Recent Work

Title
ELASTIC SCATTERING OF ANTIPROTONS FROM COMPLEX NUCLEI

Permalink
https://escholarship.org/uc/item/34067575

Authors
Goldhaber, Gerson
Sandweiss, Jack.

Publication Date
1958-04-22
UNIVERSITY OF CALIFORNIA

Radiation Laboratory

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ELASTIC SCATTERING OF ANTIPROTONS FROM COMPLEX NUCLEI
Gerson Goldhaber and Jack Sandweiss
April 22, 1958

Printed for the U.S. Atomic Energy Commission
ELASTIC SCATTERING OF ANTIPROTONS FROM COMPLEX NUCLEI*

Gerson Goldhaber† and Jack Sandweiss §

Physics Department and Radiation Laboratory
University of California, Berkeley, California

April 22, 1958

In continuing the study of the interactions of antiprotons in nuclear emulsions, we have examined a total length of 16.0 meters of antiproton path in the energy region 50 to 200 Mev. We report here on our measurements of the elastic scattering of antiprotons in nuclear emulsion. The total path length was obtained from the various exposures to the unseparated antiproton beam† and from a separated-beam exposure. ²

In these experiments stacks of 600-micron Ilford G.5 nuclear emulsion have been exposed to antiprotons from the Berkeley Bevatron. For the purposes of the elastic-scattering measurement we have selected only tracks due to antiprotons identified by means of an annihilation star. In the range interval corresponding to 50 to 200 Mev, these tracks were carefully examined for scattering events with projected angle of scattering greater than 2°. A scattering event was accepted as elastic if there was no visible change of grain density and no visible recoil or excitation of the struck nucleus. The grain-count criterion adopted eliminates inelastic scattering events with $\Delta T_p / T_p > 0.2$. However, some slightly inelastic scattering events ($\Delta T_p / T_p < 0.2$) may still be present in our data. Scattering from free hydrogen in the emulsion and inelastic scattering from complex nuclei are discussed in a separate communication. ³

* Work done under the auspices of the U.S. Atomic Energy Commission.
† Supported during part of this work by the Adolph C. and Mary Sprague Miller Institute of Basic Research at the University of California.
§ Now at Physics Department, Yale University, New Haven, Conn.
We have checked our scanning efficiency both by rescanning and by measuring a sample in which we included projected angles greater than 1.5°. In the latter case we may compare the results with point nucleus Rutherford scattering. Figure 1 shows the results on 8.1 meters of antiproton track. For scattering events with projected angle greater than 2° the scanning efficiency is 100%. A total of 111 such scattering events were found in 16 meters of path length. Table I lists the number of antiproton scattering events for various antiproton energy intervals as well as the corresponding path-length distribution.

The number of events observed in this experiment is insufficient to allow a comparison with theory in the separate energy intervals, we shall thus consider the data in the entire energy interval 50 to 200 Mev. The histogram in Fig. 2 shows the experimental angular distribution. (See Table II) Of the 111 scattering events only one occurred at an angle greater than 25°. The solid curve represents the angular distribution expected from a "charged black sphere" model for the antiproton-nucleus interaction. That is, we assume that all partial waves with \(l \leq \ell_{\text{max}} \) are completely absorbed,

\[
\ell_{\text{max}} = \left[\frac{KR}{\sqrt{1 + \frac{2Z}{1370KR}} - \frac{1}{2}} \right].
\]

The quantity \(R \) appearing in Eq. (1) is the radius of a sphere corresponding to the measured annihilation cross section as observed for nuclei in nuclear emulsions in the energy region 50 to 200 Mev. In order to deduce the value of \(R \) for the individual elements in emulsion, we have assumed an \(A^{1/3} \) dependence for \(R \). Writing \(R = r_0 A^{1/3} \), we obtain

\[
r_0 = (1.64 \pm 0.05) \times 10^{-13} \text{ cm}.
\]

