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1
2 Effects of global change on insect pollinators:
3 multiple drivers lead to novel communities
4 Nicole E Rafferty
Q1

1,2

5 Global change drivers, in particular climate change, exotic

6 species introduction, and habitat alteration, affect insect

7 pollinators in numerous ways. In response, insect pollinators

8 show shifts in range and phenology, interactions with plants

9 and other taxa are altered, and in some cases pollination

10 services have diminished. Recent studies show some

11 pollinators are tracking climate change by moving latitudinally

12 and elevationally, while others are not. Shifts in insect pollinator

13 phenology generally keep pace with advances in flowering,

14 although there are exceptions. Recent data demonstrate

15 competition between exotic and native bees, along with rapid

16 positive effects of exotic plant removal on pollinator richness.

17 Genetic analyses tie bee fitness to habitat quality. Across

18 drivers, novel communities are a common outcome that

19 deserves more study.
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29 Introduction
30 Global change is affecting insect pollinators in profound

31 ways. Climate change, exotic species introduction, and

32 habitat loss are affecting all major aspects of the biology of

33 insects that pollinate plants in both natural and agricul-

34 tural communities, altering their distribution, phenology,

35 abundance, physiology, and morphology [1–5]. The con-

36 sequences of these effects are complex, perturbing plant–

37 pollinator interactions in subtle but important ways and in

38 some cases resulting in local extinction [2]. Despite the

39 complexity, understanding these consequences is critical:

40 just as the vast majority of flowering plants depend on

41 insects for pollination [6], we rely in large part on insects

42 to pollinate our crops, a valuable ecosystem service [7].

43Among the many insect taxa that serve as pollinators,

44bees, flies, butterflies, and moths have received the most

45study in the context of global change. Within these taxa,

46bees are key pollinators of both crop plants and wild

47plants [8], and studies on bees have dominated the

48literature on plant–pollinator interactions under global

49change. Because bees rely heavily on floral resources both

50for their own sustenance and to provision their offspring,

51their fitness is strongly determined not only by the direct

52effects of global change but also by the influence of global

53change drivers on flowering plants.

54Here, I consider the effects of several global change

55drivers on insect pollinators, with an emphasis on what

56we know about the effects on native bees. First, I discuss

57how climate change is affecting insect pollinators, as this

58is a topic of active research that illustrates a suite of

59responses. Second, I review the effects of exotic species,

60both insect and plant taxa, on insect pollinators. Third, I

61consider another global change factor, habitat alteration

62and loss, and its effects on insect pollinators. Through-

63out, I consider both direct effects on pollinators and

64effects that are mediated via plants and other interspe-

65cific interactions. Given biotic pollination is by definition

66a multitrophic interaction, greater consideration of how

67global change alters species interactions is needed to

68improve conservation and management of pollination

69services.

70Effects of climate change
71The responses of insect pollinators to climate change

72have been relatively well-studied, although much

73remains to be resolved. For the most part, experimental

74studies of climate change factors on insect pollinators

75have focused on temperature [9–12], an important deter-

76minant of developmental rate [13]. Manipulations of

77other factors, such as carbon dioxide [14] or precipitation

78[15], have been applied to plants with subsequent mea-

79sures of pollinator responses to altered floral traits. Com-

80plementing experimental approaches are long-term data,

81historical observations, and museum specimen records

82that can be correlated with ambient temperatures and

83other climate variables to describe insect responses

84[1,16].

85Among the most striking consequences of climate change

86have been shifts in the spatial distributions of insect

87pollinators. Given the rapid life cycles and high mobility

88of most insect pollinators, are they able to keep pace with

89anthropogenic climate change by tracking environmental
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90 conditions over space? Evidence is mixed. On the one

91 hand, Kerr et al. [4��] discovered bumble bees (Bombus
92 spp.) across two continents have not tracked warming

93 temperatures, as evidenced by a failure to expand their

94 northern latitudinal range limits. On the other hand,

95 several studies have shown that bumble bees have moved

96 upward in elevation in montane ecosystems [4��,17,18],
97 and some butterflies have shifted up in altitude [19]. Both

98 a nymphalid butterfly (Polygonia c-album) and a lycaenid

99 butterfly (Aricia agestis) in Britain have greatly expanded

100 their ranges northward in association with warming

101 [20,21]. A key question that has been not been considered

102 for most taxa is how these spatial shifts affect interactions

103 with floral resources and thereby influence both pollinator

104 fitness and patterns of pollen flow and reproductive

105 output of plants. Differential shifts among taxa will

106 almost certainly translate into modified communities,

107 especially as perennial plants are likely to lag behind

108 their pollinators. In addition, it remains largely unknown

109 whether traits or phylogenetic relationships can explain

110 variable spatial responses among taxa (but see [4��,22]).
111 To understand constraints on the distributions of insect

112 pollinator populations and predict how distributions will

113 be affected by climate change directly and via effects on

114 host plants and other species with which pollinators

115 interact, species distribution models can be a useful tool

116 [23,24].

