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Functionals Based on the Generalized Gradient

Approximation: Local, Global Hybrid, and
Range-Separated Hybrid Functionals with and

without Dispersion Corrections

Narbe Mardirossian and Martin Head-Gordon∗

Department of Chemistry, University of California, Berkeley and Chemical Sciences Division,
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA

E-mail: mhg@cchem.berkeley.edu

Abstract
The limit of accuracy for semi-empirical general-
ized gradient approximation (GGA) density func-
tionals is explored by parameterizing a variety of
local, global hybrid (GH), and range-separated hy-
brid (RSH) functionals. The training methodology
employed differs from conventional approaches
in 2 main ways: 1). Instead of uniformly trun-
cating the exchange, same-spin correlation, and
opposite-spin correlation functional inhomogene-
ity correction factors, all possible fits up to fourth
order are considered, and 2). Instead of select-
ing the optimal functionals based solely on their
training set performance, the fits are validated on
an independent test set and ranked based on their
overall performance on the training and test sets.
The 3 different methods of accounting for ex-
change are trained both with and without disper-
sion corrections (DFT-D2 and VV10), resulting
in a total of 491508 candidate functionals. For
each of the 9 functional classes considered, the
results illustrate the trade-off between improved
training set performance and diminished transfer-
ability. Since all 491508 functionals are uniformly
trained and tested, this methodology allows the
relative strengths of each type of functional to be
consistently compared and contrasted. The range-

∗To whom correspondence should be addressed

separated hybrid GGA functional paired with the
VV10 nonlocal correlation functional emerges as
the most accurate form for the present training and
test sets, which span thermochemical energy dif-
ferences, reaction barriers, and intermolecular in-
teractions involving lighter main group elements.

1 Introduction
While empirical parameters have been used in
density functionals since the 1950s, the first sys-
tematic optimization of a density functional was
performed by Axel Becke in 1997.1 However,
this breakthrough would not have been possible
without several significant developments that took
place in the preceding decades. Firstly, Frank Her-
man’s extension2 of John Slater’s Xα method3

(Equations 1 and 2) to the Xαβ method (Equation
3) introduced a gradient-based correction, sσ =
|∇ρσ |
ρ

4/3
σ

, to the Xα exchange energy density based

on dimensional arguments. A major drawback of
the semi-empirical Xαβ method was the diver-
gence of its exchange potential at the r = 0 and
r = ∞ limits. A solution to this was proposed by
Becke in 1986, when he modified the inhomogene-
ity correction factor introduced by Herman in or-
der to produce the divergence free Xαβγ (B86)
exchange functional4 (Equation 4).
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Exα =−
↑,↓

∑
σ

∫
Cxα ρ

4/3
σ dr (1)

Cxα =
9
4

α

(
3

4π

)1/3

(2)

Exαβ =−
↑,↓

∑
σ

∫
Cxα ρ

4/3
σ

[
1+

β

Cxα

s2
σ

]
dr (3)

Exαβγ =−
↑,↓

∑
σ

∫
Cxα ρ

4/3
σ

[
1+

β

Cxα γx

γxs2
σ

1+ γxs2
σ

]
dr (4)

11 years later,1 Becke generalized the inhomo-
geneity correction factor of the B86 exchange
functional with an mth order power series in the
dimensionless variable, ux,σ =

γxs2
σ

1+γxs2
σ

:

EB97
x =−

↑,↓

∑
σ

∫
Cxα ρ

4/3
σ

[
m

∑
i=0

cx,iui
x,σ

]
dr (5)

This scheme was applied to both the exchange
functional and the spin-decomposed same-spin
and opposite-spin correlation functionals to pro-
duce the B97 density functional (Section 3). The
original B97 functional truncated the expansions
at m = 2, and included a fraction of exact ex-
change, leaving 10 undetermined linear parame-
ters for fitting to thermochemical data.

As an approach to GGA density functionals,
B97 has unparalleled flexibility. As a result, it is
not surprising that at least 15 B97-based density
functionals have been parameterized since 1997.
These include local functionals5–8 (HCTH/93,
HCTH/120, HCTH/147, HCTH/407, B97-D),
global hybrid functionals1,5,9,10 (B97, B97-1,
B97-2, B97-3), range-separated hybrid function-
als11–14 (ωB97, ωB97X, ωB97X-D, ωB97X-D3,
ωB97X-V), and even double hybrid functionals15

(ωB97X-2).
The purpose of this work is to use the flexibil-

ity of the B97 form to attempt to systematically
explore the accuracy attainable with different pos-
sible GGA functionals that build upon the basic
B97 framework with different augmentations to
exchange and correlation. Table 1 lists a variety
of ingredients that can be incorporated into a B97-
based density functional. To adhere to the func-
tional form of the local component of B97, it is
necessary to restrict the local exchange and corre-
lation functionals to depend solely on the density
and its gradient. However, the options for nonlocal

exchange range from global hybrid exchange to
range-separated exchange to no nonlocal exchange
at all. These 3 options can be seamlessly inte-
grated into the B97 functional form. From the per-
spective of dispersion corrections, options8,16–20

such as DFT-D2, DFT-D3, vdW-DF-04, vdW-DF-
10, VV09, VV10, MP2, RPA, and beyond, exist.
All of these methods can be easily appended to the
B97 functional form as well.

Table 1: Ingredients that can be incorporated
into a density functional. GH stands for global
hybrid and RSH stands for range-separated hy-
brid. DFT-D2 refers to Grimme’s dispersion
tail and VV10 refers to the VV10 nonlocal cor-
relation (NLC) functional. The underlined in-
gredients were not varied, while the ingredients
in bold were varied, resulting in a total of 9 can-
didate functional forms. While the kinetic en-
ergy density, τ , is a valid candidate for inclu-
sion in the local parts of both the exchange and
correlation functionals, this paper focuses ex-
clusively on GGA functionals.

Exchange Correlation
Local Nonlocal Local Nonlocal
1). ρ 1). None 1). ρ 1). None

2). ∇ρ 2). GH 2). ∇ρ 2). DFT-D2
3). τ 3). RSH 3). τ 3). VV10

B97-based semi-empirical density functionals
have typically been optimized using uniformly
truncated inhomogeneity correction factors (ICF)
for the exchange, same-spin correlation, and
opposite-spin correlation functionals. One method
of approaching the limit of accuracy for GGA-
based functionals is to try uniform expansions
between m = 0 and a large m-value in order to
select the optimal m-value based on a “goodness-
of-fit” index21 that is related to the training set
performance. This approach can differentiate be-
tween uniformly truncated ICFs, and whether by
this approach, or by careful inspection, B97-based
ICFs are usually truncated at either m = 2, m = 3,
or m = 4. One functional that is not based on
uniform truncation is ωB97X-V,14 which was
developed based on a variation of the following
methodology.

In contrast to uniform truncation, the most gen-
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eral approach is to perform all possible optimiza-
tions up to a certain power of m, including even
those that skip powers (equivalent to setting the
skipped coefficient to zero). This approach leads
to thousands of competing fits (i.e. thousands of
competing functional forms). It is difficult to dif-
ferentiate between so many possible functionals
using any inspection of training set results, includ-
ing the “goodness-of-fit” index. Yet, it will be es-
sential to face this complexity since it is likely that
the simplest functional capable of yielding good
accuracy on the training set data will perform best
in applications.

While the goal of fitting to a training set is
to minimize the training set RMSD, it is even
more desirable for a parameterized functional to
be transferable. In order to differentiate between
the thousands of resulting functionals and assure
transferability, it is essential to take into account
the performance of a given fit on both the training
set and an independent test set. The test set is not
used to determine any parameters, but will instead
guide the choice of how many (and which) coef-
ficients should be included in the least-squares fit.
Taking the conventional approach of solely consid-
ering training set performance, it is guaranteed that
the fit with the most linear parameters will have the
smallest training set RMSD. Thus, if the training
set RMSD is plotted with respect to the number
of linear parameters, the resulting figure resembles
the plots contained in Figure 1. However, if both
the training set performance and the test set per-
formance are taken into account, the plots begin to
resemble parabolas (Figure 3). Thus, it is much
easier to pick out an “optimal” functional with this
methodology.

In this work, we parameterize 9 flavors of B97-
based density functionals by varying the nonlocal
exchange and dispersion correction (nonlocal cor-
relation) components in bold in Table 1. While
14 of the 15 aforementioned B97-based density
functionals have uniformly truncated inhomogene-
ity correction factors, all possible combinations of
the exchange, same-spin correlation, and opposite-
spin correlation expansion coefficients up to fourth
order are tested. Using this methodology, an opti-
mal functional from each category is selected, and
the 9 resulting optimal functionals are compared
to determine the optimal pairing of nonlocal ex-

change and dispersion.

