Leverage your research dollars

Permalink
https://escholarship.org/uc/item/341254c9

Author
Weintraub, Silka

Publication Date
2000-11-08
Investigate the possibilities...

DISCLAIMER
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

This work was supported by the Office of Science, U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Tap a great national resource — partner with Ernest Orlando Lawrence Berkeley National Laboratory and take advantage of our leading-edge capabilities and expertise. We are ready to help U.S. companies compete in a tough global marketplace. Overlooking the UC Berkeley campus, Berkeley Lab is a national laboratory managed by the University of California for the U.S. Department of Energy. Berkeley Lab’s research produces innovative technologies in fields applicable to many industries, including:

• **ACCELERATOR SYSTEMS** — Synchrotron radiation source for lithography, crystallography, bioscience and microelectronic characterization; simulation of cosmic rays for testing aerospace electronics

• **ADVANCED MATERIALS** — Plasma processing, ion implantation, advanced ceramics, semiconductors, superconductors, high-performance metals, polymers, and catalysts; high-powered electron microscopy, x-ray optics, electrochemistry, and alloy theory

• **BIO TECHNOLOGY** — Molecular and cellular biology, genetics, mutagenesis, carcinogenesis, diagnostic imaging, radiation biophysics, radiotherapy and radiosurgery, lipoprotein research, cardiovascular disease, hemopoiesis research, sequencing of human genome, x-ray crystallography for ‘rational’ drug design

• **COMPUTING** — Advanced database technology, distributed computing systems, high-speed networking, advanced computer imaging, expert systems for advanced manufacturing

• **ENERGY** — Fossil energy conversion, electrochemical energy storage, energy use analysis, high-efficiency insulators, computer simulations of building energy use and lighting, windows and daylighting, building energy efficiency, enhanced petroleum discovery and recovery, geothermal technology development, long-term study of photon-energy storage and photosynthetic energy systems

• **ENVIRONMENT** — Atmospheric effects of combustion and air quality, radon studies and abatement, high-resolution wellbore imaging, site remediation, indoor air quality

• **MANUFACTURING** — Advanced equipment development, micro-precision fabrication (micro electromechanical systems), laboratory and systems automation

• **SENSORS AND CONTROLS** — Reactive control systems, sensor development and fabrication, diagnostics and computer algorithms, custom integrated circuits and systems

• **TRANSPORTATION** — Batteries, advanced insulations, electrochromic windows, reflective coatings

For More Information Contact:

<table>
<thead>
<tr>
<th>Licensing</th>
<th>All Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viviana Wolinsky</td>
<td>Bruce Davies</td>
</tr>
<tr>
<td>Licensing Manager</td>
<td>Marketing Manager</td>
</tr>
</tbody>
</table>

Lawrence Berkeley National Laboratory
Technology Transfer Department
1 Cyclotron Road, Mail Stop 90-1070
Berkeley, CA 94720

