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Determining point (PS) and diffuse source (DS) nutrient inputs to rivers is essential for assessing and
developing mitigation strategies to reduce excessive nutrient loads that induce eutrophication. However,
application of watershed mechanistic models to assess nutrient inputs is limited by large data require-
ments and intensive model calibration efforts. Simple export coefficient models and statistical models
also require extensive primary watershed attribute information and further they cannot address seasonal
patterns of nutrient delivery. In practice, monitoring efforts to identify all PSs within a watershed are very
difficult due to time and economic limitations. To overcome these issues, based on the fundamental
hydrological differences between PS and DS pollution, a modified load apportionment model (LAM)
was developed relating the river nutrient load to nutrient inputs from PS, DS and upstream inflow sources
while adjusting for in-stream nutrient retention processes. Estimates of PS and DS inputs can be easily
achieved through Bayesian calibration of the five model parameters from commonly available stream
monitoring data. It considers in-stream nutrient retention processes, temporal changes of PS and DS
inputs, and nutrient contributions from upstream inflow waters, as well as the uncertainty associated
with load estimations. The efficacy of this modified LAM was demonstrated for total nitrogen (TN) source
apportionment using a 6-year record of monthly water quality data for the ChangLe River in eastern
China. Aimed at attaining the targeted river TN concentration (2 mg L�1), required input load reductions
for PS, DS and upstream inflow were estimated. This modified LAM is applicable for both district-based
and catchment-based water quality management strategies with limited data requirements, providing a
simple, effective and economical tool for apportioning PS and DS nutrient inputs to rivers.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Excessive nutrients (e.g., nitrogen and phosphorus) in rivers is
of increasing concern worldwide (Pieterse et al., 2003; Edwards
and Withers, 2008; Howden et al., 2011), as it not only degrades
riverine ecosystems and decreases the quality of water used for
drinking, industry, agriculture, recreation, and other purposes
(Bowes et al., 2010; Houser and Richardson, 2010), but also is a
contributor to eutrophication and hypoxia in downstream lakes,
estuaries and coastal waters (Diaz and Rosenberg, 2008; Gao and
Zhang, 2010; Trevisan et al., 2012). To reduce excessive nutrient
loads carried by rivers in an efficient and cost-effective manner,
assessing nutrient input loads from point (PS) and diffuse sources
(DSs) is required for developing watershed management and
control strategies, such as the Total Maximum Daily Load (TMDL)
program (Freedman et al., 2008; Bowes et al., 2009; Chen et al.,
2012).

Many numerical models, ranging from simple export coefficient
models (Johnes, 1996), to statistical models such as SPARROW
(Smith et al., 1997), to complex mechanistic models such as
AGNPS, HSPF and SWAT (Borah and Bera, 2004), have been devel-
oped for assessing watershed-scale nutrient fate and transport and
nutrient source apportionment. A major limitation of these wa-
tershed mechanistic models is that they require a large amount
of data for calibration for a given watershed making their applica-
tion difficult for the large number of watersheds requiring assess-
ment (Shrestha et al., 2008; Shen and Zhao, 2010; Chen et al.,
2012). For example, most states in the USA lack sufficient data to
quantify DS loads, with no estimates of DS loads for 20% of water-
sheds undergoing TMDL development (Freedman et al., 2008). Sim-
ilarly, export coefficient and statistical models require considerable
information on primary watershed attributes (such as land-use,
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population, agricultural census data), and knowledge of nutrient
discharge from PSs (e.g., sewage treatment works and industrial
discharge) (Bowes et al., 2009). Although determining nutrient
loads discharged from the PSs is relatively easy in concept, it is still
difficult to capture all wastewater discharge within a watershed or
a district in practice due to time and economic limitations, espe-
cially in developing countries with limited PS disposal regulations.
Another important consideration is that export coefficient and sta-
tistical models usually operate on an annual time step, so they can-
not easily be used to infer seasonal or storm-event patterns of
nutrient delivery. Such temporal resolution is required to deter-
mine nutrient sources and loads during the most sensitive times
of the year (e.g., typically the summer growing season) when
eutrophication is most likely to occur in downstream water bodies
(May et al., 2001; Bowes et al., 2008, 2009). Therefore a robust
method is required for PS and DS nutrient source apportionment
with high temporal resolution and limited data requirements.

Recently, the load apportionment model (LAM), which statisti-
cally quantifies the PS and DS nutrient inputs as a power-law func-
tion of the river discharge, has been proposed and successfully
applied to a range of catchments of varying sizes, geologies and
land uses (Bowes et al., 2008, 2009, 2010). LAM is based on the fun-
damental hydrological differences in the characteristics of nutrient
inputs from PS and DS types. Point source nutrient input to the riv-
er is relatively constant and hydrologically independent. In con-
trast, DS nutrient inputs have a strong hydrologic dependence
(Edwards and Withers, 2008). The LAM approach provides a simple
and efficient tool for nutrient source apportionment with high
temporal resolution based on routine stream monitoring data.
With increasing concern for environmental water issues, many lo-
cal authorities and states have carried out routine river monitoring
programs (e.g., weekly, fortnightly, monthly, seasonally) to support
water quality assessment and management plans (Bowes et al.,
2008; Shrestha et al., 2008). These data sets, in conjunction with
accompanying stream flow data, provide a fundamental data re-
quired to develop a LAM for a given watershed.