2 Computational Details
An integration grid of 99 radial points and 590 an-
gular points, (99,590), was used to evaluate lo-
cal exchange-correlation (xc) functionals, while
the SG-1 grid22 was used for the VV10 nonlo-
cal correlation (NLC) functional.20 For the rare-
gas dimers and the absolute atomic energies, a
(500,974) integration grid was used to evaluate
local xc functionals, along with a (99,590) grid
for the VV10 NLC functional. The aug-cc-pVQZ
[aQZ] basis set23,24 was used for all thermochem-
istry (TC) datapoints except the second-row abso-
lute atomic energies (aug-cc-pCVQZ),23,24 while
the aug-cc-pVTZ [aTZ] basis set23,24 was used for
all noncovalent interactions (NC) datapoints ex-
cept the rare-gas dimers (aug-cc-pVQZ). Further-
more, the noncovalent interactions were computed
without counterpoise corrections. For B97-D2,
Grimme’s DFT-D2 dispersion tail was used with
an s6 coefficient25 of 0.75. Grimme’s B97-D func-
tional8 uses the DFT-D2 dispersion tail as well,
with an s6 coefficient of 1.25. All of the calcula-
tions were performed with a development version
of Q-Chem 4.0.26

3 Theory
The complete functional form for all of the trained
functionals is given by Equations 6-8. The com-
ponents of the exchange functional and correla-
tion functional are described in Sections 3.1 and
3.2, respectively. The acronyms used in Equations
6-8 (and henceforth) are: exchange-correlation
(xc), exchange (x), correlation (c), short-range
(sr), long-range (lr), same-spin (ss), opposite-spin
(os), and dispersion (disp).

Exc = Ex +Ec (6)

Ex = EB97
x + cxEexact

x,sr +dxEexact
x,lr (7)

Ec = EB97
c,ss +EB97

c,os +Edisp (8)

For local (exchange) functionals, cx = dx = 0,
while for global hybrid functionals, cx = dx, where
cx is the (global) fraction of exact exchange. For
range-separated hybrid functionals, dx = 1, EB97

x =
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EB97
x,sr (Section 3.1), and cx is the fraction of short-

range exact exchange.

3.1 Exchange Functional Form
The local exchange component of the B97 func-
tional form is given by Equations 9 and 10:

EB97
x =

α,β

∑
σ

∫
eUEG

x,σ (ρσ )gx (ux,σ )dr (9)

gx (ux,σ ) =
mx

∑
i=0

cx,iui
x,σ =

mx

∑
i=0

cx,i

[
γxs2

σ

1+ γxs2
σ

]i

(10)

where the dimensionless variable, ux,σ ∈ [0,1], is a
finite domain transformation of the reduced spin-
density gradient, sσ = |∇ρσ |

ρ
4/3
σ

∈ [0,∞). In Equa-

tion 9, eUEG
x,σ (ρσ ) is the exchange energy density

per unit volume of a uniform electron gas (UEG)
and gx (ux,σ ) is the exchange functional inhomo-
geneity correction factor (ICF). The linear local
exchange parameters, cx,i, will be determined by
least-squares fitting to a training set in Section 5,
while γx = 0.004 is a nonlinear local exchange
parameter that was fit to the Hartree–Fock ex-
change energies of 20 atoms in 1986 by Becke.4

For range-separated hybrid functionals, the con-
ventional Coulomb operator in the local exchange
component is attenuated by the complementary er-
ror function (erfc), resulting in an additional mul-
tiplicative factor, F (aσ ), in the integrand of Equa-
tion 9:

F (aσ ) = 1− 2
3

aσ

[
2
√

πerf
(

1
aσ

)
−3aσ+

a3
σ +

[
2aσ −a3

σ

]
exp
(
− 1

a2
σ

)] (11)

where aσ = ω

kFσ
, ω is the nonlinear range-

separation parameter that controls the transition
from local exchange to nonlocal exact exchange
with respect to interelectronic distance, and kFσ =[
6π2ρσ

]1/3 is the spin-polarized Fermi wave vec-
tor. The inclusion of F (aσ ) in the integrand of
Equation 9 gives EB97

x,sr .
When considering both global hybrid and range-

separated hybrid functionals, the most general way
to deal with nonlocal exchange is to split the
Coulomb operator in the conventional expression
for exact exchange into a short-range component

(Eexact
x,sr ) and a long-range component (Eexact

x,lr ) with
the erfc and erf Coulomb functions, respectively:

Eexact
x,sr =−1

2

α,β

∑
σ

occ.

∑
i, j

∫ ∫
ψ
∗
iσ (r1)ψ

∗
jσ (r2)

erfc(ωr12)

r12

×ψ jσ (r1)ψiσ (r2)dr1dr2

(12)

Eexact
x,lr =−1

2

α,β

∑
σ

occ.

∑
i, j

∫ ∫
ψ
∗
iσ (r1)ψ

∗
jσ (r2)

erf(ωr12)

r12

×ψ jσ (r1)ψiσ (r2)dr1dr2

(13)

where ψiσ and ψ jσ are the occupied Kohn–Sham
spatial orbitals. Since erfc(ωr12)

r12
+ erf(ωr12)

r12
= 1

r12
,

Eexact
x = Eexact

x,sr +Eexact
x,lr for global hybrids, where

cx = dx is the fraction of (global) exact exchange.
For range-separated hybrids, instead of setting the
percentage of exact-exchange at r = 0 to zero, an
(optional) optimizable parameter, cx, controls the
amount of short-range exact exchange. Addition-
ally, the value of ω is fixed at 0.3 for all of the
range-separated hybrid functionals.

3.2 Correlation Functional Form
The local correlation component of the B97 func-
tional form is given by Equations 14-17:

EB97
c,ss =

α,β

∑
σ

∫
ePW92

c,σσ gc,ss (uc,σσ )dr (14)

gc,ss (uc,σσ ) =
mcss

∑
i=0

ccss,iui
c,σσ =

mcss

∑
i=0

ccss,i

[
γcsss2

σ

1+ γcsss2
σ

]i

(15)

EB97
c,os =

∫
ePW92

c,αβ
gc,os

(
uc,αβ

)
dr (16)

gc,os
(
uc,αβ

)
=

mcos

∑
i=0

ccos,iui
c,αβ

=
mcos

∑
i=0

ccos,i

[
γcoss2

αβ

1+ γcoss2
αβ

]i

(17)

where s2
αβ

= 1
2

(
s2

α + s2
β

)
, and ePW92

c,σσ and ePW92
c,αβ

are the PW9227 same-spin and opposite-spin cor-
relation energy densities per unit volume.28 The
linear local correlation parameters, ccss,i and ccos,i,
will be determined by least-squares fitting to a
training set in Section 5, while γcss = 0.2 and
γcos = 0.006 are nonlinear local correlation param-
eters that were fit to the correlation energies of he-
lium and neon in 1997 by Becke.1

Since functionals are trained both with and with-
out dispersion corrections, the Edisp term requires
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further elaboration. When dispersion corrections
are not used, Edisp = 0. Two different dispersion
correction methods are used in combination with
the local, GH, and RSH functionals: one disper-
sion tail (DT) and one nonlocal correlation (NLC)
functional.

The dispersion tail (DFT-D2) has the following
form:

EDFT−D2
disp =−s6

Nat−1

∑
i=1

Nat

∑
j=i+1

Ci j
6

R6
i j

f DFT−D2
damp (Ri j) (18)

f DFT−D2
damp (Ri j) =

1

1+ e−d(Ri j/Rr,i j−1)
(19)

In the damping function, Rr,i j = R0,i +R0, j is the
sum of the van der Waals (vdW) radii of a pair of

atoms, Ci j
6 =

√
Ci

6C j
6 is the dispersion coefficient

of a pair of atoms, and d = 20. In training the DFT-
D2 dispersion tail onto the density functionals, the
linear s6 coefficient is optimized and counted as
a linear parameter. The empirical C6 parameters
and vdW Radii, R0, can be found in Table 1 of
Reference 8.

