared to the particle weight evolution equation,1 which

is formally linear with the non-linearity entering through the

perturbed particle orbits. Based on preliminary nonlinear

studies of KBM turbulence, we expect that this will not

cause numerical problems. However, in some cases, numeri-

cal problems might arise and require adjustments to the

implementation of the nonlinear terms, e.g., by casting the

nonlinear terms in the electron continuity equation in a con-

servative form as in the GEM code.

Both explicit and implicit time integrators have been

implemented. A second order Runge–Kutta (RK2) method

has been utilized for the time integration of the combined

particle–fluid system for many of the results discussed in this

work. In the first step, dne tþ Dt=2ð Þ and Ak tþ Dt=2ð Þ are

evaluated using, / tð Þ; dni tð Þ and uk;i tð Þ. Then the particles

are pushed for a half time step to evaluate dni tþ Dt=2ð Þ and

uk;i tþ Dt=2ð Þ. In the second step, we evaluate / tþ Dt=2ð Þ
and then push the particles for a full time step to obtain

/ tþ Dtð Þ; dni tþ Dtð Þ and uk;i tþ Dtð Þ.
Implicit time stepping methods have been implemented

using the PETSc TS framework35–37 to overcome the restric-

tions in the time step of explicit methods. The particle terms

dni and uk;i are treated as non-linear contributions to the sys-

tem of electron fluid equations and are fully integrated into

PETSc’s nonlinear solver residual, but only the electron fluid

terms are included in the Jacobian. The Newton method is

used to solve the non-linear equations, which requires one

particle push per evaluation of the residual.

For the verification of shear Alfv�en wave physics, we use

a minimal system that supports this mode: linearized versions

of equations (1)–(3) with the closure Ek ¼ gejk. In addition,

we neglect the terms related to the curvature and rB drift in

Eq. (1). It is straightforward to prove in cylindrical geometry

that the dispersion relation of the resulting reduced system

yields x ¼ ½vA2k2
k � 4 ge= 2l0ð Þ

� �4
k4
?�

1=2 þ ige= 2l0ð Þk2
?. The

first verification test of the shear Alfv�en dispersion relation

was conducted in cylindrical geometry with concentric, circu-

lar flux-surfaces with minor radius a¼ 1, constant safety factor

q¼ 3, be ¼ 1:5� 10�2, and ge ¼ 10�6 X m. The simulation

was initialized with a global perturbation of Ak centered

around r=a ¼ 0:67 containing toroidal mode numbers n
¼ 1…4 and poloidal mode numbers m ¼ 0…4. With this

large scale variation in the radial and poloidal direction, the

low resistivity does not influence the real frequency much but

still serves as a check for the resistive dissipation of the

reduced shear Alfv�en wave system (with k? � 1=a). The time

step for this simulation was Dt ¼ 1:36� 10�8 s � 10�2sA,

where sA ¼ R0=vA. The total duration of the simulation is

1:36� 10�3 s � 1000sA.

Figure 1 shows the shear Alfv�en spectrum obtained

from this simulation. The parallel wave number was deter-

mined as kk ¼ b̂ � k ¼ BP=Bð Þkh þ BT=Bð Þku. The mode fre-

quency is the median of the intensity for each value of kk
and the error bars indicate the decay length of the mode

intensity around its median. The increasing width of the error

bars at kk > 0:5 indicates decreasing overall intensity due to

the low toroidal and poloidal mode numbers used to initialize

the simulation. The steps in the frequency spectrum are an

artifact of the interpolation of the intensity from kh; kuð Þ
space to a common kk scale.

Similar tests in toroidal geometry have been performed

in a slightly modified version of the standard cyclone geome-

try, with R0 ¼ 1:7; a=R0 ¼ 0:358; B0 ¼ 1:9, constant q¼ 2,

FIG. 1. The shear Alfv�en wave spectrum in cylindrical geometry with con-

centric circular flux-surfaces. The density plot indicates the mode intensity,

the diamonds indicate the median of the intensity at each kk, and the error

bars indicate the decay length of the intensity around the median. The steps

in the median frequency are an artifact of the interpolation of the intensity

from kh; kuð Þ space to a common kk scale.
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and T0 ¼ 2 keV. The density is varied between 1:875