Here \(R \) is to be regarded as a measure of the number of partial waves being absorbed by the nucleus rather than as a measure of the nuclear radius. The calculated angular distribution was averaged over the energy interval considered here as well as for the elements in nuclear emulsion (excluding H)—namely, Ag, Br, C, O, and N. We do not observe a rise in the backward direction, as would be predicted by the charged-black-sphere model, presumably because of reflection from the (assumed) sharp nuclear boundary. The angular distribution at forward angles, however, is not particularly sensitive to the details of the nuclear edge, because of the very large absorptive contribution; thus our simplified model should be valid for small angles.
In seems likely, then, that the elastic scattering can be fitted within the accuracy of our experiment, by a model in which all the elastic scattering occurs as a consequence of the strong nuclear absorption of antiprotons. This conclusion is given considerable support by the calculations of Glassgold, who has made exact computations for the elastic scattering of antiprotons of 140 Mev, in nuclear emulsion, for various assumptions about the antiproton-nucleus potential. Glassgold has assumed a realistic shape for the potential of the antiproton nucleus, based on recent proton-nucleus scattering data, that takes account of the diffuse nuclear boundary. He has estimated the imaginary part of the potential to be $W = -50$ Mev, corresponding to strong absorption, and has calculated the cross sections for two values of the real part of the potential V. One value, $V = -15$ Mev, was taken the same as for proton-nucleus scattering; the other value, $V = -528$ Mev, was chosen to compare with the Duerr-Teller calculations. When these cross sections are compared with emulsion data, the second choice appears to be ruled out. In Table III we give a comparison of the two calculated differential cross sections with our experimental results. For this we compare our data between 80 and 200 Mev (i.e. 140 ± 60 Mev) with his calculation carried out for 140 Mev. As can be seen from Table III, the agreement for $V = -15$ Mev is good, whereas the high potential $V = -528$ Mev leads to more scattering and in particular to excessive large-angle scattering. It should be noted that besides the 16 meters of path length reported here, another 22 meters has been examined for elastic scattering events with $\theta > 24^\circ$, and no additional event was found. Thus the discrepancy in the interval 24° to 180° is already as high as 25 events predicted to one event found.

In all of the foregoing we have neglected the spin of the antiproton. We have studied the azimuthal dependence of the elastic scattering events and find no asymmetry. However, the antiprotons obtained in these experiments were produced at very nearly 0 degrees to the incoming proton beam, so that we would expect the polarization to be essentially zero. We have also studied the events in which the same antiproton scatters twice. For such events the antiproton can presumably be polarized in the first scattering and then be analyzed by the second scattering. To date we have observed a total of 55 pairs of two successive scattering events. Of these, in 33 cases the second scattering occurs in the same direction as the first while in 22 cases the second scattering occurs in the opposite direction. Thus so far no definite conclusion can be reached on the polarization of antiprotons by elastic scattering in nuclear emulsions.
We are indebted to Dr. Warren W. Chupp, Dr. Harry H. Heckman, and Frances M. Smith for permission to analyze their emulsions for the elastic scattering events. We should also like to thank Donald A. Steinberg for his assistance in programming the IBM 650 computer. We are grateful to Dr. Warren Heckrotte for several enlightening discussions with one of us (J.S.). Finally, we are indebted to Dr. A.E. Glassgold for a number of helpful discussions of his work.
Table I

Numbers of antiproton scattering events with projected angle $> 2^\circ$ observed per 30-Mev interval in a 16-meter path length in emulsion.

<table>
<thead>
<tr>
<th>Space angle of scattering (degrees)</th>
<th>50-80</th>
<th>80-110</th>
<th>110-140</th>
<th>140-170</th>
<th>170-200</th>
<th>Total, 50-250</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4-4</td>
<td>18</td>
<td>7</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>51</td>
</tr>
<tr>
<td>4-6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>6-9</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>9-12</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>12-18</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>18-24</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>24-180</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2-180</td>
<td>32</td>
<td>22</td>
<td>25</td>
<td>18</td>
<td>14</td>
<td>111</td>
</tr>
<tr>
<td>Path length(cm)</td>
<td>146</td>
<td>222</td>
<td>310</td>
<td>414</td>
<td>508</td>
<td>1600</td>
</tr>
</tbody>
</table>
Table II

Comparison of the experimental data for elastic antiproton-nucleus scattering with calculated values for a charged black sphere and for point-nucleus Rutherford scattering.
($T_p = 50$ to 200 Mev, projected angle $> 2^\circ$).