The nonlocal correlation functional that is con-
sidered is VV10:20

EVV 10
disp =

∫
ρ (r)

[
1
32

[
3
b2

]3/4

+
1
2

∫
ρ
(
r′
)

Φ
(
r,r′,{b,C}

)
dr′
]

dr

(20)
where Φ(r,r′,{b,C}) is the nonlocal correlation
kernel defined in Reference 20. The VV10 NLC
functional introduces 2 nonlinear parameters: b,
which controls the short-range damping of the
1/r6 asymptote, and C, which controls the accu-
racy of the asymptotic C6 coefficients. Since it
is much more difficult to train the nonlinear pa-
rameters of the VV10 NLC functional, the param-
eters that were optimized for ωB97X-V (b= 6 and
C = 0.01) are used here without further optimiza-
tion.

4 Datasets
In total, the training and test sets used for the
parameterization and validation of the candidate
functionals contain 2301 datapoints, requiring
1961 single-point calculations. Of the 2301 dat-

apoints, 1108 belong to the training set and 1193
belong to the test set. Furthermore, the training
and test sets contain both thermochemistry (TC)
data as well as noncovalent interactions (NC) data.
The training set contains 787 TC datapoints and
321 NC datapoints, while the test set contains 146
TC datapoints and 1047 NC datapoints (for an
overall total of 933 TC datapoints and 1368 NC
datapoints). The partitioning of the training and
test sets was carried out with the quality of the
reference values in mind, such that the training
set contains the highest confidence data. Table 2
lists the 36 datasets that form the training and test
sets. The references for the datasets are given in
the rightmost column of Table 2, while additional
details can be found in Reference 14. In addition
to the general division into TC and NC data for the
training and test sets, we will report the results for
the 3 rare-gas (RG) potential energy curves sepa-
rately, as a delicate diagnostic of the balance be-
tween Pauli repulsion and attractive dispersion in-
teractions.

5 Training Methodology
In order to train and test the candidate functionals,
single-point calculations are carried out with the
unoptimized functionals (gx = gc,ss = gc,os = 1) for
the 1961 geometries that correspond to the 2301
datapoints in the training and test sets. In order
to gather all of the data that will be used for the
upcoming analysis, 4 sets of calculations must be
carried out: 1). LSDA without VV10, 2). LSDA
with VV10, 3). SR-LSDA without VV10, and
4). SR-LSDA with VV10. The VV10 calcula-
tions must be carried out separately because the
VV10 NLC functional is implemented within the
SCF procedure. Conveniently, however, running
the LSDA (local spin density approximation) func-
tional is sufficient for gathering data for both the
local and global hybrid variants, since a global hy-
brid functional with an initial guess of cx = 0 is a
local functional. Following the single-point calcu-
lations, the resulting 4 sets of densities are saved
to disk and used to calculate the values that the ex-
pansion coefficients in the power series (cx,i, ccss,i,
and ccos,i) multiply, up to fourth order (i ∈ [0,4]).
In addition to these 15 contributions, the value of
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Table 2: Summary of the datasets found in the training and test sets. The datasets above the thick
black line are in the training set and the datasets below the thick black line are in the test set. Within
the training and test sets, datasets above the thin black line contain thermochemistry datapoints,
while datasets below the thin black line contain noncovalent interactions datapoints. PEC stands
for potential energy curve.

Name # Description Ref.
HAT707 505 Heavy-atom transfer reaction energies 29
BDE99 83 Bond dissociation reaction energies 29

TAE_nonMR124 124 Total atomization energies 29
SN13 13 Nucleophilic substitution reaction energies 29

ISOMER20 18 Isomerization reaction energies 29
DBH24 24 Diverse barrier heights 30,31

EA6 6 Electron affinities of atoms 32
IP6 6 Ionization potentials of atoms 32
AE8 8 Absolute atomic energies 33

SW49Rel345 28 SO4
2−(H2O)n (n = 3−5) relative energies 34

SW49Bind345 30 SO4
2−(H2O)n (n = 3−5) binding energies 34

NBC10A2 37 Methane dimer and benzene-methane dimer PECs 35,36
HBC6A 118 Formic acid, formamide acid, and formamidine acid dimer PECs 36,37

BzDC215 108 Benzene and first- and second-row hydride PECs 38
EA7 7 Electron affinities of small molecules 32
IP7 7 Ionization potentials of small molecules 32

Gill12 12 Neutral, radical, anionic, and cationic isodesmic reaction energies 39
AlkAtom19 19 n = 1−8 alkane atomization energies 40
AlkIsomer11 11 n = 4−8 alkane isomerization energies 40

AlkIsod14 14 n = 3−8 alkane isodesmic reaction energies 40
HTBH38 38 Hydrogen transfer barrier heights 41

NHTBH38 38 Non-hydrogen transfer barrier heights 42
SW49Rel6 17 SO4

2−(H2O)n (n = 6) relative energies 34
SW49Bind6 18 SO4

2−(H2O)n (n = 6) binding energies 34
NNTT41 41 Neon-neon PEC 43
AATT41 41 Argon-argon PEC 43
NATT41 41 Neon-argon PEC 43

NBC10A1 53 Parallel-displaced (3.4 Å), sandwich, and T-shaped benzene dimer PECs 35,36
NBC10A3 39 S2 and T3 configuration pyridine dimer PECs 36,44
WATER27 23 Neutral and charged water interactions 45,46

HW30 30 Hydrocarbon and water dimers 47
NCCE31 18 Noncovalent complexation energies 48

S22x5 110 Hydrogen-bonded and dispersion-bonded complex PECs 49
S66x8 528 Biomolecular structure complex PECs 50
S22 22 Equilibrium geometries from S22x5 36,51
S66 66 Equilibrium geometries from S66x8 50,52
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Eexact
x is required for GH functionals and the value

of Eexact
x,sr is required for RSH functionals.

The calculated values are used to form a (# of
Datapoints) x (# of Linear Parameters) matrix, A,
that contains the appropriate contributions for a
given datapoint. In addition to the A matrix, a
column of values corresponding to the errors in
the unoptimized functional (y = EREF −EDFT ) is
computed. Since weights are used during train-
ing, a diagonal (# of Datapoints) x (# of Data-
points) training set weight matrix (WTrain) is re-
quired as well. The diagonal elements correspond-
ing to the training set data contain the appropriate
weights, while the remaining diagonal elements
corresponding to the test set data are set to zero.
The change in the linear parameters, ∆b, is found
by a weighted least-squares fit:

∆b = (ATWTrainA)−1(ATWTrainy) (21)

and the training set RMSD is calculated by:

RMSDTrain =

√
diag(WTrain) · (y−A∆b)2

#Train
(22)

Additional statistical measures are calculated us-
ing Equation 22 with the appropriate weight ma-
trix and #.

In total, 10 quantities will be used to gauge the
performance of the resulting functionals: the train-
ing set RMSD (RMSDTrain), the test set RMSD
(RMSDTest), the RMSD for the 3 rare-gas dimer
PECs (RMSDRG), the total RMSD (RMSDTotal),
the thermochemistry (TC) RMSD (RMSDTC), the
noncovalent interactions (NC) RMSD (RMSDNC),
the training set TC RMSD (RMSDTC,Train), the
test set TC RMSD (RMSDTC,Test), the training set
NC RMSD (RMSDNC,Train), and the test set NC
RMSD (RMSDNC,Test).

Since contributions are computed up to fourth
order for the exchange, same-spin correlation, and
opposite-spin correlation functionals, as many as
15 linear GGA parameters are available for opti-
mization. The optional short-range exchange pa-
rameter that is unique to range-separated hybrid
functionals adds a 16th parameter for the RSHs.
The uniform electron gas (UEG) constraint for
the same-spin and opposite-spin correlation func-
tionals can be incorporated by making ccss,0 and
ccos,0 optional parameters, but the same cannot be
done with the UEG constraint for exchange (ex-

cept for local functionals). Thus, fits that violate
the UEG limit for exchange are optimized sepa-
rately from fits that do incorporate the UEG limit
for exchange. As an example of the number of fits
that result from this methodology, local function-
als that are constructed to satisfy the UEG con-
straint for exchange have 14 optional parameters,

giving a total of
14

∑
i=1

(
14
i

)
= 214−1 = 16383 pos-

sible fits. Table 3 lists the total number of fits for
local, GH, and RSH functionals with and without
the UEG limit for exchange in place.

Table 3: Total number of least-squares fits (#)
that can be performed when considering pa-
rameters up to fourth order in the power series
inhomogeneity correction factors. While the
type of dispersion correction used has no bear-
ing on the total number of possible fits, whether
or not the UEG constraint for exchange is en-
forced is important and is addressed in the sec-
ond and third columns, respectively.