Existing LAMs still contain several important limitations. First,
they assume that nutrients are relatively conservative during
transport, rendering them unsuitable for rivers with high in-
stream nutrient retention efficiency (Bowes et al., 2009). In-stream
nutrient retention, which often accounts for an important fraction
(1–80% for nitrogen and 20–70% for phosphorus) of the annual to-
tal nutrient load (Haag and Kaupenjohann, 2001; Grizzetti et al.,
2005; Dierk and Michael, 2008; Chen et al., 2010), is significantly
modified by river hydrological, morphological and ecological con-
ditions (Alexander et al., 2000; Pieterse et al., 2003; Trevisan
et al., 2012). Second, conventional LAMs usually assume that the
PS inputs are constant throughout the year or a study period,
which is generally true, but it may be not the case for some regions.
For example, it is frequently observed that enterprises discharge
sewage without permission or in excess of their discharge limits
to maximize their profits in many regions of China (Sun and Yang,
2006; Qian et al., 2007), which could introduce a considerable error
in LAM results. Third, nutrient inflows from upstream water bodies
(representing the contribution from the upstream regions) are not
addressed for a river-reach segment in LAM models; thus they do
not satisfy requirements for district-based environmental water
management. For example, in China a river is usually divided into
several segments that are regulated by corresponding districts
(Shang et al., 2012); thus the reach-end corresponding to the
boundary between districts is commonly used as the compliance
location for water quality management and regulation (Chen
et al., 2009; Shang et al., 2012). Fourth, conventional LAMs often
adopt a trial-and-error procedure for calibrating the model param-
eters, which is subjective and uncertain (Shen et al., 2006), consid-
ering the uncertainties involved in the observed data, model
parameters and model structure (Howden et al., 2011; Chen
et al., 2012). Uncertainty is an important issue that requires
addressing in water quality model development and application
(NRC, 2001). To fully exploit available monitoring data for support-
ing water quality management, there is an excellent opportunity to
modify conventional LAMs to address these identified limitations.

This study aimed to modify conventional LAMs to make them
more robust and less sensitive to the previously mentioned model
limitations (e.g., in-stream nutrient retention, temporal changes in
PS discharge, boundary conditions, and uncertainty involved in cal-
ibrating model parameters). The modified LAM statistically relates
the river nutrient load to nutrient inputs from PS, DS and upstream
inflow sources while adjusting for in-stream nutrient retention
processes. Beyond the commonly used trial-and-error procedure
for calibration, the Bayesian statistical method coupled with the
Markov Chain Monte Carlo (MCMC) algorithm, which optimally
utilizes information from both prior knowledge and observed data
(Shen and Zhao, 2010; Chen et al., 2012), was adopted for calibrat-
ing the model parameters and addressing the uncertainty associ-
ated with input load estimations. The efficacy of the modified
model was demonstrated through application for total nitrogen
source apportionment in the ChangLe River in eastern China using
a 6-year record of monthly water quality data. The modified LAM
was aimed at attaining the target total nitrogen concentration
(2 mg L�1) and at determining the required input load reductions
for PS, DS and upstream inflow nutrient loads. This modified model
adopts the merits but overcomes the limitations mentioned above
for conventional LAMs and statistical models. It has limited data
requirements and provides researchers and managers with a sim-
ple, effective and economical tool for apportioning PS and DS nutri-
ent inputs to rivers.
2. Materials and methods

2.1. Study area

The ChangLe River watershed (120�350560 0–120�490030 0E and
29�270980 0–29�350120 0N) is located in Zhejiang Province, eastern
China (Fig. 1). The ChangLe River is one of the main tributaries of
the Cao-E River, which ultimately flows into the Qiantang Estuary
and East China Sea. The river system drains a total area of 864 km2

and flows about 70.5 km with a 0.36% gradient and a 40–70 m
width. The portion of the watershed examined in this study con-
tained two sub-catchments: Sub-catchment I corresponding to
the reach from S1 (NanShan Reservoir) to S2 (midstream site)
and sub-catchment II corresponding to the reach from S2 to S3
(downstream boundary or watershed outlet) (Fig. 1 and Table 1).
The area represents a typical agricultural watershed in eastern Chi-
na and is characterized by a subtropical monsoon climate. Long-
term average annual rainfall is 1256 mm with more than 65% of
rainfall usually occurring between May and September. The pri-
mary land-use categories are woodland and farmland (including
paddy fields, uplands, and garden plots) (Table 1). Water input
from NanShan Reservoir (S1) accounts for 8 ± 5% of the annual
cumulative discharge at S3 due to export for drinking water. There-
fore catchment runoff from below S1 is the main water source
(92 ± 7%) at the watershed outlet.
2.2. Basic data collection

Total nitrogen (TN) concentrations at three sampling sites
(S1–S3) along the ChangLe River were monitored monthly from
January 2004 to December 2009 (n = 72 samples per site) (Fig. 1).
Water samples for chemical analysis were collected between 9
am and 2 pm in 2.5 L polyethylene bottles from 30 cm below the



Fig. 1. Geographical location of and sampling sites at the ChangLe River watershed.

Table 1
The characteristics of the ChangLe River watershed in 2004–2009.

Sub-catchment I II

Catchment area (km2) 456 195
Woodland (%) 51 ± 3 43 ± 4
Paddy field (%) 19 ± 1 24 ± 3
Upland (%) 4 ± 1 4 ± 1
Garden plot (%) 18 ± 1 16 ± 1
Residential land (%) 6 ± 1 10 ± 1
Other (%) 2 ± 1 3 ± 1

Population (person km�2) 331 ± 15 544 ± 26
Chemical nitrogen fertilizer application (kg N ha�1 yr�1) 134.9 ± 16.2 124.5 ± 13.3
Identified industry enterprises Wastewater discharge (�103 m3 yr�1) 27.8 ± 8.1 52.2 ± 9.3

Nitrogen discharge (t N yr�1) 0.1 ± 0.1 0.2 ± 0.2
Large-scale animal breeding farms Wastewater discharge (�103 m3 yr�1) 44.4 ± 9.6 75.6 ± 11.1

Nitrogen discharge (t N yr�1) 30.2 ± 4.1 50.9 ± 6.5
Household animal breeding farms Livestock quantity (head km�2) 395 ± 90 831 ± 354

Poultry quantity (head km�2) 285 ± 151 634 ± 369
Atmospheric deposition (kg N ha�1 yr�1) 74 ± 8

