Lawrence Berkeley National Laboratory
Recent Work

Title
Measurement of Sub-Picosecond Bunch Profiles Using Coherent Transition Radiation

Permalink
https://escholarship.org/uc/item/3472m186

Author
Barry, W.

Publication Date
1996-05-01
Measurement of Sub-Picosecond Bunch Profiles Using Coherent Transition Radiation

W. Barry
Accelerator and Fusion Research Division

May 1996
Presented at the Beam Instrumentation Workshop, Argonne, IL, May 6–9, 1996, and to be published in the Proceedings.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Measurement of Sub-Picosecond Bunch Profiles
Using Coherent Transition Radiation*

Walter Barry
Center for Beam Physics
Lawrence Berkeley National Laboratory
University of California
Berkeley, California 94720

submitted to the Proceedings of the Beam Instrumentation Workshop
Argonne, Illinois, May 6 - 9, 1996

May 1996

* This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy Physics Division, of the U. S. Department of Energy, under Contract No. DE-AC03-76SF00098.
Measurement of Sub-Picosecond Bunch Profiles
Using Coherent Transition Radiation*

Walter Barry
Lawrence Berkeley National Laboratory
University of California
Berkeley, California 94720

Abstract
A technique for measuring the longitudinal profile of sub-picosecond
electron bunches based on autocorrelation of coherent transition radiation
is reviewed. The technique uses sub-millimeter/far-infrared Michelson
interferometry to obtain the autocorrelation of transition radiation
emitted from a thin conducting foil placed in the beam path. The theory of coherent radiation from a charged particle beam passing through
a thin conducting foil is presented for normal and oblique incidence.
Michelson interferometric analysis of this radiation is shown to provide
the autocorrelation of longitudinal bunch profile. The details of a noninvasive technique for measuring longitudinal bunch profile using coherent
diffraction radiation are discussed.

INTRODUCTION
Transition radiation is a well-known phenomenon useful for measuring various charged-particle beam parameters including energy, emittance, and transverse profile (1). Typically, these measurements are made in the visible region where the radiation, due to individual particle effects, is incoherent.

In recent years, a technique which utilizes coherent transition radiation for measuring longitudinal profile of short bunches has come into use (2,3). This technique uses Michelson interferometry to obtain the autocorrelation of coherent transition radiation emitted by short bunches passing through a thin foil. The autocorrelation of the radiation is a direct measure of the autocorrelation of the longitudinal bunch profile. For picosecond to femtosecond bunch lengths, the measurements are made in the submillimeter to far-infrared range where the bunches radiate collectively.

In this paper, a review based on reference (2) of the theoretical aspects of this longitudinal bunch profile measurement technique is presented. In addition, a noninterceptive technique for measuring bunch profile with coherent diffraction radiation is outlined (4). A companion paper (5) in this proceedings addresses experimental results of the coherent transition radiation bunch length measurement technique.

*Work supported by U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
RADIATION FROM A CONDUCTING FOIL

In order to present a clear picture of the origin and properties of coherent transition radiation, the backward radiation from an arbitrary charge distribution striking a conducting foil is derived here in some detail.

Consider a beam of charged particles with velocity βc in the \hat{z} direction striking a conducting foil located at the $z = 0$ plane in the cylindrical coordinate system (Figure 1). The foil is assumed to be perfectly conducting and the beam filamentary along the z axis. For radiation wavelengths large compared to particle spacing, the beam is well approximated by a moving line charge distribution $q(t - z/\beta c)$, where $q(t)$ is the charge distribution of the beam measured as a function of time as the beam passes the $z = 0$ plane. Accordingly, the coherent beam current is defined as $I_0(t - z/\beta c) = \beta cq(t - z/\beta c)$.

In order to satisfy boundary conditions at the conducting plane, surface currents are induced in response to the fields of the incident beam. These currents in turn radiate electromagnetic energy. As indicated in Fig. 1, a convenient technique for solving the foil radiation problem makes use of image theory. Here, the conducting foil is removed and an image current $I_0(t + z/\beta c)$ is inserted for $z \geq 0$ so that:

$$I(z, t) = \begin{cases} I_0(t + z/\beta c) & z \geq 0 \\ I_0(t - z/\beta c) & z \leq 0 \end{cases}$$

With this current, it is clear that only the z component of vector potential exists and from symmetry, the vector potential and the fields derived from it...
are independent of ϕ.