# cx,0 + cx = 1 cx,0 + cx 6= 1
Local 214−1 = 16383 215−214 = 16384
GH 214−1 = 16383 215−1 = 32767

RSH 215−1 = 32767 216−214 = 49152

In order to refer to the thousands of re-
sulting functionals with clarity, we will use
a nomenclature that is fully specified in Ta-
ble 4. As examples, “GN-012.012.012.Xn”
would describe Becke’s 10-parameter B97
functional, “LD-012.012.012.0n” would de-
scribe Grimme’s 10-parameter B97-D func-
tional, “RN-1234.1234.1234.Xy” would describe
the 13-parameter ωB97X functional, and “RV-
12.01.01.Xy” would describe the 7-parameter
ωB97X-V functional. As can be seen with the
descriptor for ωB97X-V, since the UEG limit for
exchange was used as a constraint, “0” does not
appear in the label for the exchange functional
ICF (even though cx,0 6= 1), because the 4th la-
bel, “Xy”, implies that cx,0 = 1− cx. In addition,
nonlinear parameters are not counted when con-
sidering the number of parameters corresponding
to a given fit , since the nonlinear parameters were
not varied in this work. Henceforth, any mention
of the number of parameters implicitly refers to
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the number of linear parameters. As a more com-
plicated example, if a Local+DFT-D2 functional
requires the optimization of {cx,1, cx,3, cx,4, ccos,0,
ccos,2}, “LD-134. /0.02.0y” will be used as its de-
scriptor. Henceforth, quotations will not be used
for the descriptors.

As far as weights are concerned, thermochem-
istry datapoints in the training and test sets are
given weights of 1 and 2.5 respectively (except
for datapoints in EA6 and IP6 which are weighted
by 5), noncovalent interactions datapoints in the
training and test sets are given weights of 10 and
25, respectively, and datapoints corresponding to
the rare-gas dimer PECs in the test set are given
weights of 2500. Even though the rare-gas (RG)
dimer PECs are technically in the test set, they
are not included in the calculation of RMSDTest .
However, they are included in the calculation of
RMSDTotal . The rare-gas dimer PECs are included
in the NC and test set NC RMSDs because their
unweighted contributions are very small and do
not contribute significantly. Of the 10 RMSDs,
only the first 4 are weighted, while the latter 6 are
unweighted.

6 Training Results
It is important to point out that the selection proce-
dure utilized to identify the optimal functionals is
not (and cannot be) unique. However, as we shall
see, it recovers the self-consistently optimized
ωB97X-V functional, even though a slightly dif-
ferent selection procedure was used in Reference
14. In addition, the resulting optimal functionals
are usually significantly better than existing func-
tionals of the same type, as will be discussed in
Section 7.

While a variety of selection procedures were ini-
tially explored, the one that was finally chosen is
quite simple. First, the total (weighted) RMSDs
are computed and plotted. Next, a screening pro-
cess rejects fits that predict rare-gas dimer equilib-
rium bond lengths that are too long or too short by
more than 0.1 Å. Since the plots are still overflow-
ing with data points, all of the points for a fixed
number of linear parameters are removed, except
for the point that corresponds to the lowest total
RMSD with and without the UEG constraint for

exchange. The resulting plots (Figure 3) are much
simpler to analyze and contain filled circles (sat-
isfy the UEG constraint for exchange) and unfilled
circles (do not satisfy the UEG constraint for ex-
change).

Starting at the fewest number of linear parame-
ters, an additional empirical parameter is accepted
if the improvement in the total RMSD is more
than 0.05 kcal/mol. This final stage does not take
into account whether or not the UEG constraint for
exchange is enforced. The 9 optimal functionals
are chosen in this manner and will be discussed
and compared to existing functionals in Section
7. Since the optimal functionals are chosen based
on their total RMSDs, the corresponding training
and test set RMSDs of the optimal functionals are
shown in red in Figures 1 and 2.
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Table 4: Explanation of the nomenclature for the descriptors that refer to the thousands of op-
timized functionals. A given descriptor takes on the following form: “ij-{px}.{pcss}.{pcos}.kl”. If
none of the coefficients of a given ICF are optimized, /0 is used as a placeholder. As an example,
“GN-012.012.012.Xn” would describe Becke’s 10-parameter B97 functional.

Symbol Meaning Allowed Values Meaning
L local

i exchange G global hybrid
R range-separated hybrid
N none

j dispersion correction D DFT-D2 dispersion tail
V VV10 nonlocal correlation functional

{px} linear exchange parameters any subset of 01234 each included integer, m, is a single parameter multiplying um
x

{pcss} linear same-spin correlation parameters any subset of 01234 each included integer, m, is a single parameter multiplying um
c,σσ

{pcos} linear opposite-spin correlation parameters any subset of 01234 each included integer, m, is a single parameter multiplying um
c,αβ

k (short-range) exact exchange 0 no (short-range) exact exchange included
X (short-range) exact exchange included

l UEG for exchange y UEG limit for exchange is enforced
n UEG limit for exchange is not enforced

9
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Figure 1: Plots showing the lowest training set RMSD (in kcal/mol) for a fixed number of linear parameters
for all 9 candidate functional forms considered. Filled circles correspond to fits which satisfy the UEG
limit for exchange and unfilled circles indicate that the UEG limit for exchange was allowed to relax. The
red box indicates the training set RMSD of the optimal functional, which is usually not the best for the
training set data alone.
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Figure 2: Plots showing the lowest test set RMSD (in kcal/mol) for a given number of linear parameters
for all 9 candidate functional forms considered. Filled circles correspond to fits which satisfy the UEG
limit for exchange and unfilled circles indicate that the UEG limit for exchange was allowed to relax. The
red box indicates the test set RMSD of the optimal functional.
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Figure 3: Plots showing the lowest total RMSD (in kcal/mol) for a given number of linear parameters for
all 9 candidate functional forms considered. Filled circles correspond to fits which satisfy the UEG limit
for exchange and unfilled circles indicate that the UEG limit for exchange was allowed to relax. The red
box indicates the total RMSD of the optimal functional. Due to the screening process described in Section
6, points that correspond to fits that predict rare-gas dimer equilibrium bond lengths that are too long or
too short by more than 0.1 Å have been removed.

12



All of the RMSDs considered in this section are
generated using Equation 22 (with the appropri-
ate weight matrix and #) and are least-squares fit
RMSDs. While none of the functionals are self-
consistently optimized, the recent self-consistent
optimization of ωB97X-V indicated that the least-
squares fit RMSDs generally differ from the actual
RMSDs of the self-consistently optimized func-
tional by 0.05 kcal/mol on average. While it would
be impractical to self-consistently optimize thou-
sands of functionals, we firmly believe that this
procedure is effective in predicting the quality of
a functional based on least-squares fit RMSDs.

Since the parameters that are obtained from all
of these fits are not self-consistently optimized, it
is not immediately obvious how much they will
differ from the final set of parameters. Thus,
it is difficult to comment on the usefulness of
the parameters of the 9 resulting optimal func-
tionals. However, the parameters for Becke’s
B97 functional were optimized in the same post-
LSDA manner as all of the functionals consid-
ered in this paper, and comparing the parameters
of B97 and B97-1, or alternatively considering Ta-
ble 3 from Reference 14, indicates that the self-
consistently optimized parameters do not differ
drastically from those from the end of the first opti-
mization cycle. While it is best to self-consistently
optimize the parameters of a semi-empirical den-
sity functional, the parameters for the 9 optimal
functionals are provided in Table 5.

Tables 6, 7, and 8 contain data for range-
separated hybrid, global hybrid, and local func-
tionals, respectively. Each method of account-
ing for exchange was trained both with dispersion
corrections (DFT-D2 and VV10) and without dis-
persion corrections (None). For each pairing, the
columns labeled “Minimum” contain the best pos-
sible value for a given RMSD category, while the
columns labeled “Optimal” contain the results for
the functionals that were selected from Figure 3.
For the remainder of this section, the least-squares
fit RMSDs will simply be referred to as RMSDs.

We begin the analysis with the RSH+VV10 cate-
gory, since our newest density functional, ωB97X-
V, belongs to this class. Generally speaking, the
interesting comparisons in Table 6 are between the
best possible result in a given row for any can-
didate RSH+VV10 functional (i.e. the Minimum

Table 6: RMSDs in kcal/mol for range-
separated hybrid functionals. The data in the
training and test sets consists of thermochem-
ical (TC) and noncovalent (NC) energy differ-
ences. The rare-gas (RG) test results are re-
ported separately. The “Minimum” columns
contain the smallest possible RMSD value for
the particular entry from all trained function-
als of that class. Hence, each entry within a col-
umn generally corresponds to a different func-
tional. The “Optimal” columns contain the
RMSD value for the best overall functional se-
lected from that class. Hence, each entry within
a column corresponds to the same functional.
Details regarding the optimal functional are
provided in Table 5.