Average daily river water discharge (m3 s�1) 4.6 ± 12.1 (S2) 9.9 ± 18.3 (S3)
Average daily water temperature (�C) 19.8 ± 7.6 (S2) 19.7 ± 7.5 (S3)
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water surface from three well mixed points within the cross sec-
tion at each site. Water samples were acidified with H2SO4 in the
field (15 mL concentrated H2SO4 per 2.5 L sample). Total N concen-
tration was measured within eight hours of sampling using the
persulfate digestion-UV spectrophotometric method. Continuous
daily river discharge and water temperature at the three sampling
sites were supplied by the Zhejiang Provincial Government Hydrol-
ogy Office, China. According to the flow duration curve generated
from the relationship between continuous daily river discharge
at the watershed outlet (S3) and its corresponding exceedance per-
centile for the 2004–2009 study period (Chen et al., 2012), daily
river discharge on the 72 field observation dates fell within the
1.1–99.5% flow exceedance interval, i.e., 29.2%, 48.6% and 22.2%
of observations fell within the high (0–30th percentile), median
(30–70th percentile) and low (70–100th percentile) flow regimes,
respectively. Daily TN load at each sampling site for each
field observation date was calculated by multiplying the TN
concentration by the daily river discharge. Although there was no
correlation between TN concentration and water discharge at S1
due to mixing within Nanshan Reservoir (Fig. 2), there was a signif-
icant correlation between TN load (y) and water discharge (x) at S1
(y = 7.31x2 + 273x � 8.16, R2 = 0.91, n = 72); thus daily inflow TN
loads from S1 on dates not measured were predicted using daily
average river water discharge from 2004 to 2009. All statistical
analyses were determined using SPSS statistical software (Version
16.0; SPSS Inc. Chicago, USA).

To estimate watershed diffuse source TN input load to the river
system using the export coefficient model, data on human popula-
tion, livestock-poultry quantities, chemical nitrogen fertilizer
application quantity, and the land-use types in the ChangLe River
watershed in 2004–2009 were obtained from the Shengzhou City
Agriculture Bureau of Zhejiang Province (Table 1). Annual TN input
from atmospheric deposition during 2004–2009 was provided by
Shengzhou City Environment Protection Bureau of Zhejiang
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Province. There is no centralized sewage collection and treatment
for industrial and domestic wastewater in the ChangLe River wa-
tershed. Monitoring results from the local environmental protec-
tion bureau in 2004–2009 identified 11 industrial enterprises
that have independent sewage outlets with an average annual total
effluent of 80 � 103 m3 after primary treatment (TN input load
�0.4 t yr�1) and 16 large-scale animal breeding farms with an
average annual total effluent of 120 � 103 m3 without treatment
(TN input load �80 t yr�1) (Table 1 and Fig. 1).

2.3. The modified load apportionment model

The modified LAM was inspired by the load apportionment con-
cept (Bowes et al., 2008, 2009) using a statistical modeling meth-
odology (Smith et al., 1997; Grizzetti et al., 2005). The ChangLe
River watershed was subdivided into two sub-catchments/districts
according to data availability. In each sub-catchment, the TN load
was related to the sum of nutrient inputs from different sources
and reduced by TN retention processes occurring along the river.
The river nutrient load at the outlet of a sub-catchment on the
ith day (Li, kg d�1) is expressed as:

Li ¼ ðPi þ Di þ UiÞRi ð1Þ

where Pi, Di and Ui are nutrients input to river (reach) from PS, DS,
and the upstream water bodies (kg d�1), respectively. Ri is the in-
stream retention factor for TN (dimensionless).

TN input loads from PS and DS are modeled as power-law func-
tions of the daily average river discharge (Qi, m3 s�1) (Bowes et al.,
2008).

Pi ¼ AQB
i and Di ¼ CQD

i ð2Þ

where A, B, C and D are model parameters.
Total N retention in surface waters is primarily determined by

the residence time, contact area at the sediment–water interface
and biological activity (Alexander et al., 2000; Haag and
Kaupenjohann, 2001; Chen et al., 2010). Residence time decreases
with increasing river discharge, reducing the opportunity and
duration for different biogeochemical reactions to remove nutri-
ents (Madsen et al., 2001; Smith et al., 2008). Nutrient retention
capacity decreases with increasing river discharge as the contact
surface between sediment and river water is also reduced (or
increasing volume:surface area ratio), decreasing nutrient process-
ing efficiency (Alexander et al., 2000; Pieterse et al., 2003; Chen
et al., 2011a). Higher water temperature also increases the activi-
ties of aquatic organisms that facilitate N assimilation, such as
denitrification and aquatic plant or algae uptake (Dierk and Mi-
chael, 2008; Chen et al., 2010; Houser and Richardson, 2010).
Therefore, temporal variation of in-stream TN retention efficiency
was related to the river discharge and water temperature in the
modified LAM. The in-stream retention factor Ri was parameter-
ized as an exponential decreasing function (Smith et al., 1997;
Grizzetti et al., 2005):

Ri ¼ e�Eqiti ð3Þ

where qi and ti are normalized river discharge (dimensionless) and
water temperature (dimensionless), respectively; and E is the mod-
el parameter (dimensionless) representing in-stream retention pro-
cesses. In contrast to increasing water temperature, the river
discharge variable has a negative effect on in-stream nutrient reten-
tion efficiency; thus it was converted to the reciprocal form before
scaling. The daily river discharge and water temperature (Ti, �C)
were both reduced to the same scale by scaling as a function of
the maximum value for the study period (Grizzetti et al., 2005):

qi ¼
Q�1

i

maxðQ�1
i Þ

; ti ¼
Ti

maxðTiÞ
for i ¼ 1; . . . ;n ð4Þ

Therefore, river nutrient load at the outlet of a sub-catchment
on the ith day is expressed as:

Li ¼ ðAQ B
i þ CQD

i þ UiÞe�Eqiti ð5Þ

As for conventional LAMs, this modified LAM (Eq. (5)) is based
on the assumption that PS and DS nutrient inputs are rain/run-
off-independent and rain/runoff-dependent, respectively. In Eq.
(5), the parameter A represents the potential for TN load entering
the river from all PSs. The changing rate of TN load input from
all PSs is described by combining parameter B with river discharge.
This is based on the consideration that TN input load is increased
with increasing PS sewage discharge resulting in increasing river
discharge although PS input is rain/runoff-independent. The
parameter C describes the potential for TN loads entering the river
from all DSs. The changing rate of TN load input from DSs is de-
scribed by combining parameter D with river discharge. This is
based on the consideration that DS TN input load is rain/runoff-
dependent and increases with increasing river discharge. The
parameter E describes in-stream nutrient retention potential. The
changing rate of in-stream retention efficiency is described by
combining parameter E with the normalized river discharge and
water temperature.