117 Shifts in the phenologies of insect pollinators are another

118 conspicuous signal of climate change. Multiple species of

119 bees have significantly advanced their phenologies [1], as

120 have many butterflies and moths [25,26]. Among lepi-

121 dopterans, variable responses can be partially explained

122 by traits such as diet breadth [26]. In contrast to spatial

123 shifts, the consequences of climate change-induced tem-

124 poral shifts for plant–pollinator interactions have received

125 much attention. Community-level analyses indicate bees

126 and the plants they pollinate are advancing at similar rates

127 [1], whereas butterflies and their nectar sources show

128 different sensitivities to temperature [27�]. In general,

129 experimental studies suggest phenological mismatches

130 are unlikely to lead to complete decoupling of interac-

131 tions among insect pollinators and plants [28,29]. In part

132 this outcome is not surprising: plant–pollinator interac-

133 tions tend to be generalized [30] and nested, with

134 specialists interacting with generalists [31], and high

135 rates of interaction turnover [32]. However, there are

136 examples of specialized plant–bee interactions that are

137 likely becoming disrupted as phenologies shift [33,34].

138 Even subtle phenological mismatches are likely to have

139 consequences for interaction strengths, fitness, and the

140 evolution of life histories [35]. Whereas the conse-

141 quences of mismatches for plants have been commonly

142 measured in terms of seed production [29,36], the con-

143 sequences for pollinators have gone unquantified [37].

144 Also in contrast to the situation for insect pollinator

145 phenology, where few studies have linked responses

146to traits or phylogenies, flowering phenology responses

147to climate change have been associated with traits such

148as flowering season, life history, and pollination mode

149[38,39] and exhibit phylogenetic signal across continents

150[40]. Together, these gaps in understanding point to a

151need for more studies at the community level; a com-

152munity approach should simultaneously create opportu-

153nities for trait-based analyses and enable the conse-

154quences of phenological mismatches from the

155pollinator perspective to be quantified.

156Other aspects of climate change that have been demon-

157strated to affect insect pollinators via flowering plants

158include elevated carbon dioxide and decreased precipi-

159tation. Plants grown under elevated carbon dioxide can

160have altered floral traits, such as nectar composition [14]

161and pollen protein concentration [41]. In turn, these

162altered traits can influence the fitness of insect pollinators;

163Hoover et al. [14] found that Bombus terrestris workers

164exhibited reduced longevity when fed synthetic nectar

165mimicking that of flowers produced under elevated car-

166bon dioxide, and Ziska et al. [41] posit that reduced

167protein in goldenrod pollen could negatively affect bees.

168Experimental drought had variable effects on floral vola-

169tiles but consistently reduced flower size and floral display

170across four species, resulting in different communities of

171bees, flies, and butterflies visiting the flowers in the

172drought treatment [15]. In general, a tight link between

173the direct effects of climate change on floral resources and

174the consequent effects on insect pollinators has yet to be

175made. In part, this is because it is difficult to isolate the

176effects of complex floral responses on mobile insects,

177particularly in the field and at the population and com-

178munity levels. As molecular genetic techniques and tech-

179nologies that allow automated identification of individual

180bees, for example as they pass over radio frequency

181identification readers, are refined, larger-scale field-based

182studies of pollinator fitness and foraging responses should

183become more feasible.

184Effects of exotic species
185Human-aided transport and introduction of exotic species

186is a major driver of global change, reshaping fundamental

187ecological relationships [42]. Focusing in on exotic insect

188pollinators, we know the most about the impacts of non-

189native bees on native bees [43]. Non-native bees include

190long-established domesticated honey bees (Apis melli-
fera), more recently-introduced commercial pollinators,

191such as Bombus terrestris [44], and accidental introductions

192of species such as Hylaeus communis [45]. Alien pollinators

193can compete with native pollinators for resources, poten-

194tially reducing their fitness, altering patterns of pollen

195flow, and ultimately changing community structure to the

196disruption of ecosystem services [46,47]. Not surprisingly,

197the best-studied interactions between exotic and native

198bees involve honey bees. Building on prior experimental

199work that demonstrated competition for floral resources
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200 between honey bees and a native bumble bee (B. occi-
dentalis; [48]), Thomson [49��] used a 15-year-long data

201 set to show a negative relationship between feral A.
mellifera densities and Bombus spp. densities. Similarly,

202 after honey bees invaded a tropical reserve, solitary bees

203 were observed to visit different plant species because of

204 competition, but declines in the native bees were not

205 detected [50]. Thus, the effects of exotic insect pollina-

206 tors on native pollinators likely depend on factors that

207 modify the strength of competition, such as niche overlap

208 and flexibility, as well as interacting effects of other

209 stressors, such as drought, that modulate floral resource

210 availability.