�1019 m�3 and 6� 1020 m�3 to achieve values of be

between 0.4% and 13.4%. The time step is Dt � 5� 10�2sA

and the total simulation time is �40sA. The simulation is ini-

tialized with an n¼ 4, m ¼ 4…12 perturbation of Ak. Figure

2 shows the frequency spectrum of the n¼ 4 Alfv�en wave

for the poloidal wave numbers m ¼ 6…10. The numerical

frequencies agree very well with the (approximate) analyti-

cal result x / 2p=Lk
� �

n� m=qð ÞvA, where Lk is the parallel

connection length for one poloidal circuit. The deviations are

caused by the variation of the field line pitch along magnetic

field lines. We find that xsA is independent of be as expected

because only the density n0 was varied in this test.

Since the kinetic-fluid hybrid approach is especially use-

ful for the simulation of low-n tearing modes, we bench-

marked the m; nð Þ ¼ 2; 1ð Þ tearing mode in cylindrical and

toroidal geometry against the GEM code32 and M3D-K,38

respectively. We did not consider the effect of kinetic ions in

this benchmark. The only term added to the electron fluid

equations compared to the terms kept in the shear Alfv�en

case is the kink drive dB? � r j0= eBð Þ
� �

in Eq. (1) to be con-

sistent with GEM’s eigenvalue solver.32

For the benchmark against the GEM code, we use the

case described in Ref. 32: concentric, circular flux-surfaces

in cylindrical geometry, R0 ¼ 1:7 m, a¼ 0.425 m (R0=a
¼ 4), B0 ¼ 1:906 T, q ¼ 1:5½1þ r=að Þ2�, Z¼ 1, mi=mp

¼ 2:5, and constant density n0 ¼ 3:886� 1020 m�3. Since

the electron fluid equations used for this benchmark have no

temperature dependence, we can use a constant temperature

profile T0;e ¼ 45:63 eV, which yields the same on-axis be of

4� 10�3 and relative domain size a=qi � 740 as in Ref. 32.

The resonant surface for the (2, 1) tearing mode is at

r=að Þc � 0:577 corresponding to the normalized poloidal

magnetic flux wN;c ¼ 0:411. In order to be able to resolve the

resonance layer of the (2, 1) tearing mode also at low resis-

tivity, the radial resolution of our computational mesh varies

between 0.5 mm around the resonant surface to a maximum

of 8 mm far from the resonant surface. The relationship

between the normalized resistivity gN and growth rate cN

used in Ref. 32 and the corresponding values ge and c in

SI-units are gN ¼ en0=B0ð Þge and cN ¼ mp= eB0ð Þc, where

mp is the proton mass. The results of a resistivity scan of the

growth rate of the (2, 1) tearing mode in this geometry are

shown in Fig. 3. The growth rates evaluated with XGC1

show excellent agreement with the growth rates computed

with GEM’s eigenvalue solver that uses the MHD approxi-

mation for the ion polarization density (Fig. 3 in Ref. 32).

We did not include an XGC1 data point for gN ¼ 10�7

because of the very strict resolution requirements of about

2:5� 10�4 m or less for this low resistivity. Using the

Crank–Nicolson method, the implicit time integrator could

speed up these simulations by a factor of more than 10. For

gN ¼ 10�6 a time step of Dt ¼ 2:7sA could be used.

For the benchmark against M3D-K in toroidal geometry,

we use a Grad–Shafranov equilibrium generated with the

FLOW code39 with a fixed circular boundary, R0 ¼ 5:76 m,

a¼ 1 m, B0 ¼ 1 T, q ¼ 1:5þ 2w2
N; mi=mp ¼ 2:5, and con-

stant n0 ¼ 1020 m�3 and T0;e ¼ 100 eV, so that be ¼ 4

�10�3 and bemi=me ¼ 18:4. The resonant surface of the (2, 1)

tearing mode is located at wN ¼ 0:5. The radial resolution of

the computational mesh is 1.5 mm between approximately

wN ¼ 0:4 and wN ¼ 0:6 and up to 1.2 cm away from the tear-

ing layer. For the normalized resistivity of gM3D ¼ 10�4 used

in Ref. 38 and the corresponding normalization relations, we

obtain a resistivity in SI units of ge ¼ l0 a2=sA

� �
gM3D

¼ 3:01� 10�4. The XGC1 growth rate calculation used a time

FIG. 2. Poloidal mode number scan (m ¼ 6…10) of the n¼ 4 shear Alfv�en

wave in a toroidal cyclone-like geometry for be ¼ 3:3� 10�3. The dotted

line is the analytical mode frequency in cylindrical geometry.