The five model parameters in Eq. (5), i.e., A, B, C, D and E, are un-
ique for a given sub-catchment under study during periods with-
out significantly changing pollution control efforts. For cases
where DS and PS discharge are changing within a watershed over
time, the long-term monitoring dataset should be divided into sev-
eral annual time steps to take into account changing DS and PS in-
puts due to mitigation efforts (Bowes et al., 2009).

2.4. The methods for calibrating model parameters

In this case study, the five model parameters for sub-catch-
ments I and II and for the entire ChangLe River watershed were
separately calibrated from 72 records for daily river TN concentra-
tion, water discharge and temperature collected monthly between
2004 and 2009. Two methods were adopted for calibrating the five
model parameters, i.e., a trial-and-error procedure (TEP) using the
Solver function in Microsoft EXCEL� that is commonly used in con-
ventional LAMs and a Bayesian statistic approach using WinBUGS
1.4 software. The agreement between measured and model predic-
tions was evaluated using correlation (R2) and Nash–Sutcliffe coef-
ficients (Nash–Sutcliffe coefficients >0.65 indicating a satisfactory
modeling result in general, Borah and Bera, 2004).

Firstly, the five model parameters were calibrated by TEP to
provide the closest fit to the observed river TN concentration and
water discharge datasets. To minimize the dependence of differ-
ences in terms of magnitude between observed and predicted
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nitrogen loads during the study period, the error minimization
algorithm was applied after both sides of Eq. (5) were converted
to logarithmic form (Smith et al., 1997; Grizzetti et al., 2005).
Two constraints were further imposed on the model to provide
realistic solutions. First, it was assumed that 0 6 B 6 1, which im-
plies that the PS-derived TN concentration decreases with increas-
ing river discharge (Bowes et al., 2008, 2009, 2010) and PS-derived
TN load increases with increasing sewage discharge quantity,
which is in favor of increasing river discharge. Second, the model
was constrained to only consider D > 1, as DS derived TN load
and concentration both increase with increasing river discharge
(Bowes et al., 2008).

Secondly, a Bayesian approach coupled with the Markov Chain
Monte Carlo (MCMC) algorithm was performed using WinBUGS
1.4 to calibrate model parameters, as well as to address the associ-
ated uncertainty (Chen et al., 2012). Detailed descriptions of the
Bayesian approach and the code for WinBUGS software are available
in Shen and Zhao (2010) and Chen et al. (2012). The prior distribu-
tion of these five target parameters was assumed to follow uniform
distributions with the range of (0, 3X) (Shen and Zhao, 2010). Here, X
was the value of each parameter derived from the TEP method. To
obtain the best-fit posterior model parameters A, B, C, D, and E, the
MCMC simulation was performed using 10,000 runs until the model
successfully converged (i.e., Monte Carlo errors <10% of SD). The first
5000 runs were discarded after model convergence and then a total
of 1000 samples for each unknown quantity were randomly taken
from the next 5000 iterations for posterior simulation of nutrient
source apportionment and required nutrient input load reduction
to reduce autocorrelation (Shen and Zhao, 2010).

2.5. Posterior simulations of nutrient source apportionment

The river discharge at which the estimated TN inputs from PS
and DS were equal (Qe) was calculated using the coupled posterior
model parameters A, B, C, and D as follows (Bowes et al., 2008):

Q e ¼
A
C

� �1=ðD�BÞ

ð6Þ

When river discharge is less than Qe, PS will dominate the TN
load as compared to DS. Conversely, DS will dominate the TN load
compared to PS loads when river discharge is greater than Qe.

The coupled posterior model parameters derived from the 72
field monitoring dates were applied to the daily river discharge
data in 2004–2009, thereby estimating the posterior annual input
of TN from PS (TP, kg yr�1) and DS (TD, kg yr�1):

TP ¼
X365

i¼1

AQB
i and TD ¼

X365

i¼1

CQD
i ð7Þ
2.6. Posterior simulations of required nutrient input load reduction

To demonstrate the application of this modified LAM for water
quality management, posterior simulations of daily required TN in-
put load reduction (RLRi, kg d�1) were performed using the coupled
posterior A, B, C, D and E values. Daily maximum allowable load
was estimated as the allowable total maximum daily loading that
can be input to the river and still meet the required water quality
target (i.e., TN = 2.0 mg N L�1; Chen et al., 2012) at the sub-catch-
ment outlet on the ith day. Then posterior RLRi simulation was per-
formed as:

RLRi ¼ Pi þ Di þ Ui � Li;meEqiti ð8Þ

where Li,m is the maximum allowable river load at the outlet of a
sub-catchment, which was calculated by multiplying the target
TN concentration by the river discharge on the ith day.
To further apportion the posterior RLRi among PS, DS and up-
stream inflow, the principle of ‘‘each polluter should answer for
what he does’’ was adopted (USEPA, 1991). That is, the allocation
of load reduction proportion for each source is directly based on
its contribution proportion to the total input load.
3. Results and discussion

3.1. The model performance

The resulting parameter values (i.e., A, B, C, D and E) for the
modified LAM by the trial-and-error and the Bayesian approaches
are given in Table 2. The trial-and-error calibrated value of each
parameter not only fell within the 95% confidence interval but also
approached the mean and median values derived from the Bayes-
ian approach. In contrast to conventional LAMs, the calibrated B
parameters for the two sub-catchments and entire watershed were
not equal to zero and improved the model fitting performance,
indicating that PS inputs were not temporally constant (i.e., its
change was reflected by changing river discharge, as PS input is
mainly dependent on PS sewage discharge quantity, which further
influences river discharge) over the study period. The E parameters
and upstream inflow term also improved the model solution fit,
indicating that in-stream retention dynamics and upstream inflow
for TN should be considered. Using the calibrated model parame-
ters from the trial-and-error procedure, observed versus modeled
river TN loads and concentrations were strongly correlated with
high R2 values (>0.82) and Nash–Sutcliffe coefficients (>0.78)
(Fig. 3a and b). Moreover, using the calibrated model parameters
from the Bayesian approach, observed versus modeled river TN
loads and concentrations were strongly correlated with more than
85% of the observed data falling within the 95% confidence interval
and high R2 values (>0.86) and Nash–Sutcliffe coefficients (>0.70)
(Fig. 3c and d). These results are comparable with those for other
watershed nitrogen simulations using SWAT, AGNPS and HSPF (re-
viewed by Borah and Bera, 2004) with Nash–Sutcliffe coefficients
>0.65 for monthly simulation results for DS pollution considered
good to very good.