Voice (510) 486-6467 • FAX (510) 486-6457

and visit our website at
http://www.lbl.gov
Partnership Mechanisms

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Definition</th>
<th>Best Used</th>
<th>Protection of Generated Information</th>
<th>Rights in Intellectual Property</th>
<th>DOE Approval Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Exchange</td>
<td>The informal and free exchange of information through publications, presentations, briefings, workshops, and visits designed to inform potential industry partners about the R&D activities and capabilities of Berkeley Lab, and/or determine their needs.</td>
<td>When potential industry partners need to obtain initial information on Berkeley Lab activities and capabilities.</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Technical Assistance</td>
<td>Short-duration (5 working days) effort focused on timely assistance to small business partners with specific technical problems. Generally, Berkeley Lab covers salary and payroll burdens of Laboratory personnel that participate. Simple, one-page contract.</td>
<td>To assist small businesses that need technical assistance with unique problems. Subject to available funding from DOE.</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Personnel Exchange</td>
<td>Exchanges of personnel between industry and Berkeley Lab for less than one year. Berkeley Lab personnel are assigned to industry facilities and/or industry assigns personnel to Berkeley Lab.</td>
<td>When Berkeley Lab and industrial partner have an interest in learning about each other and sharing specific skills and expertise. The level of effort and contractual obligations associated with staff exchanges are typically less than those associated with CRADAs.</td>
<td>No</td>
<td>Subject to negotiation</td>
<td>No</td>
</tr>
<tr>
<td>User Facility Agreement</td>
<td>Allows industry and university partners to conduct proprietary or nonproprietary research at the Laboratory’s unique experimental facilities.</td>
<td>When partner needs are best met through use of specialized equipment or facilities designated as “National User Facilities” available at Berkeley Lab.</td>
<td>Proprietary data must be marked for protection</td>
<td>User may take title to inventions</td>
<td>No</td>
</tr>
<tr>
<td>Cooperative Research and Development Agreement (CRADA)</td>
<td>Research and development projects that are supported by resource contributions from both Berkeley Lab and industry, and have a specific technical development focus with planned outcomes. Multi-year CRADAs generally use long form CRADA contract. Shorter term/smaller scope CRADAs (that are less than $150,000) may use 5-page contract.</td>
<td>When Berkeley Lab, DOE, and industry have mutual interest in the development of a technology area, and cost sharing by the partners is appropriate.</td>
<td>Commerically valuable information generated under a CRADA may be protected for up to 5 years.</td>
<td>Industry-created intellectual property retained by industry. Rights to Berkeley Lab intellectual property created under a CRADA, negotiated separately.</td>
<td>Yes</td>
</tr>
<tr>
<td>Work for Others (Sponsored Research)</td>
<td>Research and development projects and technical assistance efforts that are fully funded by private industry. Work must use a unique capability of the Laboratory and not place the Laboratory in direct competition with the private sector.</td>
<td>When industry has an immediate need for services, desires a high degree of control over the scope of services and information provided, and is willing and able to pay for the cost of services.</td>
<td>Proprietary data must be marked for protection</td>
<td>Subject to negotiation</td>
<td>Yes</td>
</tr>
<tr>
<td>Licensing</td>
<td>Transfer of rights to patented inventions, copyrighted software, maskworks or tangible research products. May be exclusive or nonexclusive, for broad or limited field of use, to be negotiated on a case-by-case basis.</td>
<td>When Berkeley Lab has legal rights to a technology or software that fits an industrial partner’s business strategy, and the partner wants to develop and commercialize the product/process.</td>
<td>N/A</td>
<td>Grants rights under patents, copyrights, and maskworks to use Laboratory inventions and software</td>
<td>Rarely required</td>
</tr>
</tbody>
</table>
Lawrence Berkeley National Laboratory invites you to take a closer look at the many R&D approaches and opportunities available to private industry.

Berkeley Lab Welcomes Your Inquiries

Berkeley Lab’s unique interdisciplinary science approach offers many technology transfer options. U. S. Department of Energy policy encourages private sector use of government-developed technologies. We welcome your inquiries to explore areas of research, technology, and collaboration.

Forging Stronger Ties

As a national laboratory, one of our missions is to make research results available to the nation’s private sector for rapid commercialization. Private industrialists and entrepreneurs broaden the potential benefit and commercial value of laboratory research. They help translate new discoveries into commercially usable products and processes. Working together, the national laboratories and U. S. industry can help strengthen relationships we form with industry, start with the Technology Transfer Department. Contact the Technology Transfer Department to:

- Pinpoint research areas of common interest
- Negotiate rights to Berkeley Lab’s intellectual property
- Discuss current patent and copyright licensing opportunities
- Explore sponsorships, collaborative projects and staff exchange programs
- Set up meetings with specific investigators
- Arrange site tours

Technology Transfer Department

Technology transfer depends on communication between those generating knowledge and those able to put it to use. The Technology Transfer Department is a focal point to foster productive relationships between scientists in research programs at Berkeley Lab, and individuals in the private sector. If you have questions regarding research areas of interest, or would like answers about the types of working America's competitiveness in the world marketplace. Together, we mean business.

Making Technology Transfer Simple

We have streamlined our technology transfer operations to help industry move technologies, ideas, and services from Berkeley Lab to the marketplace.

Berkeley Lab’s unique interdisciplinary science approach offers many technology transfer options. U. S. Department of Energy policy encourages private sector use of government-developed technologies. We welcome your inquiries to explore areas of research, technology, and collaboration.
Berkeley Lab licenses a broad array of cutting-edge technologies to private industry

- **Terms** of each Berkeley Lab license vary commensurately with the market value of that technology and the common licensing practices of the relevant industrial sector.