FIG. 3. (a) Growth rate of the (2, 1) tearing mode in cylindrical geometry. The

solid line shows the result of GEM’s tearing mode eigenvalue solver in the

MHD approximation for the ion polarization density (see Ref. 32). The results

from the implicit and explicit time integrator agree very well. (b) Mode struc-

ture of the m¼ 2 mode with gN ¼ 10�5. The amplitude of each quantity is nor-

malized to its respective maximum. The mode structure is similar to Fig. 8 in

Ref. 32, although the tearing layer is shifted to a slightly higher r/a.
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step of Dt ¼ 7� 10�3sA and ran for a total time of approxi-

mately 350 sA. Figures 4(a)–4(d) show the mode structure of

the growing (2, 1) mode, which exhibits the usual tearing struc-

ture. For comparison with Ref. 38, we use reduced MHD quan-

tities, the perturbed current Ruk;e, and the velocity stream

function /=B. The growth rate we obtain from the XGC1 cal-

culation is c ¼ 1:12� 10�2s�1
A and compares well to Ref. 38.

The relative difference between the XGC1 and the M3D-K

result is 6%.

Verification of linear and nonlinear intermediate wave-

length drift-Alfv�en modes such as ion temperature gradient-

driven modes and kinetic ballooning modes (KBMs) will be

presented in a future paper. In order to demonstrate the cou-

pling of the gyrokinetic ion particles to the electron fluid

equations, we give one example of linear growth of KBM

modes in cyclone geometry with hydrogen ions, R0 ¼ 1:7 m,

a=R0 ¼ 0:358; B0 ¼ 1:9 T, q ¼ 0:854þ 2:184 r=að Þ2; Ti ¼
Te ¼ 1 keV, be ¼ 4:4%; R0=Ln ¼ 2:22 and R0=LTi

¼ R0=LTe

¼ 10. Figure 5 shows the final mode structure of the n¼ 10

mode of Ak. The frequency and growth rate obtained in this

case are x ¼ 2:0 cs=R0 and c ¼ 0:69 cs=Ln.

In order to add gyrokinetic ion effects to electromag-

netic fluid/MHD instabilities, the gyrokinetic edge turbu-

lence code XGC1 has been modified by replacing the kinetic

electrons by massless drift-fluid electrons.10,11 Explicit and

implicit time integration methods have been implemented

and tested. We verified shear Alfv�en wave physics against

the analytical solution and benchmarked the massless fluid

model for resistive tearing modes against the codes GEM

and M3D-K. The hybrid model in XGC will be further devel-

oped into a total-f code with the aim of studying the onset of

edge localized modes across the magnetic separatrix surface.

Verification of the kinetic version of peeling-ballooning

FIG. 4. Mode structure of the (2, 1) tearing mode in toroidal geometry, which compares well to Fig. 1 in Ref. 38. (a) Ruk;e (equivalent to the perturbed current)

at u ¼ 0, and (b) /=B (velocity stream function) at u ¼ 3p=2 plotted along the midplane. The dashed lines indicate the location of the wN ¼ 0:5 surface. (c)

Ruk;e at u ¼ 0, and (d) /=B at u ¼ 3p=2 in the (R, Z) plane. The dotted circle is the wN ¼ 0:5 surface.

FIG. 5. Vector potential Ak obtained for the n¼ 10 mode after 65.7 sA in a

linear XGC simulation in cyclone geometry with hydrogen ions, R0 ¼ 1:7
m, a=R0 ¼ 0:358; B0 ¼ 1:9 T, q ¼ 0:854þ 2:184 r=að Þ2; Ti ¼ Te ¼ 1 keV,

be ¼ 4:4%; R0=Ln ¼ 2:22, and R0=LTi
¼ R0=LTe

¼ 10.
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modes, and kinetic ballooning modes will be reported in a

subsequent paper.
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