These calibration results indicated that the modified LAM can
be applied to practical water quality management, supporting
the model’s assumption that TN inputs from PS and DS are related
to sewage discharge quantity (rain/runoff-independent) and river
discharge (rain/runoff-dependent), respectively. This confirms that
assumptions applied to watersheds with centralized sewage treat-
ment facilities (Bowes et al., 2008, 2009, 2010) are also applicable
for the ChangLe River watershed without centralized sewage treat-
ment facilities. This occurs because in the absence of centralized
collection and sewage treatment, TN loads derived from domestic
and industrial sewage sources are directly input into the river sys-
tem through numerous individual discharge channels (PS pattern).
These sources are also rain/runoff-independent and follow the
same assumption as PS-derived TN discharge from centralized
sewage treatment facilities.

Considering the comparable calibration results obtained from
two optimization methods, the model parameters derived from
the Bayesian approach were used for the following load appoint-
ment and required load estimation in this study. The Bayesian ap-
proach also allows for the assessment of uncertainty, which is
necessary for supporting water quality management decision mak-
ing (Shen and Zhao, 2010).

Posterior annual TN input loads from DS obtained by this mod-
ified LAM were further compared to those obtained with an export
coefficient model (Chen et al., 2009, 2010) and an inverse modeling
approach (Chen et al., 2011a,b) for the ChangLe River watershed in
previous studies (Fig. 4). Both the modified LAM and the inverse



Table 2
The modified load apportionment model parameters derived from the trial-and-error
procedure and Bayesian statistical approach for TN in the ChangLe River watershed.

Sub-catchment I II Entire watershed

A Trial-and-error procedure 254 42.8 275
Bayesian statistic 2.5% 166 18.5 194

Mean 252 44.8 271
Median 251 44.9 271
97.5% 338 72.0 359

B Trial-and-error procedure 0.264 0.323 0.274
Bayesian statistic 2.5% 0.011 0.045 0.015

Mean 0.263 0.617 0.332
Median 0.229 0.675 0.303
97.5% 0.696 0.968 0.827

C Trial-and-error procedure 252 46.2 221
Bayesian statistic 2.5% 152 32.0 137

Mean 224 54.3 211
Median 225 54.3 212
97.5% 294 76.9 276

D Trial-and-error procedure 1.05 1.28 1.12
Bayesian statistic 2.5% 1.04 1.12 1.09

Mean 1.12 1.22 1.15
Median 1.11 1.21 1.15
97.5% 1.20 1.33 1.22

E Trial-and-error procedure 26.7 15.8 35.5
Bayesian statistic 2.5% 4.4 2.9 10.9

Mean 24.9 15.9 33.8
Median 24.6 15.7 33.8
97.5% 47.9 30.5 57.4
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(ECM) and inverse modeling approach (IMA) in the ChangLe River watershed. The
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modeling approach produced lower annual estimates of TN input
loads compared to the export coefficient model. These disparities
could be caused by the selection of inappropriate land-use or
source-based TN export coefficients, as the adopted export coeffi-
cients did not consider the natural annual variability that exists
for export coefficients (Bowes et al., 2008) and ignored the time
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delay between when nitrogen is applied to land and when the
nitrogen is input to the river (Howden et al., 2011). There was close
agreement in the annual TN load estimates between the modified
LAM (mean values) and the inverse modeling approach (i.e., esti-
mating catchment DS input load to rivers by the inverse format
of an existing river nutrient transport equation from the river mon-
itoring data), which further validates the efficacy of the modified
LAM and supports its assumption. However, the inverse modeling
approach requires more detailed information on river conditions
and properties (e.g., water flow velocity, reach segment length,
in-stream loss rate coefficient) (Shen et al., 2006; Chen et al.,
2011a,b). Thus, the modified LAM can offer accurate estimates of
the DS TN input load with minimum data requirements and less
cost compared to the inverse modeling approach and export coef-
ficient model.
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3.2. Nitrogen source apportionment

Posterior annual TN input loads from PS, DS and upstream in-
flow for the ChangLe River watershed in 2004–2009 are shown
in Table 3. The upstream TN inflow should be apportioned from to-
tal input load for a specific river reach catchment, as it accounted
for 8 ± 1%, 67 ± 2% and 5 ± 1% of the mean annual TN input load
for sub-catchment I, sub-catchment II and the entire watershed,
respectively. Since the upstream inflow was considered in the
modified LAM, it can be applied to multi-segment rivers for TN in-
put load apportionment, supporting both the catchment-based and
district-based (i.e., river reach) water quality management
strategies.