The vector potential must satisfy the homogeneous wave equation for $\rho > 0$:

$$\nabla^2 A_z(\rho, z, t) - \frac{1}{c^2} \frac{\partial^2 A_z(\rho, z, t)}{\partial t^2} = 0 \quad \rho > 0$$

subject to the excitation condition:

$$\lim_{\rho \to 0} \int_0^{2\pi} H_{\phi}(\rho, z, t) \rho \, d\phi = I(z, t)$$

The procedure for solving (2) is greatly simplified by introducing the two dimensional Fourier transform:

$$\tilde{f}(\rho, \eta, \omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\rho, z, t) e^{-j(\omega t + \eta z)} \, dt \, dz$$

which has an inversion given by:

$$f(\rho, z, t) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{f}(\rho, \eta, \omega) e^{j(\omega t + \eta z)} \, d\omega \, d\eta$$

Applying (4) to (1), (2) and (3) results in a statement of the problem in the transform domain:

$$\frac{\partial^2 \tilde{A}_z(\rho, \eta, \omega)}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial \tilde{A}_z(\rho, \eta, \omega)}{\partial \rho} + \left(k_0^2 - \eta^2 \right) \tilde{A}_z(\rho, \eta, \omega) = 0$$

$$\lim_{\rho \to 0} \int_0^{2\pi} \tilde{H}_{\phi}(\rho, \eta, \omega) \rho \, d\phi = \frac{-j2k\tilde{I}_0(\omega)}{\eta^2 - k^2}$$

where: $k = k_0/\beta = \omega/\beta c$

$\tilde{I}_0(\omega)$ is the frequency spectrum of the current defined by:

$$\tilde{I}_0(\omega) = \int_{-\infty}^{\infty} I_0(t) e^{-j\omega t} \, dt$$

with inversion:

$$I_0(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{I}_0(\omega) e^{j\omega t} \, d\omega$$

Equation (6) is Bessel’s equation of order zero. Anticipating outward propagating wave characteristics, a solution to (6) is:

$$\tilde{A}_z(\rho, \eta, \omega) = c(\eta, \omega) H_0^{(2)}(\rho \sqrt{k_0^2 - \eta^2})$$

The ϕ component of the \overrightarrow{H} field can be derived from the vector potential using:
\[\tilde{H}_\phi(\rho, \eta, \omega) = -\frac{1}{\mu_0} \frac{\partial \tilde{A}_z(\rho, \eta, \omega)}{\partial \rho} \]

Using equations (10), (11) and (7) and the small argument approximation for \(H_1^{(2)}(x) \) yields the following expression for \(c(\eta, \omega) \):
\[c(\eta, \omega) = -\frac{\mu_0 \tilde{I}_0(\omega)}{2} \left(\frac{k}{\eta^2 - k^2} \right) \]

(12)

Therefore, from (10):
\[\tilde{A}_z(\rho, \eta, \omega) = -\frac{\mu_0 \tilde{I}_0(\omega)}{2} \left(\frac{k}{\eta^2 - k^2} \right) H_0^{(2)} \left(\rho \sqrt{k_0^2 - \eta^2} \right) \]

Taking the \(\eta \to z \) part of the inversion given in (5) yields:
\[\tilde{A}_z(\rho, z, \omega) = -\frac{\mu_0 \tilde{I}_0(\omega)}{4\pi} \int_{-\infty}^{\infty} \left(\frac{k}{\eta^2 - k^2} \right) H_0^{(2)} \left(\rho \sqrt{k_0^2 - \eta^2} \right) e^{i\eta z} d\eta \]

(14)

Equation (14) gives, in integral form, the exact frequency domain expression for the vector potential. For the purpose of evaluating the fields in the radiation zone (\(\rho \) and \(z \) large), the integral in (14) may be approximated by the method of stationary phase giving:
\[\tilde{A}_z(r, \theta, \omega) = \frac{-j\mu_0 \tilde{I}_0(\omega)e^{-jk_0r}}{2\pi r} \left(\frac{k}{k_0^2 \cos^2 \theta - k^2} \right) \quad k_0r \gg 1 \]

(15)

where: \(z = -r \cos \theta \), \(\rho = r \sin \theta \).

As indicated in Fig. 1, \(r \) and \(\theta \) are spherical coordinates with \(\theta \) measured from the \(-z\) axis. (axis of specular reflection).