- Licenses typically have three **monetary terms:**
 - **License issue fee,** which is nonrefundable and due upon execution of the agreement;
 - **Running royalty,** which is most commonly based on a percentage of sales, and
 - **Minimum annual royalties.**

- Licenses also contain **performance requirements** for the licensee. These are milestones that Berkeley Lab and the licensee agree reflect diligent progress in the development of the technology. These performance requirements reflect our commitment to ensure that technologies developed at Berkeley Lab are commercialized, and that the public ultimately enjoys the benefit.

- Licenses may be **exclusive or non-exclusive** for a particular field of use or geographic region.

- When an agreement grants an exclusive license for the U.S. market, the licensee must substantially **manufacture** the technology in the U.S.

- The **U.S. government** is granted a fully paid-up, nontransferable, non-exclusive license to use the invention for government purposes only, as is the case with other federally funded inventions.

Berkeley Lab’s Technology Transfer Department looks forward to working with industry to develop commercially reasonable and fair license terms and conditions. Qualified, small, women-owned, minority-owned, and disadvantaged businesses are especially encouraged to inquire.

For further information regarding a specific technology, contact

Viviana Wolinsky, Licensing Manager
VIWolinsky@lbl.gov

Ph 510.486.6467 • Fax 510.486.6457 • TTD@lbl.gov • www.lbl.gov
Batteries
- Batteries with orthorhombic sodium manganese oxide cathode
- Electrochemical N anolithography
- Ion implantation to extend battery life
- O vercharge protection for rechargeable lithium batteries
- Solid state sodium cobalt bronze batteries
- Zinc-air battery
- Zinc-nickel oxide battery

Biotechnology and Medicine
- A ligned crystal growth at polymerized membranes
- A morphous silicon array for medical imaging
- Anthrax detection kit
- Biomarker for cell senescence
- Breast cancer therapy for unresponsive metastatic tumors
- Cancer treatment: neutron source for BN CT
- Capcall: superior basecalling software package
- Direct quantum detection digital x-ray imaging
- Electron crystallography of membrane proteins
- Engineering cell surfaces and cellular products
- Erythropoietin (EPO) binding protein
- Factors that neutralize radiation damage caused by TGF-β
- Fluorescent biosensor
- Genes encoding telomere-associated proteins
- Heat shock proteins
- Integrated framework for analysis of molecular profile data
- Intracellular sodium detection using multiple quantum N M R
- Microdissection of DNA molecules for genomic studies
- Negative ion beam injection apparatus
- Neuronal network algorithm for predicting protein structures
- Physical mapping of DNA yields high resolution image
- PINTA: automated M R I visualization software
- Polymerized nanoparticle therapeutics
- PrepTrack: assembly line automation of microtiter plate
- Prototype therapeutic agent for pathogenic E. coli
- Restoration of normal function in cancer cells
- RF-driven plasma source for ion implantation
- Scanning tip microwave near field microscope
- Semiconducting thin film for microstrip gas radiation detectors
- Substituted 6-nitroquipazines
- Tendon repair factor
- Thermal cycler for rapid processing of polymerase chain reaction assays
- Transgenic mice: atherosclerosis portfolio
- Transgenic mice model breast cancer and leukemia
- Transgenic mice model learning disorder in Down syndrome
- Transgenic mice model male infertility
- Tritium-labeled, high specific activity compounds

Chemical & Manufacturing Processes
- Carbon nanotubes with heterojunctions for nanoscale electronics
- Carboxylic acids recovery
- Catalytically treated graphite
- Compound refractive X-ray lens

Chemical & Manufacturing Processes (cont’d)
- Electrochemical nanolithography
- Coplanar electrode configuration for radiation detectors
- Direct quantum detection digital X-ray imaging
- Fluorination of unstable nickel fluorides using NiF6 salts
- High quantum efficiency charge coupled device
- High resolution EUV monochromater/ spectrometer
- Mini pulsed metal plasma gun
- Nanomachining of high aspect ratio structures
- Optical metrology: superior x-ray mirrors
- Phase shifting interferometer
- PhoSNOX: yellow phosphorous for flue gas scrubbing
- Pigments for coatings that reflect infrared radiation from fire
- Pozone
- Rf-driven metallic ion beam source
- Rf-driven plasma source for ion beam implantation applications
- Sapphire and nitride semiconductor device manufacturing
- Selective ion source for semiconductor devices
- Selective photochemical oxidation of hydrocarbons
- Superconducting multilayer interconnect technology
- Wirebly tunable semiconductor THz (infrared) laser