Although the posterior mean annual PS TN input load
(mean ± SD: 223.5 ± 25.2 t N yr�1, Table 3) only contributed
13 ± 2% of the annual TN input load for the entire watershed, it
was significantly higher than the TN input loads (mean ± SD:
84.1 ± 10.3 t N yr�1) from identified industrial enterprises and
large-scale animal breeding farms (Table 1). The large-scale animal
breeding farms are generally located near the river (<2 km, Fig. 1)
and their N-rich wastewaters are directly emitted to the river with-
out treatment; thus these operations should be managed as PS
(Yuan et al., 2011). Additionally, although sub-catchment II had
larger sewage effluent and N discharge from identified PS (i.e.,
industrial enterprises and large-scale animal breeding farms) than
sub-catchment I (Table 1 and Fig. 1), sub-catchment I had a higher
PS TN input load than sub-catchment II (Table 3). This result may
indicate a considerable number of unidentified PS inputs, such as
illegal wastewater discharge by industrial enterprises and animal
and domestic wastewater emissions from residential areas. It is
frequently observed that enterprises discharge pollutants without
permission or beyond pollution limits to maximize their profits
and these kinds of activity mainly occur during high-flow periods
in an attempt to avoid detection (Sun and Yang, 2006; Qian et al.,
2007). Since there is no centralized sewage collection and treatment
Table 3
Posterior annual input load, in-stream retention load, maximum allowable input load, and

Sub-catchment

Input load Point source 2.5%
Mean
Median
97.5%

Diffuse source 2.5%
Mean
Median
97.5%

Upstream inflow

In-stream TN retention load 2.5%
Mean
Median
97.5%

Maximum allowable input load 2.5%
Mean
Median
97.5%

Required input load reduction Point source 2.5%
Mean
Median
97.5%

Diffuse source 2.5%
Mean
Median
97.5%

Upstream inflow 2.5%
Mean
Median
97.5%
for domestic wastewater in the ChangLe River watershed, domestic
wastewaters are often directly discharge to the river without treat-
ment. Additionally, many household septic tanks in rural and small
town areas are directly connected to the river or drainage systems,
and actually operate as numerous small PS sewage inputs (Arnsc-
heidt et al., 2007). The higher population living in sub-catchment
I is consistent with higher sewage wastewater inputs contributing
to PS inputs in this sub-catchment (Table 1). Due to time and eco-
nomic limits, only very slow progress is being made to fully capture
these widely distributed and numerous PS along the river system.
The modified LAM is thus a potentially powerful tool for identifying
illegal and unmonitored nutrient discharge resulting in consider-
able savings in monitoring costs.

Posterior mean annual DS TN input load accounted for 82 ± 3%
of annual TN input load for the entire watershed (Table 3), which
is consistent with previous estimates for the ChangLe River wa-
tershed (Chen et al., 2009, 2010, 2011a,b); thus river TN concentra-
tions at sampling sites S2 and S3 were synchronously increased
with increasing river discharge (Fig. 2). According to field investi-
gations, nitrogen fertilizer application, rural domestic wastes,
household livestock-poultry breeding and atmospheric deposition
are the primary sources of DS TN inputs to the ChangLe River
(Table 1). Although sub-catchment I produced a larger DS TN input
load than sub-catchment II (Table 3), sub-catchment II had a larger
area-specific DS TN input rate (mean ± SD: 24.5 ± 7.5 kg ha�1 yr�1)
than sub-catchment I (mean ± SD: 21.4 ± 5.8 kg ha�1 yr�1) (P < 0.01).
This is primarily related to the higher population and animal den-
sities along with lower woodland percent in sub-catchment II than
those in sub-catchment I (Table 1).

As indicated by Eq. (2) and the calibrated model parameters
in Table 2, posterior daily mean TN input loads from PS
(133–4692 kg d�1) and DS (8.2–251,603 kg d�1) synchronously in-
creased with increasing river discharge; thus the major TN inputs
are expected to occur during high river flows. The river discharge
at which the PS and DS TN inputs to the river are equal (Qe) was
required input load reduction for TN in the ChangLe River watershed (t yr�1).

I II Entire watershed

80.1 ± 4.1 13.9 ± 0.9 92.9 ± 4.6
155 ± 14.2 91.2 ± 17.2 224 ± 25.2
138 ± 10.1 78.9 ± 13.4 182 ± 15.9
335 ± 55.5 237 ± 53.9 573 ± 107
796 ± 218 343 ± 104 1152 ± 323
965 ± 260 469 ± 142 1455 ± 408
975 ± 263 479 ± 147 1479 ± 417

1061 ± 274 556 ± 166 1602 ± 433
93.8 ± 22.2 1062 ± 254 93.8 ± 22.2

10.8 ± 0.6 15.9 ± 0.5 47.7 ± 1.8
81.1 ± 2.6 77.7 ± 2.8 153 ± 5.6
79.9 ± 2.5 76.7 ± 2.7 153 ± 5.5
159 ± 4.9 144 ± 5.8 258 ± 10.8

485 ± 104 216 ± 46.9 712 ± 154
524 ± 125 247 ± 62.0 820 ± 212
519 ± 126 244 ± 59.8 823 ± 266
614 ± 137 323 ± 140 1003 ± 191

38.5 ± 12.4 11.0 ± 0.6 31.7 ± 12.3
80.8 ± 7.8 77.1 ± 14.3 105 ± 19.9
73.2 ± 5.0 66.4 ± 11.1 85.1 ± 13.5
180 ± 29.4 199 ± 43.8 278 ± 81.7
466 ± 132 292 ± 80.2 570 ± 210
561 ± 157 405 ± 124 824 ± 245
563 ± 158 414 ± 128 842 ± 253
623 ± 164 481 ± 145 933 ± 268
54.5 ± 13.1 973 ± 203 41.2 ± 20.3
57.7 ± 14.3 1015 ± 239 56.4 ± 14.3
57.8 ± 14.3 1019 ± 242 55.1 ± 14.1
60.2 ± 14.6 1036 ± 247 59.4 ± 14.8
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calculated by Eq. (6). The estimated mean Qe was 1.23, 0.94 and
1.53 m3 s�1 for sub-catchment I, sub-catchment II and the entire
watershed, respectively. This indicates that the average percentage
of time that DS dominate was 98%, 99% and 98% for sub-catchment
I, sub-catchment II and the entire watershed during 6-year study
period, respectively. Therefore, DS should be preferentially tar-
geted for river TN pollution mitigation in the ChangLe River
watershed.