RSH Minimum Optimal
kcal/mol None DFT-D2 VV10 None DFT-D2 VV10

Train 3.14 3.14 3.14 3.73 3.55 3.36
Test 3.68 2.28 1.53 4.18 2.50 1.92
RG 0.88 0.80 0.51 1.97 2.50 0.95

Total 3.87 3.03 2.66 3.87 3.05 2.68
TC 3.49 3.47 3.44 4.09 3.80 3.62
NC 0.58 0.36 0.24 0.71 0.43 0.32

TC,Train 3.55 3.56 3.56 4.28 4.02 3.86
TC,Test 2.19 1.76 1.66 2.85 2.26 1.81

NC,Train 0.25 0.26 0.23 0.42 0.42 0.31
NC,Test 0.62 0.33 0.23 0.77 0.43 0.32

Table 7: RMSDs in kcal/mol for global hybrid
functionals. The format is explained in the cap-
tion of Table 6.

GH Minimum Optimal
kcal/mol None DFT-D2 VV10 None DFT-D2 VV10

Train 2.97 2.90 2.89 3.49 3.22 3.25
Test 5.44 2.86 2.51 5.90 3.17 3.03
RG 0.76 0.67 0.31 2.01 1.82 0.65

Total 4.72 3.11 3.06 4.72 3.14 3.06
TC 3.45 3.31 3.31 3.87 3.48 3.61
NC 0.91 0.42 0.38 0.97 0.54 0.48

TC,Train 3.24 3.21 3.18 3.78 3.62 3.70
TC,Test 3.13 2.60 2.59 4.28 2.60 3.06

NC,Train 0.41 0.37 0.35 0.48 0.48 0.42
NC,Test 1.01 0.40 0.38 1.08 0.56 0.50
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Table 5: Characteristics of the 9 optimal functionals. Within a cell, the first row lists the descriptor
(Table 4 with the number of associated linear parameters in parentheses, the second row lists the
non-self-consistently optimized GGA parameters, and the third row (when applicable) lists the val-
ues for the (short-range) exact exchange parameter, cx, and the linear DFT-D2 dispersion coefficient,
s6.

None DFT-D2 VV10
LN-012. /0.0134.0n (7) LD-012.0.0123.0n (9) LV-012.0.0123.0n (8)

Local {1.07, -0.94, 5.04, 0.45, 8.83, -65.31, 39.84} {1.09, -0.89, 4.96, 0.25, 0.43, 12.06, -27.85, -1.57} {1.09, -0.79, 4.74, 0.43, 0.41, 11.90, -27.19, -1.52}
N/A s6=0.71 N/A

GN-24.1234.13.Xy (9) GD-0234.0.04.Xn (9) GV-02.0.0234.Xn (8)
GH {1.95, 2.70, -6.54, 33.21, -49.17, 22.23, 3.33, -24.59} {0.79, 2.46, -3.89, 4.73, 0.33, 1.10, -13.90} {0.81, 2.00, 0.51, 1.05, 9.19, -39.37, 22.86}

cx=0.23 cx=0.24; s6=0.64 cx=0.22
RN-14.34.012.Xn (8) RD-02.12.01.Xn (8) RV-12.01.01.Xy (7)

RSH {0.58, 11.25, -9.17, 9.08, 1.09, 2.67, -10.32} {0.87, 2.24, -3.62, 3.30, 1.35, -2.36} {0.61, 1.18, 0.58, -0.27, 1.22, -1.87}
cx=0.02 cx=0.18; s6=0.71 cx=0.16

Table 8: RMSDs in kcal/mol for local function-
als. The format is explained in the caption of
Table 6.

Local Minimum Optimal
kcal/mol None DFT-D2 VV10 None DFT-D2 VV10

Train 4.03 3.89 3.91 4.91 4.48 4.44
Test 6.46 4.13 4.49 7.00 4.50 4.88
RG 0.97 1.34 0.72 2.09 3.15 2.57

Total 5.84 4.43 4.57 5.89 4.43 4.57
TC 5.03 4.69 4.85 5.72 5.23 5.27
NC 0.95 0.51 0.54 1.08 0.61 0.65

TC,Train 4.41 4.30 4.32 5.55 5.13 5.11
TC,Test 5.83 4.87 5.50 6.57 5.71 6.06

NC,Train 0.59 0.56 0.53 0.65 0.62 0.55
NC,Test 1.03 0.48 0.54 1.18 0.61 0.68

VV10 column) and the corresponding result ob-
tained with the optimal functional (i.e. the Optimal
VV10 column). The optimal RSH+VV10 func-
tional coincides with the ωB97X-V functional,
and, as summarized in Table 5, has 7 linear pa-
rameters. Compared to the smallest training set
RMSD possible (3.14 kcal/mol), a value of 3.36
kcal/mol is certainly reasonable for a functional
with 9 fewer linear parameters. Similarly, most
other comparisons show that the functional cho-
sen by our selection method yields results for the
other reported RMSDs that are competitive with
the best values attainable. The largest difference is
for the rare-gas results, where it is possible to do
nearly twice as well (of course at the expense of
TC results) as our chosen functional. Nonetheless,
the rare-gas performance of the chosen functional
is actually much better than virtually all existing
functionals, as will be seen in Section 7.

For the RSH+VV10 category only, we include
additional data in Table 9 for functionals that
would be considered if the present methodol-

ogy was not being utilized, to demonstrate that
our procedure for selecting the optimal func-
tional is effective. Since the 16-parameter RV-
01234.01234.01234.Xn functional has the lowest
training set RMSD (3.14 kcal/mol), it is useful
to compare the test set RMSDs of this functional
(2.36 kcal/mol) against the optimal 7-parameter
RSH+VV10 functional (1.92 kcal/mol). While
the training set RMSD of the optimal RSH+VV10
functional is 0.22 kcal/mol larger than that of the
RV-01234.01234.01234.Xn functional, its test set
RMSD is smaller by more than 0.40 kcal/mol. The
optimal functional’s performance on the TC data
in the test set is more than 1.5 times better than
RV-01234.01234.01234.Xn, and its RMSDRG is
smaller by a factor of 15. These results demon-
strate the improved transferability of the optimal
7-parameter functional against a 16-parameter al-
ternative, which comes at the necessary expense of
slightly poorer training set performance.

Considering the 4 functionals in Table 9 that
satisfy the UEG limits for exchange and corre-
lation, the lowest total RMSD is attained by the
RV-12.12.12.Xy functional (7 linear parameters).
Since this functional is equivalent to the optimal
RSH+VV10 functional with respect to the number
of linear parameters, comparing the two highlights
the advantages of the present scheme. The optimal
RSH+VV10 functional beats the RV-12.12.12.Xy
functional in all 10 RMSD categories, and by con-
siderable margins for most. Applying the same
analysis to the functionals that do not satisfy the
UEG limits, the RV-012.012.012.Xn functional
with 10 linear parameters emerges as the one with
the lowest total RMSD. However, the optimal
RSH+VV10 functional still beats this functional
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Table 9: RMSDs for the optimal RSH+VV10 functional, as well as functionals that would be con-
sidered if the present methodology was not being utilized. While the nomenclature is explained in
Section 5, the first functional corresponds to the optimal RSH+VV10 fit (which coincides with the
functional form of ωB97X-V), the next 4 functionals are uniformly truncated m = 1 through m = 4
fits with all of the UEG constraints enforced, while the last 4 are uniformly truncated m = 1 through
m = 4 fits with none of the UEG constraints enforced. The fraction of short-range exact exchange is
optimized for all of the fits in this table.

kcal/mol Train Test RG Total TC NC TC,Train TC,Test NC,Train NC,Test
RV-12.01.01.Xy 3.36 1.92 0.95 2.68 3.62 0.32 3.86 1.81 0.31 0.32

RV-1.1.1.Xy 3.84 3.86 1.34 3.76 4.64 0.39 4.42 5.68 0.36 0.40
RV-12.12.12.Xy 3.60 2.25 1.82 2.96 3.92 0.37 4.17 2.09 0.31 0.38

RV-123.123.123.Xy 3.50 2.78 7.28 3.51 3.77 0.49 4.01 2.04 0.41 0.51
RV-1234.1234.1234.Xy 3.34 1.94 7.91 3.24 3.63 0.31 3.84 2.15 0.32 0.30

RV-01.01.01.Xn 3.59 2.72 1.87 3.13 3.83 0.48 4.09 1.86 0.40 0.50
RV-012.012.012.Xn 3.34 2.17 1.62 2.78 3.61 0.36 3.83 1.99 0.31 0.37

RV-0123.0123.0123.Xn 3.30 2.37 1.28 2.82 3.56 0.38 3.76 2.22 0.31 0.40
RV-01234.01234.01234.Xn 3.14 2.36 14.00 4.22 3.47 0.33 3.57 2.91 0.28 0.34

with respect to 7 of the 10 RMSDs. Thus, it is
clear that this training, testing, and selection pro-
cedure allows us to pick a “best of both worlds”
functional that fits well to the training set data, yet
is highly transferable.