Energy Efficient Technologies
- Aerogels
- Aerogels: reduction of inorganic oxides with reactive plasma
- Combination table lap/ torchiere
- Electromagnetic field imaging — high resolution, low frequency
- Energy efficient laboratory fume hood
- Energy efficient lighting
- Gas filled insulating panels
- High efficiency coupling for fiber optic and solid light guides
- Pozone
- Selective photochemical oxidation of hydrocarbons
- Solid oxide fuel cell technologies

Environmental Technologies
- Adsorbing media for carbon mass balance in airborne particles
- Aerogels
- Coplanar electrode configuration for radiation detectors
- Direct-measure water flux meter and omni-depth tensiometer
- Disposable diffusion denuder
- Electrical resistivity monitoring borehole array
- Electromagnetic field imaging — high resolution, low frequency
- Energy efficient laboratory fume hood
- Exhaust hood airvest
- Ferrofluids for subsurface flow control and imaging
- Gas filled insulating panels
- In situ optical sensor for particulate inorganic carbon in seawater
- In vivo model for bioavailability of chemicals in humans
- Lean flame stabilization ring converts natural gas burners
- Low NOx swirl burner
- Organic pollutant sampler
Environmental Technologies (cont’d)

- PhoSNOX: yellow phosphorous for flue gas scrubbing
- Photoluminescent aerogel oxygen sensor
- Recyclable sorbent coating for organic pollutant sampler
- Selective photochemical oxidation of hydrocarbons
- Subsurface barriers to contain hazardous wastes
- Wellbore procedure characterizes groundwater contamination

Materials Sciences (cont’d)

- Multimetal oxide thin films
- Phase shifting interferometer
- Photoluminescent aerogel oxygen sensor
- Pigments for coatings that reflect infrared radiation from fire
- Polymerized nanoparticle therapeutics
- Precision optical slit
- Sapphire and nitride semiconductor device manufacturing
- Scanning polarization microscope
- Scanning tip microwave near field microscope
- Selective ion source for semiconductor devices
- Semiconducting thin film for microstrip gas radiation detectors
- Subsurface barriers to contain hazardous waste
- Superconducting films on metal substrates carry commercial level current
- Tamper-proof “smart adhesives” cannot be duplicated
- Ultrafast scanning probe microscopy

Sensors

- Amorphous silicon array for medical imaging
- Coplanar electrode configuration for radiation detectors
- Direct measure water flux meter and omnidepth tensiometer
- Direct quantum detection digital x-ray imaging
- Electrical resistivity monitoring borehole array
- EUV monochromator/spectrometer with high resolution
- Fiber optic paper sensor
- In situ optical sensor for particulate inorganic carbon in seawater
- Mass spectrometer for high MW ions and charged particles
- Moisture-resistant columnar cesium iodide for digital radiography
- Novel electrochromic device controlled by sunlight
- Phase shifting interferometer
- Photoluminescent aerogel oxygen sensor
- Physical mapping of DNA yields high resolution image
- PIN TA: automated MRI visualization software
- Preamplifier printed circuit layout for the GRETA detector
- Recyclable sorbent coating for organic pollutant sampler
- Safe automated laser alignment device (SALAD)
- Scanning tip microwave near field microscope
- Semiconducting thin film for microstrip gas radiation detectors
- Solid state optical switching device
- SQUIDS:
 - High Tc SQUID circuits suppress intrinsic magnetic field noise
 - SQUID based planar gradiometer supresses ambient field noise
 - Superconducting multilayer interconnect technology
- Substituted 6-nitroquipazines
- Thin film for stabilizing the microstrip gas radiation detector
- Wellbore procedure characterizes groundwater contamination

October 17, 2000
The personnel listed here and on the reverse side are direct contacts to divisions, centers, user facilities and technology transfer officials. Call or write today.