3.3. In-stream nitrogen retention efficiency

For the ChangLe River watershed, posterior mean annual in-
stream TN retention load was 153.2 ± 5.6 t yr�1 (mean ± SD),
accounting for 11 ± 4% of total input TN load in 2004–2009. This re-
tained load was comparable in magnitude to the PS TN input load
(Table 3); thus in-stream processes should be considered in river
TN source apportionment. In-stream TN retention efficiency pre-
sented remarkable spatial and temporal variation resulting from
varying river discharge and water temperature (Fig. 5). Sub-catch-
ment I with lower river discharge (Table 1) had a higher posterior
in-stream TN retention percentage relative to total input load
(mean ± SD: 11 ± 10%) than sub-catchment II (mean ± SD: 8 ± 8%)
(Fig. 5a). Over the 6-year study, posterior retention percentage de-
creased with increasing river discharge (R2 > 0.76, P < 0.01), but in-
creased with increasing water temperature (R2 > 0.12, P < 0.01).
Thus, in-stream retention efficiency will be disproportionately de-
creased with increasing TN input due to increasing river discharge
(Peterson et al., 2003). These observed relationships between
in-stream retention percentage and river discharge and water
temperature are consistent with the current understanding of the
biogeochemical processes responsible for in-stream TN retention
(Smith et al., 1997; Alexander et al., 2000; Peterson et al., 2003;
Dierk and Michael, 2008; Chen et al., 2011a). During the PS pollu-
tion dominated period or low flow period (<Qe), mean in-stream TN
retention percentage was >65% for each sub-catchment, partially
explaining the lower TN concentrations in the low flow period
(Fig. 2), in spite of less dilution capacity during this period. Due
to the higher water temperature, summer (i.e., May to September)
generally presented higher in-stream TN retention percentages
(mean ± SD: 17 ± 13%) than the period from October to April
(mean ± SD: 14 ± 11%) (Fig. 5b), which favors mitigating the larger
TN input loads during the summer (Chen et al., 2010). Conse-
quently, underestimating the percentage of TN input load due to
neglecting in-stream TN retention processes will have a greater ef-
fect for sub-catchments and time periods having lower river dis-
charge and higher water temperature.
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Fig. 5. Variations of posterior in-stream TN retention percentage between two sub-
catchments (a) and between two periods (b) for the ChangLe River watershed.
Box plots display 2.5th, 25th, 50th, 75th and 97.5th percentiles. Capital letters
denote significant differences (P < 0.01) between two sub-catchments or two
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3.4. Using the modified LAM for targeting nitrogen input load
reduction

The main focus of water quality management is to control pol-
lutant loading into water bodies to ensure that water quality meets
the targeted goals (NRC, 2001; Chen et al., 2009). When compared
with the existing river TN concentrations for the 6-year study per-
iod, the ChangLe River failed to meet the target water quality stan-
dard for TN concentration of 2.0 mg L�1 (Fig. 2); thus the existing
TN input loads must be appreciably reduced to attain the target
in-stream TN level. Posterior mean annual required input load
reduction should account for 57 ± 1%, 85 ± 1% and 54 ± 7% of the
annual TN input load for sub-catchment I, sub-catchment II and
the entire watershed, respectively (Table 3). Diffuse source TN in-
puts must be a primary target for load reduction in both sub-catch-
ment I and the entire watershed. However, sub-catchment II
requires a large reduction in the upstream TN inflow load (Table 3).
Thus, attaining the target in-stream TN level for sub-catchment II is
mainly dependent on achievement of the required TN input load
reduction in sub-catchment I. In China, the administrative district
(such as town, county or province) is the main decision-making
body for regional water quality and quantity management (Shang
et al., 2012). A river is usually divided into several reach segments
and they are regulated by corresponding districts. The allocated in-
put load reduction for each sub-catchment or upstream inflow in
this study is equivalent to apportioning the pollution control
responsibilities among districts, supporting the district-based
water quality management approach.

Due to the high temporal dependence of nutrient inputs, envi-
ronmental managers are often required to preferentially focus on
nutrient load reduction during the sensitive summer period of en-
hanced algae growth (Bowes et al., 2008). Previous studies have
demonstrated that lakes and estuaries in eastern China tend to
have the highest risk for eutrophication during the summer (i.e.,
May to September) when high rainfall generates high nutrient in-
puts and high temperatures and sunlight stimulate algae growth
(Xiao et al., 2007; Gao and Zhang, 2010). Therefore, the posterior
daily required input load reduction to meet the TN water quality
target for the entire watershed during the May to September per-
iod was extracted from the 6-year data record (Fig. 6). Daily re-
quired TN input load reductions for PS, DS, and upstream inflow
synchronously increased with increasing river discharge
(r > 0.98�� for mean values). This indicates that generation of TN in-
put loads was larger than the corresponding total maximum allow-
able load with increasing river discharge. Thus, a temporally
variable expression (e.g., a function of river discharge) is required
for determining input load reduction allocations (Chen et al.,
2011b, 2012). The percentage of time that DS inputs dominate
(> Qe0 , Fig. 6) the required TN input load reduction was 99%, indi-
cating the necessity for targeting DS TN reduction to attenuate the
eutrophication risk for downstream waters in summer.

3.5. The model limits and implications

This modified LAM, similar to conventional LAMs, primarily
relies on the quantity and quality of the data for nutrient concen-
trations, water discharge and water temperature. Thus, it is vital
that the sampling interval is sufficiently short to capture a repre-
sentative range of hydrological events for a given river system. A
monthly monitoring interval, which is typical of Chinese environ-
mental protection agencies and other government agencies, may
not adequately characterize the high-flow events due to their
limited occurrence throughout a given year (Johnes (2007)). The
under-representation of high-flow events is also a problem for
the more complex mechanistic models such as AGNPS, HSPF and
SWAT (Borah and Bera, 2004). Due to the positive exponential
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relationship that existed between river TN concentrations and
water discharge in this DS-pollution dominated watershed
(Fig. 2), under-representation of high flow events would result in
an underestimation of DS TN inputs using the LAM approach. How-
ever, long-term river monitoring datasets (>5 years) are generally
able to capture the full range of hydrologic conditions for a river
system (Bowes et al., 2009). The observed river flows in this study
fell within the 1.1–99.5% exceedance interval for daily river flows
measured during the 2004–2009 study period, indicating that the
monthly sampling interval was adequate for capturing high-flow
events. Once the model has produced a reasonable fit to the
long-term monitoring record, the empirically-fitted model param-
eters can be applied to high temporal-resolution river discharge
data, which is generally available for most major rivers. However,
a limitation of the modified LAM (as well as conventional LAMs)
is that it cannot directly identify the individual contribution of spe-
cific nutrient sources (e.g., sewage treatment discharge, fertilizer
application, animal and domestic wastes, etc.).