211 Turning briefly to non-native plants, several studies

212 have investigated how exotic plants influence plant–

213 pollinator interactions [46,51–53]. Recently, a large

214 experiment by Kaiser-Bunbury et al. [54��] showed

215 exotic plant removal resulted in about 20% more polli-

216 nator species in restored sites, with more generalized

217 plant–pollinator networks and higher fruit set of com-

218 mon species. These results suggest removal of non-

219 native species can rapidly enhance pollinator richness

220 but may, as the authors note, hinge on nearby popula-

221 tions of pollinators to colonize restored sites [54��]. More

222 broadly, no real consensus on the effects of exotic plants

223 on insect pollinators has emerged, with both positive and

224 negative effects reported [46,51]. Moving forward,

225 greater integration of the study of exotic species with

226 the study of phenological and range shifts, which can

227 similarly modify interaction strengths and create novel

228 communities, would be productive.

229 Effects of habitat alteration and loss
230 Habitat alteration and loss is widely recognized as a

231 contributor to declines of insect pollinators [55].

232 Changes in land use are associated with changes in

233 pollinator community composition and richness; in par-

234 ticular, conversion to arable land is associated with

235 declines in bee and wasp species richness over 80 years

236 in Britain [56]. Agricultural intensification carries its own

237 suite of effects on insect pollinators, including the direct

238 effects of pesticides such as neonicotinoids, which can

239 have multiple debilitating effects on bees [57–59], weak-

240 ening pollination services [60]. Using genetic analyses, a

241 recent study by Carvell et al. [61�] showed that lineage

242 survival of three bumble bee species increased as a

243 function of nearby high-quality foraging habitat, quanti-

244 fied as semi-natural vegetation, spring floral resources for

245 queens, and overall flower cover in spring and summer.

246 Bumble bee nesting density also can be negatively

247 related to the percent of paved surface and positively

248 related to the amount of natural oak woodland-chaparral

249 habitat [62].

250 Some traits serve as predictors of the severity of effects of

251 habitat alteration and loss on insect pollinators. Generally,

252specialized pollinators are more sensitive to land use

253impacts [63,64]. Within bees, a global analysis indicated

254stronger negative effects of overall agricultural intensifi-

255cation and isolation from natural habitat for species that

256nest above ground, whereas species that nest below-

257ground were adversely affected by land tilling [65].

258The abundance of social bees was also more negatively

259affected by isolation than was the case for solitary bees

260[65]. Some pollinators may be able to adjust their foraging

261distances in response to landscape-scale variables, as seen

262with bumble bees capable of foraging farther to find

263patches of greater floral diversity in landscapes that are

264relatively homogeneous [62]. Altogether, multiple studies

265indicate that ecological intensification practices, such as

266increasing floral resource availability and diversity across

267landscapes, have positive effects on insect pollinator

268persistence in the face of habitat alteration [66]. Never-

269theless, with changing land use, pollinator behavior and

270species composition are likely to change, modifying inter-

271actions and pollination services.

272Conclusions
273As we become increasingly aware that species interactions

274shape species distributions in time and space and modu-

275late the direct effects of global change, considering insect

276pollinators in a community context should be a priority.

277For example, Forrest and Chisholm [67�] demonstrated

278that warmer temperatures led simultaneously to higher

279rates of activity and nest provisioning by a solitary bee

280(Osmia iridis) and to increased rates of brood parasitism by

281a wasp (Sapyga sp.). Thus, positive effects of warming are

282likely to be negated by altered interaction frequencies

283with a natural enemy [67�], a result that would not be

284predicted in isolation of community context. Community-

285level analyses also detect broader trends before pairwise

286interactions are disrupted or individual species decline.

287For example, a study of phenological overlap in

288Greenland over 18 years points to disrupted plant–polli-

289nator interactions as the flowering season shrinks, poten-

290tially leaving pollinators without floral resources late in

291the season [68].

292Much progress has been made in understanding the

293effects of individual global change drivers on insect

294pollinators. Moving forward, further progress in under-

295standing and mitigating anthropogenic disturbances

296could be made by searching for common outcomes across

297drivers. All three of the global change drivers highlighted

298here are likely to result in novel interactions and commu-

299nities. Climate change, for example, alters overlap among

300species via spatial and temporal shifts, among other

301mechanisms. Introduced exotic species interact with

302native species in novel ways. And habitat alteration

303and loss can result in novel species composition and cause

304species to modify behavior, altering interactions. By tying

305these common outcomes to resulting eco-evolutionary

306dynamics, we can begin to anticipate how global change
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307 will reshape insect pollinator communities and pollina-

308 tion services.
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