Of the 8 conventional functionals considered in
Table 9, the RV-012.012.012.Xn functional has
the lowest total RMSD. Another cross-check to
consider is training an RV-012.012.012.Xn func-
tional by fitting it to everything in both the training
and test sets. The resulting RV-012.012.012.Xn∗

functional has a TC RMSD of 3.62 kcal/mol
and an NC RMSD of 0.30 kcal/mol. How-
ever, we have no guarantee that it is transfer-
able. In comparison, the optimal RSH+VV10
functional, has a TC RMSD of 3.62 kcal/mol and
an NC RMSD of 0.32 kcal/mol. For the opti-
mal RSH+VV10 functional, the resulting param-
eters, {cx,1,cx,2,ccss,0,ccss,1,ccos,0,ccos,1,cx}, are
{0.61,1.18,0.58,−0.27,1.22,−1.87,0.16}. An
interesting test is to compare these parameters
with the ones that result from training the opti-
mal RSH+VV10 functional on both the training
and test sets. The resulting parameters from such a
fit are {0.60,1.29,0.58,−0.32,1.24,−1.94,0.16}.
Since the parameters do not change significantly,
this suggests that the training set on its own is suf-
ficiently large for properly determining the param-
eters.

The inhomogeneity correction factor (ICF) plots
associated with the 9 functionals from Table 9 are
shown in Figure 4. The optimal RSH+VV10 func-

tional is indicated by the gray lines, which are
smooth and well-behaved in all 3 cases. The uni-
formly truncated m = 1 to m = 4 functionals (with
a non-zero fraction of short-range exact exchange)
are indicated by blue, orange, green, and black
lines, respectively. Solid lines indicate satisfaction
of all 3 UEG constraints, while dashed lines indi-
cate that none of the UEG constraints are satisfied.
Since it is preferable to have well-behaved ICFs
for transferability, Figure 4 serves as another moti-
vation for the functional selection procedure that is
being used. Starting with the exchange functional
ICF plots, the optimal RSH+VV10 functional and
m = 2 plots are quite similar (both are quadratic),
while the m = 4 plots are similar to the rest be-
tween ux,σ = 0 and ux,σ = 0.5, but shoot up sharply
at ux,σ = 0.5. While it has been shown14 that most
of the chemically relevant grid points lie between
ux,σ = 0 and ux,σ = 0.5, it is still preferable to have
a curve that looks like the gray one than either of
the black ones. Moving on to the same-spin cor-
relation functional ICFs, the quartic m = 4 ICFs
are oscillatory and seem unphysical, particularly
the black dashed curve that does not preserve the
UEG limit. The remaining same-spin correlation
ICFs are generally well-behaved. The function-
als which relax the UEG limit reduce the amount
of LSDA same-spin correlation at uc,σσ = 0 by as
much as a factor of 2. For the opposite-spin corre-
lation functional ICFs, the cubic m = 3 and quar-
tic m = 4 functionals are the outliers, while the
remaining functionals behave similarly. Most of
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the non-UEG functionals increase the amount of
LSDA opposite-spin correlation at uc,αβ = 0 by a
factor of 1.2.

There are certainly alternatives to the procedure
that is used to find the optimal functional for a
given exchange/dispersion pairing. For example,
if one considers the top 2 functionals with 7 lin-
ear parameters from the RSH+VV10 optimization,
they are virtually indistinguishable as far as their
10 RMSDs are concerned, and differ only with
respect to the same-spin correlation component.
Thus, while the best RSH+VV10 functional with
7 linear parameters is of the RV-12.01.01.Xy form,
the second best is of the RV-12.02.01.Xy form.
Therefore, we note that the functionals presented
here as optimal could be slightly different if a dif-
ferent selection procedure was used. However, af-
ter experimenting with various possible options,
we can claim that the optimal functional either re-
mains the same or is only very slightly different
and that the RMSDs of the optimal functionals are
representative of the level of accuracy achievable
by the given functional form. In reality, if one were
to choose to self-consistently optimize a functional
from a certain category, it would certainly be bene-
ficial to consider the top 10 or 20 functionals from
a variety of selection procedures in order to assure
that the absolute best functional has been chosen.

Before moving on to the remaining 8 categories,
it is interesting to consider whether the relax-
ation of the UEG constraint for exchange is ben-
eficial for the RSH+VV10 category. According
to Figure 3, it is clear that for a majority of the
points, the relaxation of this constraint leads to
no improvements. In fact, the best RSH+VV10
functional that results with the constraint in place
is the RV-12.01.01.Xy functional with a value
of cx = 0.163, while the best RSH+VV10 func-
tional that results without the constraint is an 8-
parameter RV-012.01.01.Xn functional with val-
ues of cx,0 = 0.845 and cx = 0.161, resulting in
cx,0+cx = 1.006. Thus, there is absolutely no rea-
son to select the RV-012.01.01.Xn functional over
the RV-12.01.01.Xy functional, especially since
the total RMSD of the RV-12.01.01.Xy functional
is slightly lower than that of the RV-012.01.01.Xn
functional.

Moving on to the RSH+DFT-D2 category (Ta-
ble 6), it is clear that the DFT-D2 dispersion tail
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Figure 4: Exchange, same-spin correlation, and
opposite-spin correlation inhomogeneity correc-
tion factors for 9 functionals from the RSH+VV10
category. The optimal functional from the
RSH+VV10 category is shown in gray. The re-
maining 8 lines belong to uniformly truncated m=
1 through m = 4 functionals (blue, orange, green,
black), with the solid lines indicating satisfaction
of all 3 UEG constraints and the dashed lines indi-
cating that none of the UEG constraints are satis-
fied. The fraction of short-range exact exchange is
optimized for all of the fits that are plotted.
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is inferior to the VV10 NLC functional when cou-
pled with RSH exchange. The optimal RSH+DFT-
D2 functional is an 8-parameter functional with a
total RMSD of 3.05 kcal/mol (compared to 2.68
kcal/mol for the optimal RSH+VV10 functional).
In comparison to the optimal RSH+VV10 func-
tional, the optimal RSH+DFT-D2 functional is
worse with respect to all 10 RMSD categories.
Comparing the minimum RMSDs possible by the
2 types of functionals, they are equivalent only
with respect to the training set RMSD and the
training set TC RMSD, while the RSH+VV10
functional form outperforms the RSH+DFT-D2
functional form on the remaining 8 RMSDs. In
addition, the RMSDRG of the optimal RSH+DFT-
D2 functional is more than 2.5 times larger than
that of the optimal RSH+VV10 functional.

While the functionals in both the RSH+DFT-
D2 and RSH+VV10 categories are able to ac-
count for dispersion, it is interesting to compare
them to the RSH+None category without disper-
sion corrections. From this category, the optimal
functional that emerges is an 8-parameter func-
tional that maintains cx,0 = 1 but violates the UEG
limit ever so slightly for exchange by optimizing
cx = 0.02. As expected, the total RMSD of the
optimal RSH functional is larger than that of the
optimal RSH+DFT-D2 functional, and even larger
than that of the optimal RSH+VV10 functional.

Instead of performing similar comparisons for
the 6 remaining local and GH functionals, it is eas-
iest to compare the total RMSDs of all 9 optimal
functionals with the help of Table 10. This ta-
ble confirms that the best overall performance is
achieved by the optimal RSH+VV10 functional.
Keeping the dispersion component constant, the
RSH functionals outperform the GH functionals,
while the GH functionals outperform the local
functionals. As far as dispersion corrections are
concerned, it is obvious that the functionals with-
out dispersion corrections (None) perform worse
than those with either DFT-D2 or VV10. However,
it is less obvious which of the dispersion correc-
tions is better. For the local exchange category, the
optimal functional with the DFT-D2 dispersion tail
slightly outperforms the one with the VV10 NLC
functional, while the reverse is true for the GH
exchange category. Ultimately, it is clear that as
far as performance is concerned, the RSH+VV10

functional form is the best from the 9 variants con-
sidered.