RESEARCH DIVISIONS

<table>
<thead>
<tr>
<th>Division</th>
<th>Contact</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerator and Fusion Research</td>
<td>Alan Jackson</td>
<td>510.486.7384</td>
<td>AJackson@lbl.gov</td>
</tr>
<tr>
<td>Advanced Light Source</td>
<td>Gary Krebs</td>
<td>510.486.7727</td>
<td>GFKrebs@lbl.gov</td>
</tr>
<tr>
<td>Chemical Sciences</td>
<td>Daniel Neumark</td>
<td>510.486.6382</td>
<td>DNMneumark@lbl.gov</td>
</tr>
<tr>
<td>Earth Sciences</td>
<td>Norm Goldstein</td>
<td>510.486.5961</td>
<td>NEGoldstein@lbl.gov</td>
</tr>
<tr>
<td>Engineering</td>
<td>Deb Hopkins</td>
<td>510.486.4922</td>
<td>DLHopkins@lbl.gov</td>
</tr>
<tr>
<td>Environment, Health & Safety</td>
<td>Robin W endt</td>
<td>510.486.6012</td>
<td>RAWendt@lbl.gov</td>
</tr>
<tr>
<td>Environmental Energy Technologies</td>
<td>Don Grether</td>
<td>510.486.6283</td>
<td>DFGrether@lbl.gov</td>
</tr>
<tr>
<td>Genomics</td>
<td>David Gilbert</td>
<td>510.486.6096</td>
<td>DEGibert@lbl.gov</td>
</tr>
<tr>
<td>Information and Computing Sciences</td>
<td>Jon Bashor</td>
<td>510.486.5849</td>
<td>JBashor@lbl.gov</td>
</tr>
<tr>
<td>Life Sciences</td>
<td>David Gilbert</td>
<td>510.486.6096</td>
<td>DEGibert@lbl.gov</td>
</tr>
<tr>
<td>Materials Sciences</td>
<td>Mark Alper</td>
<td>510.486.6581</td>
<td>MDAEpere@lbl.gov</td>
</tr>
<tr>
<td>National Energy Research Scientific Computing (NERSC)</td>
<td>Jon Bashor</td>
<td>510.486.5849</td>
<td>JBashor@lbl.gov</td>
</tr>
<tr>
<td>Nuclear Science</td>
<td>Gordon Wozniak</td>
<td>510.486.5071</td>
<td>Gwozniak@lbl.gov</td>
</tr>
<tr>
<td>Physical Biosciences</td>
<td>Kristin Balder-Froid</td>
<td>510.486.6060</td>
<td>KHBalder-Froid@lbl.gov</td>
</tr>
<tr>
<td>Physics</td>
<td>Ronald Madaras</td>
<td>510.486.4410</td>
<td>RMMadaras@lbl.gov</td>
</tr>
</tbody>
</table>

RESEARCH DIVISIONS (cont’d)

<table>
<thead>
<tr>
<th>Division</th>
<th>Contact</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley Center for Structural Biology</td>
<td>Thomas Earnest</td>
<td>510.486.4603</td>
<td>TENEarnest@lbl.gov</td>
</tr>
<tr>
<td>Berkeley Structural Genomics Center</td>
<td>Sung-Hou Kim</td>
<td>510.486.4333</td>
<td>SHKim@lbl.gov</td>
</tr>
<tr>
<td>Center for Advanced Materials</td>
<td>Mark Alper</td>
<td>510.486.6581</td>
<td>MDAEpere@lbl.gov</td>
</tr>
<tr>
<td>Center for Computational Seismology</td>
<td>Tom McEvilly</td>
<td>510.486.7347</td>
<td>TVMcEvilly@lbl.gov</td>
</tr>
<tr>
<td>Center for Environmental Biotechnology</td>
<td>Terry Hazen</td>
<td>510.486.6223</td>
<td>TCHazen@lbl.gov</td>
</tr>
<tr>
<td>Center for Functional Imaging</td>
<td>Thomas Budinger</td>
<td>510.486.5435</td>
<td>TFBudinger@lbl.gov</td>
</tr>
<tr>
<td>NASA Specialized Center of Research & Training (NSCORT)</td>
<td>Aloke Chatterjee</td>
<td>510.486.5414</td>
<td>AChatterjee@lbl.gov</td>
</tr>
<tr>
<td>Center for Isotope Geochemistry</td>
<td>Don DePaolo</td>
<td>510.486.4975</td>
<td>DJDePaolo@lbl.gov</td>
</tr>
</tbody>
</table>