The electric and magnetic fields may be obtained in the typical manner using:
\[\vec{H}(r, \theta, \omega) = \frac{1}{\mu_0} \nabla \times \vec{A}(r, \theta, \omega) \]

(16)

\[\vec{E}(r, \theta, \omega) = -j\omega \vec{A}(r, \theta, \omega) + \frac{\nabla \nabla \cdot \vec{A}(r, \theta, \omega)}{j\omega \mu_0 \varepsilon_0} \]

(17)
Resolving (15) into \(\hat{f} \) and \(\hat{\theta}_s \) components, substituting into (16) and (17) and retaining only \(1/r \) terms, expressions for the radiation fields are found:

\[
\vec{E}_{\theta_s}(r, \theta_s, \omega) = \frac{Z_0 \vec{F}_0(\omega) e^{-jkro}}{2\pi r} \left(\frac{\beta \sin \theta_s}{1 - \beta^2 \cos^2 \theta_s} \right)
\]

(18)

\[
\vec{H}_{\theta_s}(r, \theta_s, \omega) = \frac{\vec{E}_{\theta_s}(r, \theta_s, \omega)}{Z_0}
\]

(19)

where : \(Z_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377 \Omega \)

Equations (18) and (19) are the frequency domain field expressions for backward transition radiation emitted from a beam striking a conducting foil.

Several important features of coherent transition radiation are evident from equations (18) and (19). It is seen that the frequency spectrum of the radiation is identical to that of the beam current, at least for a foil of infinite extent. It is this property that makes the autocorrelation measurement, to be described, possible. Bandpass properties of finite foils will be addressed in a later section. Another important characteristic of transition radiation is its spatial distribution. From (18), it is clear that the angular distribution of energy or power density is given by the function:

\[
S^2(\theta_s) = \left(\frac{\beta \sin \theta_s}{1 - \beta^2 \cos^2 \theta_s} \right)^2
\]

(20)

This function has a single, very sharp maximum at \(\theta_s = 1/\beta \gamma \). Therefore, for relativistic beams, virtually all of the radiation is in the vicinity of this extremely small angle. In this case, an excellent approximation for \(S^2(\theta_s) \) is:

\[
S^2(\theta_s) \approx \left(\frac{\theta_s}{1/\gamma^2 + \theta^2_s} \right)^2 \quad \gamma \text{ large}
\]

(21)

From (21) it is noted that the energy or power density is proportional to \(\gamma^2 \) at \(\theta_s \approx 1/\gamma \).

For the autocorrelation technique to be described, we require \(I_0(t) \) to be a simple periodic current corresponding to a train of bunches passing through the foil. By use of equations (18) and (19) and the definition of the Poynting vector, the total average power per unit solid angle radiated by a periodic beam current, \(I_0(t) \), striking a foil can be found:

\[
\frac{dP}{d\Omega} = \frac{P_{Z0}}{4\pi^2} S^2(\theta_s) \quad \text{watts/steradian}
\]

(22)
where:

\[
P_{z_0} = \frac{Z_0}{T} \int_T I_0^2(t) dt \quad T = \text{period of } I_0(t)
\]

(23)

The quantity \(P_{z_0} \) is recognized as the rms power dissipated by \(I_0(t) \) in a 377Ω (free space) resistor. By integrating (22) over the backward radiation half space, the total radiated power for a relativistic beam is obtained:

\[
P \approx \frac{P_{z_0} \ln \gamma}{2\pi} \quad \text{watts}
\]

(24)

The frequency spectrum of the radiated power consists of discrete lines at integer multiples of \(1/T \) with amplitudes proportional to the square of the Fourier transform of the bunch profile. In this case, it is clear that the critical frequency components for determining bunch profile and length are in the \(1/\tau_b \) region. This region covers the far-infrared/submillimeter range for the approximate range of bunch lengths, \(.03 \text{ psec} \leq \tau_b \leq 3 \text{ psec} \).

AUTOCORRELATION OF BUNCH PROFILE THROUGH MICHELSON INTERFEROMETRY

A simple system for obtaining the autocorrelation of the beam current and therefore bunch profile is shown in Fig. 2. Here, the beam current, \(I_0(t) \), passes through a thin conducting foil at an incident angle of 45°. Backward transition radiation is then emitted about the axis of specular reflection and directed into an infrared/submillimeter wave Michelson interferometer. By measuring power at the output port of the interferometer as a function of \(\Delta \) in the delay path, the autocorrelation, or equivalently, the power spectrum of \(I_0(t) \) may be obtained. It is important to note that in general, the transition radiation field expressions for oblique incidence are considerably more complicated than those for normal incidence. However, as shown in the Appendix, for large \(\gamma \), the field expressions about the axis of specular reflection are well approximated by the normal incidence expressions derived in the previous section.