Table 10: Total RMSDs in kcal/mol for the op-
timal functionals from all 9 categories.

kcal/mol None DFT-D2 VV10
Local 5.89 4.43 4.57
GH 4.72 3.14 3.06

RSH 3.87 3.05 2.68

While Figure 3 in its present form has already
been stripped of thousands of datapoints for clar-
ity, it still contains a great deal of information. It
is very interesting that from the 9 categories, 7
of the optimal functionals do not satisfy the UEG
constraint for exchange, while only the GH+None
and RSH+VV10 optimal functionals satisfy this
limit. In certain cases, as in the Local+DFT-D2
case, the difference between the total RMSDs of
the optimal 9-parameter functional (4.43 kcal/mol)
and the best possible 9-parameter functional that
satisfies the UEG constraint for exchange (4.76
kcal/mol) is more than 0.30 kcal/mol. For other
cases, like for the RSH+VV10 category, the dif-
ference is very small.

To convey an idea of what the plots in Figure 3
would look like if points had not been removed,
Figure 5 shows all of the points corresponding to
the RSH+VV10 fits for values of RMSDTotal be-
tween 2.65 and 3.00 kcal/mol. The filled red cir-
cles correspond to fits that do not skip orders in
any of the dimensionless variables and satisfy the
UEG constraint for exchange, while the unfilled
red circles belong to similar non-skipping fits that
do not satisfy the UEG constraint for exchange.
Considering only the filled red circles, it is clear
that going from 5 to 6 to 7 linear parameters results
in large decreases in the total RMSD, at a rate of
0.15 kcal/mol per parameter. As the 7-parameter
point is reached, the total RMSDs completely flat-
ten out, and the quality of the fits begins to de-
teriorate after 9 linear parameters. The lowest 7-
parameter filled red circle corresponds to the opti-
mal RSH+VV10 functional that has been selected
from considering Figure 3.

Once fits that skip orders in u are introduced
(black dots), it is possible to slightly reduce the
total RMSD of the optimal 7-parameter fit by go-
ing to the best 9-parameter fit, but by our selec-
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tion criteria, the additional 0.02 kcal/mol improve-
ment is not worth the 2 additional parameters. Fi-
nally, 2 special points on this plot correspond-
ing to conventional uniform truncations are indi-
cated by filled cyan triangles. The upright trian-
gle corresponds to the 7-parameter m = 2 func-
tional from the fourth row of Table 9 that satisfies
all 3 UEG constraints (RV-12.12.12.Xy), while the
downright triangle is the related 10-parameter RV-
012.012.012.Xn functional that violates all 3 UEG
constraints (the GGA portion is identical to that
of Becke’s B97 functional). Comparing these 2
functionals to the optimal 7-parameter functional
again shows the ability of our selection procedure
to reveal the best functional possible for the least
number of empirical parameters. In fact, Figure
5 indicates that it is possible to considerably out-
perform the m = 2 functional that does not satisfy
any of the UEG constraints with 3 less empirical
parameters.

7 Comparisons
All of the 9 types of functionals considered thus far
have existing non-empirical and semi-empirical
counterparts. We compare the 9 resulting opti-
mal functionals to the following: PBE,53 B97-
D,8 VV10,20 B97,1 B97-D2,25 B3LYP-NL,54

ωB97X,12 ωB97X-D,11 and LC-VV10.20 A sum-
mary of how the optimal functionals obtained here
compare with these selected existing functionals is
given in Table 11.

7.1 Local Functionals
Beginning with the Local+None category, we can
compare the resulting optimal functional to the
non-empirical PBE functional. In general, the
addition of 7 empirical parameters reduces the
RMSDs by a factor of 2. The TC RMSD of PBE
is reduced from 10.19 kcal/mol to 5.72 kcal/mol,
while the NC RMSD of PBE is reduced from 2.05
kcal/mol to 1.08 kcal/mol. However, since both of
these statistical measures contain datapoints from
the training set, it is imperative to compare the per-
formance of the 2 functionals on the test set. The
RMSDTC,Test of the optimal Local+None func-
tional is more than 3 kcal/mol lower than that of

PBE, while its RMSDNC,Test is smaller by a factor
of 2.

Moving on to the Local+DFT-D2 functionals,
we can compare the resulting optimal functional
to Grimme’s B97-D functional, since the optimal
functional is a reoptimization of this functional on
a different training set (with a different set of ICF
expansions). The 10-15% improvement in perfor-
mance is not as drastic as in the Local+None cate-
gory, confirming that the B97-D functional is near
the limit of accuracy achievable by a Local+DFT-
D2 GGA functional.

Finally, it is interesting to compare the perfor-
mance of the existing VV10 exchange-correlation
(xc) functional (rPW86 exchange55 + PBE cor-
relation + VV10 NLC) with the optimal Lo-
cal+VV10 functional. As in the Local+None case,
the optimal functional generally improves upon
the performance of the VV10 xc functional by a
factor of 2. However, it is interesting to point out
that the performance of the VV10 xc functional
is better for the 3 rare-gas dimer PECs, indicat-
ing that the weight of 2500 may be insufficient.
For the optimization of the ωB97X-V functional,
a weight of 25000 provided PECs that matched or
improved upon those of the VV10 xc functional.

7.2 GH Functionals
Moving on to the GH+None category, we can
compare against Becke’s B97 functional. The
largest improvements come from the noncova-
lent interactions, since B97 was only fit to TC
data. Thus, there is a threefold improvement in
both RMSDNC,Train and RMSDNC,Test , while the
thermochemistry improvements are less dramatic.
However, the RMSDTC,Test value for the optimal
functional is smaller by a factor of 2, primarily due
to its improved performance on the AlkAtom19
dataset.

While B97 was optimized only on thermochem-
istry, B97-D2 improves upon the NC RMSD of
B97 by a factor of more than 5, with the help of
only one additional linear parameter. While the
optimal GH+DFT-D2 functional is 10-15% better
for thermochemistry in general, it is 5-10% worse
for noncovalent interactions. However, the perfor-
mance of B97-D2 for the 3 rare-gas dimer PECs
is worse by a factor of 1.5. Overall, it appears as
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Figure 5: Total RMSDs plotted against the number of linear parameters for all 81919 possible RSH+VV10
fits. The filled red circles correspond to fits that do not skip orders in any of the dimensionless variables
and satisfy the UEG constraint for exchange, while the unfilled red circles belong to similar non-skipping
fits that do not satisfy the UEG constraint for exchange. The remaining points correspond to fits that skip
orders in one or more of the ICFs. The filled upright cyan triangle corresponds to the total RMSD of the
RSH+VV10 m = 2 functional that satisfies all 3 UEG constraints, while the filled downright cyan triangle
corresponds to the total RMSD of the RSH+VV10 m = 2 functional that does not satisfy any of the UEG
constraints. The optimal functional from the RSH+VV10 category is indicated by the lowest point on the
vertical line that corresponds to 7 linear parameters.

Table 11: RMSDs in kcal/mol for a variety of existing density functionals for comparison to the
RMSDs of the 9 optimal functionals (shown in parentheses).