<table>
<thead>
<tr>
<th>Angular interval (degrees)</th>
<th>Number of events</th>
<th>Charged-black-sphere scatteringa</th>
<th>Point-nucleus Rutherford scatteringa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-6</td>
<td>78</td>
<td>86</td>
<td>79</td>
</tr>
<tr>
<td>6-12</td>
<td>26</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>12-24</td>
<td>6</td>
<td>10</td>
<td>2.4</td>
</tr>
<tr>
<td>24-180</td>
<td>1</td>
<td>--- b</td>
<td>1.2</td>
</tr>
<tr>
<td>2-180</td>
<td>111</td>
<td>---</td>
<td>94.6</td>
</tr>
</tbody>
</table>

aA solid-angle correction due to the 2° cutoff in projected angle has been applied to these values.

bThe backward scattering, which rises again for this model (Ref. 4), has not been evaluated.
Table III

Comparison of experimental data for elastic antiproton nucleus scattering of energy $T_p = 80$ to 200 Mev. with Glassgold's calculations at $T_p = 140$ Mev. (Projected angle $\theta = 2^\circ$)

<table>
<thead>
<tr>
<th>Angular interval (degrees)</th>
<th>Number of events</th>
<th>Calculated for Potential(^{(a)})</th>
<th>Calculated for Potential(^{(a)})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental ($T_p = 80$ to 200 Mev)</td>
<td>$V = -15$ Mev $W = -50$ Mev</td>
<td>$V = -528$ Mev $W = -50$ Mev</td>
</tr>
<tr>
<td>2-6</td>
<td>54</td>
<td>56</td>
<td>71</td>
</tr>
<tr>
<td>6-12</td>
<td>20</td>
<td>17.1</td>
<td>24</td>
</tr>
<tr>
<td>12-24</td>
<td>5</td>
<td>4.3</td>
<td>10</td>
</tr>
<tr>
<td>24-180</td>
<td>1</td>
<td>1.4</td>
<td>9.5</td>
</tr>
<tr>
<td>2-180</td>
<td>80</td>
<td>78.8</td>
<td>114.5</td>
</tr>
</tbody>
</table>

\(^{(a)}\) These entries were evaluated from Table \(\dagger\) of Ref. 7, and a solid-angle correction due to the 2° cutoff in projected angle has been applied. It should be noted that in Table \(\dagger\) of Ref. 7 neither this correction nor the appropriate normalization factors was applied and that thus the comparison given there is not fully valid.
References

For completeness we have included the measurements on 1.35 meters reported in the following:
4. J.S. Blair, Phys. Rev. 95, 1218 (1954). The charged-black-sphere model is the same as in this reference except that we have used the WKB approximation for the Coulomb phase shifts.
5. For large angles where the Coulomb effect is small the charged-black-sphere model can be approximated by the optical model for black-sphere scattering, yielding
\[\frac{d\sigma}{d\Omega} = R^2 \left[\frac{J_1(KR \sin \theta)}{\sin \theta} \right]^2 \]
which is symmetrical about 90°.
6. See, for example, the calculations reported by R.E. Ellis and L. Schecter, Phys. Rev. 101, 636 (1956).
10. Recently Duerr (Phys. Rev. 109, 1347 (1958)) has also shown the disagreement between the strong attractive potential and various experimental data.
Figure Captions

Fig. 1. Number of scattering events with projected angle greater than 1.5° as a function of the space angle of scattering. The solid histogram shows the results on 8.1 meters of antiproton track in the energy range 50 to 200 Mev, and the dashed histogram shows the distribution expected from point-nucleus Rutherford scattering.

Fig. 2. The angular distribution for the entire energy interval 50 to 200 Mev. The histogram shows the observed number of elastic scattering events with projected angle greater than 2°. The solid curve shows the distribution expected from the charged-black-sphere model. Solid-angle corrections, to take account of the 2° cutoff criterion in projected angle, have been applied to the computed curve.
NUMBER OF EVENTS

SPACE ANGLE OF SCATTERING (DEGREES)

PROJECTED ANGLE ≥ 2°

1 EVENT