The interferometer, illustrated in Fig. 2, basically consists of a fixed mirror, a movable mirror and a splitter/combiner. These elements are arranged so that the incoming radiation is split into two beams. One of the beams is then delayed by a distance \(\Delta \) before recombination takes place at the output port. As indicated in Fig. 2, the reflection and transmission coefficients for the splitter/combiner are designated as \(S_{11} \) and \(S_{21} \), respectively. Both mirrors are assumed to have reflection coefficients of 1. If the divergence of the radiation is small (\(\gamma \) large), the total electric field at the power detector is given by:
Dropping the overall phase factors in (25) and transforming to the time domain yields:

$$E(r, \theta, \omega) = E_1 + E_2 = \frac{S_{11}S_{21}Z_0I_0(\omega)}{2\pi r} e^{-j\kappa r}(1 + e^{-j\kappa \Delta})S(\theta)\delta \tag{25}$$

where \(\delta = \frac{\Delta}{c}\). Because the radiation is confined to a cone of half angle \(1/\gamma\), it may be assumed that the detector measures the total available power. In this case, the total power detected as a function of \(\tau\) becomes:

$$P_d(\tau) = \frac{|S_{11}S_{21}|^2 l \gamma}{\pi} \left[P_{0} + \frac{Z_0}{T} \int_{T} I_0(t)I_0(t - \tau)dt \right] \tag{27}$$

where \(P_{0}\) is defined in (23).
Clearly, the second term in the brackets of Eq. (27) represents the autocorrelation of the beam current, which in turn is proportional to the autocorrelation of the bunch profile repeated periodically with period T. Thus by measuring power as the movable mirror is moved, over a distance equal to the bunch length, the longitudinal bunch profile is obtained. The resolution of this technique, for large foils, is limited only by the dispersive properties of the interferometer and the response of the power detector as discussed in (5). The effect of finite foil dimensions on resolution is discussed in the next section.

DIFFRACTION RADIATION — A NONINVASIVE ALTERNATIVE

In some cases, perhaps in electron storage rings, it is desirable to have a noninvasive technique for measuring longitudinal bunch profile. This requirement can be easily accommodated by replacing the solid foil with a foil which contains a circular aperture centered on the beam axis as shown in Fig. 3. The most straightforward technique for finding the backward radiated fields in this case treats the conductor as a scatterer or backward diffractor of the incident fields of the beam.

![Figure 3. Geometry for diffraction radiation.](image)

In the far field, i.e., $r \gg 2b^2/\lambda$, Fraunhofer diffraction theory can be used to find the fields radiated by the conductor. Here, b is the outer radius of the conductor which could conceivably be as large as the inner radius of a circular beam chamber. Based on the results of the previous analysis for a solid foil, the radiated fields are expected to be of most interest in the region about $\theta_s = 1/\gamma$. Thus, for relativistic beams, the far-field scattered vector potential can
be found from the incident vector potential of the beam at the conductor using the paraxial Fraunhofer diffraction integral:

$$\overline{A}_{zs}(r, \theta_s, \omega) = \frac{-jk_0 e^{-jk_0 r}}{r} \int_a^b \rho' J_0(k_0 \rho' \sin \theta_s) \overline{A}_{zi}(\rho', \omega) d\rho'$$ \hspace{1cm} (28)

The incident vector potential of the beam has a \hat{z} component only given by the well known expression:

$$\overline{A}_{zi}(\rho', \omega) = \frac{\mu_0 \overline{I}_0(\omega)}{2\pi} K_0\left(\frac{k_0 \rho'}{\beta \gamma}\right)$$ \hspace{1cm} (29)

Substituting (29) into (28) and imposing the condition $a < \gamma \lambda/2 \pi < b$, the scattered vector potential in the $\theta_s \approx 1/\gamma$ region is obtained:

$$\overline{A}_{zs}(r, \theta_s, \omega) \approx \frac{-j \mu_0 \overline{I}_0(\omega)}{2\pi r k_0} \left(\frac{1}{\theta_s^2 + 1/\gamma^2}\right)$$

$$\times \left[J_0(k_0 a \theta_s) - \sqrt{2} \cos(k_0 b \theta_s) e^{-k_0 b} \right] \hspace{0.5cm} a < \gamma \lambda/2 \pi < b$$ \hspace{1cm} (30)