Category Local+None Local+DFT-D2 Local+VV10 GH+None GH+DFT-D2 GH+VV10 RSH+None RSH+DFT-D2 RSH+VV10
kcal/mol PBE B97-D VV10 B97 B97-D2 B3LYP-NL ωB97X ωB97X-D LC-VV10

Train 8.85 (4.91) 4.78 (4.48) 9.10 (4.44) 4.36 (3.49) 3.36 (3.22) 4.19 (3.25) 3.67 (3.73) 3.42 (3.55) 6.01 (3.36)
Test 12.67 (7.00) 5.21 (4.50) 8.11 (4.88) 15.41 (5.90) 3.84 (3.17) 6.62 (3.03) 5.08 (4.18) 2.83 (2.50) 5.22 (1.92)
RG 3.76 (2.09) 5.55 (3.15) 1.61 (2.57) 5.82 (2.01) 2.65 (1.82) 1.73 (0.65) 1.82 (1.97) 8.79 (2.50) 2.36 (0.95)

Total 10.64 (5.89) 5.03 (4.43) 8.40 (4.57) 11.02 (4.72) 3.56 (3.14) 5.38 (3.06) 4.32 (3.87) 3.68 (3.05) 5.51 (2.68)
TC 10.19 (5.72) 5.67 (5.23) 10.09 (5.27) 4.85 (3.87) 4.04 (3.48) 4.99 (3.61) 3.89 (4.09) 3.64 (3.80) 6.93 (3.62)
NC 2.05 (1.08) 0.70 (0.61) 1.29 (0.65) 2.71 (0.97) 0.49 (0.54) 1.02 (0.48) 0.92 (0.71) 0.53 (0.43) 0.68 (0.32)

TC,Train 10.27 (5.55) 5.43 (5.13) 10.44 (5.11) 3.89 (3.78) 3.83 (3.62) 4.47 (3.70) 4.10 (4.28) 3.82 (4.02) 6.86 (3.86)
TC,Test 9.76 (6.57) 6.79 (5.71) 7.87 (6.06) 8.28 (4.28) 5.00 (2.60) 7.18 (3.06) 2.45 (2.85) 2.42 (2.26) 7.32 (1.81)

NC,Train 0.89 (0.65) 0.76 (0.62) 1.09 (0.55) 1.66 (0.48) 0.44 (0.48) 0.97 (0.42) 0.66 (0.42) 0.61 (0.42) 0.86 (0.31)
NC,Test 2.29 (1.18) 0.68 (0.61) 1.35 (0.68) 2.96 (1.08) 0.50 (0.56) 1.04 (0.50) 0.98 (0.77) 0.50 (0.43) 0.61 (0.32)
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though the B97-D2 functional is near the limit of
accuracy achievable by a GH+DFT-D2 GGA func-
tional.

Finally, the optimal GH+VV10 functional can
be compared to Grimme’s recent parameterization
of the B3LYP-NL functional. The B3LYP-NL
functional was developed by appending the VV10
NLC functional to the existing B3LYP functional
and optimizing only the b parameter (b = 4.8).
Compared to B3LYP-NL, the performance of the
optimal GH+VV10 functional is generally better
by a factor of 1.5-2. As yet another indication
of transferability, while the RMSDTC,Train of the
optimal functional is only 20% better than that of
B3LYP-NL, its RMSDTC,Test value is smaller by a
factor of 2.

7.3 RSH Functionals
Considering the RSH functionals, the first valid
comparison is between the optimal RSH+None
functional and ωB97X. Since ωB97X was trained
primarily on thermochemistry, it is not surprising
that it is 5-10% better than the optimal RSH+None
functional for thermochemistry. Conversely, the
performance of the optimal RSH+None functional
is 15-20% better for noncovalent interactions. In
addition, the performance of both functionals for
the rare-gas dimer PECs is almost identical. It
appears that ωB97X is moderately close to the
RSH+None performance limit, but employs sig-
nificantly more parameters than our methodology
establishes is necessary (13 vs. 8).

Moving on to the RSH+DFT-D2 category, the
optimal functional is compared to ωB97X-D. As
a reminder, the damping function that was used
for ωB97X-D is slightly different from the one
used in DFT-D2 and requires the optimization of
a nonlinear parameter instead of a linear s6 pa-
rameter. Nevertheless, ωB97X-D has TC, NC,
and RG RMSDs of 3.64, 0.53, and 8.79 kcal/mol,
compared to 3.80, 0.43, and 2.50 kcal/mol for
the optimal RSH+DFT-D2 functional. As far as
the rare-gas dimer PECs are concerned, it is clear
that the selection strategy has worked, since the
RMSDRG of the optimal functional is 3.5 times
smaller than that of ωB97X-D. Even though the
optimal RSH+DFT-D2 functional has 5 less linear
parameters than ωB97X-D, its performance on the

noncovalent interactions in the test set is 15% bet-
ter, as is its performance for the thermochemistry
data in the test set.

Finally, we can compare the optimal RSH+VV10
functional to LC-VV10. The comparison between
LC-VV10 and the optimal RSH+VV10 functional
is interesting, because the main difference between
the 2 functionals is that the GGA component of the
optimal functional has been parameterized. The
TC, NC, and RG RMSDs of LC-VV10 are 6.93,
0.68, and 2.36 kcal/mol, compared to 3.62, 0.32,
and 0.95 kcal/mol for the optimal RSH+VV10
functional. Thus, by simply adding 7 empirical
parameters, all 3 RMSDs are reduced by at least
a factor of 2. In addition, Figure 1 from Ref-
erence 20 indicates that the VV10 xc functional
(and thus the VV10 NLC functional) is very accu-
rate for the argon dimer and krypton dimer PECs,
so it is desirable to maintain this feature as em-
pirical parameters are added. Largely due to the
methodology employed here, the performance of
the optimal RSH+VV10 functional is at least 1.5
times better than VV10 and LC-VV10 on the neon
dimer, argon dimer, and neon-argon dimer PECs.

8 Conclusions
In developing new semi-empirical density func-
tionals, there are numerous pitfalls on the road to
achieving better performance than existing func-
tionals. In this work, we have tried to address,
within a limited scope, 2 of the principal issues:
(a). “How does one assess the practical benefit of
physical augmentation of a functional in a consis-
tent way, including its transferability?”, and (b).
“How can one determine when an optimal num-
ber of empirical parameters have been incorpo-
rated into a given functional form?”

To address the first question with manageable
scope, we have compared 3 types of density func-
tionals that are all built upon standard generalized
gradient approximations of the Becke 97 form:1

local, global hybrid, and range-separated hybrid.
Each of these 3 basic forms are compared against
augmented forms that include dispersion correc-
tions via either Grimme’s DFT-D2 dispersion tail
or the VV10 nonlocal correlation functional. This
defines a 3 by 3 grid of functional forms, each of
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which can be trained with an enormous variety of
parameters.

To address the second question, as well as to
complete the evaluation of the first question, we
have developed a protocol for selecting the best
functional of each type. This protocol involves
training an enormous number of candidate func-
tionals containing different numbers of linear pa-
rameters on 1108 pieces of training set data. The
best such functional is selected based on an ad-
ditional 1193 pieces of test set data, to assess
transferability as well as overall performance. It
should be noted that functionals are not trained
self-consistently, but the RMSDs obtained are re-
liable indicators of self-consistent performance, as
we have validated elsewhere for the most compli-
cated form considered.

The first main outcome is the conclusion that the
best functionals of each type considered contain
significantly fewer linear parameters than many
existing functionals in the literature. We believe
this is largely because of the emphasis on transfer-
ability, rather than just training set performance.
Typical “optimal” functionals involve between 7
and 9 linear empirical parameters. Functionals
with larger numbers of linear parameters can train
better but exhibit increasingly poor transferability.
Of course there are fine differences between com-
peting best choices in some cases, but this overall
result is robust.

The second main outcome concerns the rela-
tive performance of the different functional forms
within this consistent framework. We find that by
far the best possible performance is obtained by
the range-separated hybrid functional, coupled to
the VV10 NLC functional. This is accordingly the
best single candidate for self-consistent optimiza-
tion, a topic that we have addressed elsewhere to
define the ωB97X-V functional.14 While the self-
consistent optimization of a local GGA functional
appended with VV10 is an interesting opportunity
for a lower cost functional, it is unclear whether
the resulting functional will perform significantly
better than the best existing local GGAs with DFT-
D2 corrections, such as B97-D.

The third main outcome concerns how the 9 opti-
mized forms compare with existing literature func-
tionals that fit within each of those 9 categories. In
some cases, very significant improvements are ev-

ident, such as for a local functional (vs. PBE) and
for a range-separated hybrid functional with VV10
(vs. LC-VV10), which are due largely to compar-
ing against non-empirical (PBE) or relatively non-
empirical (LC-VV10) functionals. In other cases,
such as range-separated hybrids with a dispersion
tail, modest improvements are possible while sig-
nificantly reducing the number of linear param-
eters (vs. ωB97X-D), indicating that less semi-
empiricism than existing choices can actually be
advantageous.

Finally, there are interesting non-trivial oppor-
tunities to extend the present analysis beyond the
GGA framework we have restricted ourselves to
here. It is clearly very desirable to explore the
question of how much additional improvement can
be obtained by semi-empirical functionals that de-
pend on the kinetic energy density. This will vastly
increase the number of possible functionals to ap-
proximately 275, so it is unlikely to be possible
to do it up to the m = 4 truncation we have em-
ployed here. However, the encouraging conclu-
sions about the relatively low degree of optimal
semi-empiricism suggest that this may in fact not
be necessary. We hope to report on this problem in
the near future.
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Phys. Chem. Chem. Phys. 2006, 8, 1985–
1993.
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