TECHNOLOGY TRANSFER

<table>
<thead>
<tr>
<th>Division</th>
<th>Contact</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Transfer Department</td>
<td>Cheryl Fragiadakis</td>
<td>510.486.6467</td>
<td>CAFragiadakis@lbl.gov</td>
</tr>
<tr>
<td>Sponsored Projects Office/ Contracts</td>
<td>Jeff W einer</td>
<td>510.486.7143</td>
<td>Jeff_W einer@lbl.gov</td>
</tr>
</tbody>
</table>
Center for Research and Education in Aging (CREA)
Judith Campisi
510.486.4416
JCampisi@lbl.gov

Center for X-Ray Optics
David Attwood
510.486.4463
DTAtwo@lbl.gov

High Aspect Ratio-Microfabrication Laboratory (UGA)
Keith Jackson
510.486.6894
KJackson@lbl.gov

Geosciences Measurement Facility
Norman Goldstein
510.486.5961
NGoldstein@lbl.gov

The Glenn T. Seaborg Center (for Actinide Science)
Heino Nitsche
510.486.5615
HNitsche@lbl.gov

Advanced Light Source
Neville Smith
Scientific Program Coordinator
510.486.5423
NVS@lbl.gov

Glen Dahlbacka
Industrial Program Development
510.486.5358
GDahlbacka@lbl.gov

ALS Molecular Environmental Science Facility
David Shuh
510.486.6937
DKShuh@lbl.gov

Chemical Dynamics Beamline at the ALS
Tomas Baer
510.486.4754
TBAer@lbl.gov

National Center for Electron Microscopy (NCEM)
Uli Dahmen
510.486.4627
UDahmen@lbl.gov

National Energy Research Scientific Computing Center (NERSC)
Jon Bashor
510.486.5849
JBS@lbl.gov

88-Inch Cyclotron
Claude Lyneis
510.486.7815
CLyneis@lbl.gov

Bidirectional Radiometric Scanner
Joseph Klems
510.486.5564
JHKlems@lbl.gov

Energy Efficient Fixtures Laboratory
Michael Siminovitch
510.486.5863
MSiminovitch@lbl.gov

Environmental Chamber
A. Hodgson
510.486.5301
AHodgson@lbl.gov

High Aspect Ratio-Microfabrication Laboratory (UGA)
Keith Jackson
510.486.6894
KJackson@lbl.gov

Infrared Thermography Laboratory
Dariush Arasteh
510.486.6844
D_Arasteh@lbl.gov

Low Background Counting Facility
Dick McDonald
510.486.6204
RJMcDonald@lbl.gov

MoWitt: Mobile Window Thermal Test Facility
Joseph Klems
510.486.5564
JHKlems@lbl.gov

National Tritium Labeling Facility (NTrF)
Philip Williams
510.486.7336
PGW@lbl.gov

Sky Simulator for Architectural Daylighting Design
Joseph Klems
510.486.5564
JHKlems@lbl.gov

31 October, 2000
Date of Inquiry _____ / ___ / _____

Name __
Position __
Company __

Address __

Phone # _______________________________ FAX # ____________________________________

Email __

Technology(s) of interest
(Please be specific; include names of investigators if possible)

• __
• __
• __
• __
• __

What does your company do?

• __
• __
• __
• __

Small Business? Y N Woman-owned? Y N Minority-owned? Y N

Referred by __

Date of Action _____ / ___ / _____
Inquiry Handled by __

Action to be taken

General remarks

Lawrence Berkeley National Laboratory
Technology Transfer Department
INQUIRY FORM

For more information return to us by mail or fax to 510.486.6457

(For TTD Use Only)
FIRST CLASS MAIL

TO: Bruce Davies
Marketing Manager
Lawrence Berkeley National Laboratory
Technology Transfer Department
1 Cyclotron Road, Mailstop 90-1070
Berkeley, CA 94720

(Fold here, staple or tape closed, affix stamp, and mail to LBNL Technology Transfer Department)