The radiation fields are then found from (16) and (17):

$$\overline{E}_{\theta_s}(r, \theta_s, \omega) \approx \frac{Z_0 \overline{I}_0(\omega)}{2\pi r} e^{-jk_0 r} \left(\frac{\theta_s}{\theta_s^2 + 1/\gamma^2}\right)$$

$$\times \left[J_0(k_0 a \theta_s) - \sqrt{2} \cos(k_0 b \theta_s) e^{-k_0 b} \right] \hspace{0.5cm} a < \gamma \lambda/2 \pi < b$$ \hspace{1cm} (31)

$$\overline{H}_{\phi_s}(r, \theta_s, \omega) = \frac{\overline{E}_{\phi_s}(r, \theta_s, \omega)}{Z_0}$$ \hspace{1cm} (32)

For $b \rightarrow \infty$ and $a \rightarrow 0$, (31) and (32) reduce to expressions (18) and (19) for the solid foil in the paraxial approximation.

In the ideal case, an exact measure of longitudinal bunch profile with the autocorrelation technique requires the spectrum of the radiated fields to be identical to that of the beam current, $\overline{I}_0(\omega)$. Clearly, from the square-bracket term in (31), this is not the case for finite b, and $a \neq 0$. To see how this term comes about, consider the effective radius of the incident field of the beam, $\rho_e \approx \gamma \lambda/2 \pi$. For short wavelengths (high frequencies) the incident fields are concentrated around the beam axis. If a is larger than $\gamma \lambda/2 \pi$, the incident fields pass through the aperture with very little energy scattered by the conductor. This is the origin of the low-pass term, $J_0(k_0 a \theta_s)$, in (31). Similarly, if b is small
compared to $\gamma \lambda / 2\pi$ for long wavelengths, very little low frequency energy is scattered. This is the origin of the cosine/exponential high-pass term in (31). Together, these terms form the bandpass function in the bracket:

$$H(\omega) = J_0(k_0a\theta_s) - \sqrt{2}\cos(k_0b\theta_s)e^{-\frac{k_0b}{\gamma}}$$ \hspace{1cm} (33)

An examination of (33) at $\theta_s = 1/\gamma$ indicates that the high and low frequency cutoff points occur approximately, for $\lambda/2\pi = a/\gamma$ and $\lambda/2\pi = b/\gamma$ respectively. In addition, $H(\omega)$ rolls off at a rate of approximately 12 dB per octave at very low frequencies and exponentially at very high frequencies. The low frequency rolloff will distort the measured bunch profile with tilt. Some admittedly subjective but conservative reasoning indicates that the tilt effect will be acceptable for a bunch of duration, τ_b, if the following condition on b is met:

$$b > 2\pi\gamma\ell_b \quad \ell_b = c\tau_b$$ \hspace{1cm} (34)

The high frequency rolloff will limit the resolution of the technique. Again, some conventional, albeit subjective, reasoning based on rise-time/bandwidth concepts indicates a minimum resolution of:

$$x_e = \frac{2\pi a}{\gamma}$$ \hspace{1cm} (35)

As pointed out at the end of the previous section, the bandpass characteristics of the interferometer and power detector must also be taken into account when estimating resolution. In any case, if conditions (34) and (35) are met, the diffraction technique should perform as well as the solid foil technique. Finally, it is mentioned that the comments in the appendix regarding oblique incidence apply in the diffraction radiation case as well.