Conventional LAMs and this modified format both assume that
the DS nutrient input is dependent on water flow or catchment
runoff. Beyond hydrological conditions, DS nutrient input to rivers
is also influenced by the crop planting and harvest dates, fertiliza-
tion timing, tillage practices and land-use types (Pieterse et al.,
2003; Shrestha et al., 2008; Neal et al., 2008; Howden et al.,
2011). All these factors vary with time to alter temporal nutrient
delivery to rivers. Although the assumption of water flow depen-
dence for DS inputs is generally true, it may not be the case for
all rivers characterized by different conditions and practices.

In contrast to conventional LAMs, this modified LAM follows the
assumption that PS nutrient input load is not always temporally
constant (i.e., model parameter B has not been assumed to be zero)
and its change is reflected by changing river discharge, since
wastewater discharged from all PS influences river discharge.
Although this is generally true, it may not be the case for all PS in-
put types due to changing nutrient concentration in the effluent.
With increasing demands for improved water quality by the public
and government, the number of sewage treatment facilities and in-
creased nutrient removal efficiency for existing sewage treatment
facilities and agricultural best management practices will increase
in many regions (Neal et al., 2008). In cases where DS and PS dis-
charges are changing within a watershed over time, the long-term
monitoring dataset should be divided into several annual time
steps to take into account changing DS and PS inputs due to
mitigation efforts (Bowes et al., 2009). Then the success (or failure)
of DS and PS pollution control efforts can be tracked by the changes
in the calibrated model parameters A, B and C, D, respectively
(Bowes et al., 2010).

This modified LAM considers in-stream retention processes and
assumes that in-stream nutrient retention efficiency is mainly
dependent on hydrological and water temperature conditions.
While this is generally true, it may not be the case for all rivers,
since temporal variation of in-stream nutrient retention efficiency
is also subject to influence by other factors, such as the sunlight
that influences aquatic plant and algae dynamics, nature and orga-
nization of the river bed, and river and sediment oxygen levels
(Chen et al., 2010; Houser and Richardson, 2010; Trevisan et al.,
2012). The nutrient input location for different sources affects
the in-stream residence time, which also influences in-stream
nutrient retention efficiency (Smith et al., 2008; Chen et al.,
2011a). It should be pointed out that river nutrient concentration
tends to vary diurnally due to diurnal changes of in-stream pro-
cesses and catchment TN inputs (Pellerin et al., 2009; Volkmar
et al., 2011). The model deals with these perturbations by adopting
daily average river discharge and temperature, but may not be
applicable to rivers with a high dependence of other factors for
in-stream processing or rivers with large diurnal variability.

In contrast to conventional LAMs, this modified LAM calibrates
the model parameters with Bayesian statistics. The resulting pos-
terior model parameters can provide both point (such as mean
and median values) and interval estimations (such as 95% confi-
dence interval) of PS and DS input loads, in-stream retention
capacity, and required load reduction (Table 3 and Figs. 5 and 6).
This not only quantitatively describes the uncertainty for model
estimates, but also provides a confidence level that can be easily
understood by decision makers from a management point of view.
If large uncertainty is associated with estimation, as indicated by a
large 95% confidence interval (Chen et al., 2012), caution should be
exercised and more observational data may be needed to lower the
uncertainty (Shen et al., 2006; Shen and Zhao, 2010). The resulting
posterior required load reductions under different confidence lev-
els (Table 2) provide decision makers and stakeholders with an ex-
plicit basis for designing load reduction strategies, supporting the
practical adaptive implementation of TMDL programs while con-
sidering uncertainty factors (Freedman et al., 2008). For example,
if being conservative is a major concern for water pollution control,
the upper 90% or 95% credible level of the required load reduction
can be selected in practice.
4. Conclusion

Compared with conventional LAMs, the modified LAM format
developed in this study considers both in-stream retention pro-
cesses and changes of PS inputs during a study period, and also
can address the uncertainty associated with nutrient source appor-
tionment. In addition, it incorporates an upstream nutrient inflow
term that allows application to both district-based and catchment-
based water quality management strategies. Compared with other
types of models, this modified LAM is much easier to apply and can
produce more realistic estimates of PS and DS nutrient inputs.
Since the model relates the stream nitrogen load to catchment in-
put load, it is further capable of determining required input load
reductions for PS, DS and upstream inflow sources to attain the tar-
get river nutrient level while considering uncertainty. All these
model applications are easily achieved through Bayesian calibra-
tion of the five model parameters from monitoring datasets of river
nutrient concentration, water discharge and temperature, which
are commonly and increasingly available in many countries and
regions.
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For the ChangLe River watershed, estimated mean TN inputs
from DS, PS and upstream inflow waters contributed 82 ± 3%,
13 ± 2% and 5 ± 1%, respectively, of the annual TN input load in
2004–2009. Mean DS inputs were greater than PS inputs 99% of
the time during the 6-year study. In-stream retention processes,
which accounted for 11 ± 4% of the mean annual TN input load,
had a higher efficiency for sub-catchments and time periods with
lower river discharge and higher water temperature. To attain
the targeted water quality objective for TN concentration
(2.0 mg L�1), 54 ± 7% of the mean annual TN input load needs to
be reduced. Based on our analysis, TN load reduction strategies
should be preferentially aimed at reductions in DS TN inputs, espe-
cially during summer high-flow periods when eutrophication risk
is greatest for downstream water bodies. This case study demon-
strates that the modified LAM has limited data requirements and
provides researchers and managers with a simple, effective and
economical tool for apportioning PS and DS nutrient inputs to riv-
ers, as well as associated uncertainty assessment.
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