SUMMARY

A review of the theory of coherent transition radiation and its application in longitudinal bunch profile measurements has been presented. Through far-infrared/submillimeter wave Michelson interferometry, the autocorrelation of longitudinal bunch profile may be obtained to a high degree of resolution using coherent transition radiation. In addition, it has been shown that the noninvasive technique, diffraction radiation, holds great promise as a standard longitudinal bunch diagnostic.
APPENDIX

Referring to Fig. A, consider a line charge distribution, \(\rho_1(z_1, t) = q_0(t + \frac{z_1}{\beta c}) \), travelling along the \(z_1 \) axis at an angle \(\theta_i \) from the normal to the foil. Corresponding to \(\rho_1 \), there will be an image charge distribution, \(\rho_2(z_2, t) = -q_0(t + \frac{z_2}{\beta c}) \), travelling toward the foil along the \(z_2 \) axis. Following the conventions in the main text, the corresponding currents are:

\[
I_1(z_1, t) = -\beta c q_0 (t + \frac{z_1}{\beta c}) = -I_0 (t + \frac{z_1}{\beta c}) \quad (A.1)
\]
\[
I_2(z_2, t) = \beta c q_0 (t + \frac{z_2}{\beta c}) = I_0 (t + \frac{z_2}{\beta c}) \quad (A.2)
\]

Repeating the analysis in the main text for each current individually yields the following vector potentials:

\[
\bar{A}_1(r_1, \theta_1, \omega) = -j \mu_0 \bar{I}_0(\omega) e^{-jkr_1} \left(\frac{1}{k + k_0 \cos \theta_1} \right) \hat{z}_1 \quad (A.3)
\]
\(\vec{A}_2 (r_2, \theta_2, \omega) = -j \mu_0 \vec{I}_0 (\omega) \frac{e^{-j k r_2}}{4 \pi r_2} \left(\frac{1}{k + k_0 \cos \theta_2} \right) \hat{z}_2 \) \hspace{1cm} (A.4)

The total vector potential is the sum of (A.3) and (A.4).

The vector potential may be referred to the axis of specular reflection, \(z_s \), and its associated coordinate system by making the following coordinate and unit vector transformations:

\[
\begin{align*}
 r_1 &= r_2 = r_s = r \\
 \cos \theta_2 &= -\cos \theta_s \\
 \cos \theta_1 &= \cos \theta_s \cos 2 \theta_i - \sin \theta_s \cos \phi_s \sin 2 \theta_i \\
 \hat{z}_2 &= -\hat{z}_s \\
 \hat{x}_1 &= -\hat{x}_s \cos 2 \theta_i - \hat{x}_s \sin 2 \theta_i
\end{align*}
\] \hspace{1cm} (A.5)

Substituting these transformations into (A.3) and (A.4) results in a total vector potential possessing \(\hat{x}_s \) and \(\hat{z}_s \) components given as follows:

\[
\begin{align*}
 \overline{A}_x(r, \theta, \phi, \omega) &= \frac{j \mu_0 I_0 (\omega)}{4 \pi r} \left(\frac{\sin 2 \theta_i}{k + k_0 (\cos \theta_s \cos 2 \theta_i - \sin \theta_s \cos \phi_s \sin 2 \theta_i)} \right) e^{-j k r} \\
 \overline{A}_z(r, \theta, \phi, \omega) &= \frac{j \mu_0 I_0 (\omega)}{4 \pi r} \left[\frac{1}{k - k_0 \cos \theta_s} + \frac{\cos 2 \theta_i}{k + k_0 (\cos \theta_s \cos 2 \theta_i - \sin \theta_s \cos \phi_s \sin 2 \theta_i)} \right] e^{-j k r}
\end{align*}
\] \hspace{1cm} (A.6)

For normal incidence (\(\theta_i = 0 \)), \(\overline{A}_x \) goes to zero and \(\overline{A}_z \) reduces to equation (15).

It is clear from (A.6) and (A.7) that the fields show some \(\phi \) variation about the axis of specular reflection for the case of oblique incidence. However, for large \(\gamma \), a careful study of the fields resulting from (A.6) and (A.7) reveals that the first term in the brackets of (A.7) greatly dominates all other terms so that the vector potential is given approximately by:

\[
\overline{A}_z (r, \theta, \omega) \approx \frac{j \mu_0 I_0 (\omega)}{4 \pi r} \left(\frac{1}{k - k_0 \cos \theta_s} \right) e^{-j k r} \] \hspace{1cm} (A.8)

Equation (A.8) in the small angle approximation becomes:

\[
\overline{A}_z (r, \theta, \omega) \approx \frac{-j \mu_0 I_0 (\omega)}{2 \pi r k_0} \left(\frac{1}{1/\gamma^2 + \theta_s^2} \right) e^{-j k r} \] \hspace{1cm} (A.9)
This expression agrees with (15) in the main text for small θ_s. Therefore, for relativistic beams, the fields for oblique incidence, are well approximated by normal incidence fields.

REFERENCES

