Title
ON THE ORIENTATION OF PERFECT PRISMATIC DISLOCATION LOOPS IN PURE ALUMINUM

Permalink
https://escholarship.org/uc/item/3478q84w

Authors
Das, G.
Washburn, J.

Publication Date
1964-09-01
ON THE ORIENTATION OF PERFECT PRISMATIC DISLOCATION LOOPS IN PURE ALUMINUM

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ON THE ORIENTATION OF PERFECT PRISMATIC DISLOCATION LOOPS IN PURE ALUMINUM

G. Das and J. Washburn

September 1964
ON THE ORIENTATION OF PERFECT PRISMATIC DISLOCATION LOOPS IN PURE ALUMINUM

G. Das and J. Washburn

In Inorganic Materials Research Division, Lawrence Radiation Laboratory and Department of Mineral Technology, College of Engineering University of California, Berkeley, California

In quenched and aged aluminum and other face centered cubic metals of high or medium stacking fault energy perfect \(\frac{a}{2} \langle 110 \rangle \) dislocation loops that form from excess vacancies often have the shape of a rhombus; all four sides lying on the two \(\{111\} \) planes that contain the Burgers vector. \(^{(1,2)}\) A logical explanation for this shape results if it is assumed that the dislocation splits into partials on the two \(\{111\} \) planes that are tangent to the glide cylinder. During growth, climb of the dislocation apparently takes place more rapidly at undissociated segments that do not lie in these planes resulting in their gradual elimination. The rhombus is not an equilibrium shape for a prismatic loop in aluminum. It is assumed by a growing loop probably because of the greater difficulty of forming new jogs on the dissociated segments. During shrinkage in size, which does not require the formation of new jogs, perfect loops in aluminum become round. \(^{(3)}\)

For a rhombus loop all four sides lie on \(\{111\} \) glide planes. Therefore, those loops that have achieved this shape should be best able to assume the orientation of minimum energy by rotational glide. The orientation dependence of loop energy has recently been considered by Bulloch and Foreman. \(^{(4)}\) They have shown that the orientation of minimum energy is not that of

\(^{*}\) Now at Case Institute of Technology, Cleveland, Ohio.
** Also Research Professor, Miller Institute of Basic Research in Science.
shortest total dislocation length which is the pure edge orientation but lies between the (110) edge orientation and (100). The energy minimum shifts farther away from (110) as the diameter of the loop decreases. There has already been some experimental evidence that perfect loops sometimes have a habit plane between (110) and (100). For example, Makin and Hudson\(^5\) have reported a preference for the (210) plane in Al-1% Mg alloys.

In the present experiments it has been possible to determine the orientation of large rhombus loops in 99.999 aluminum.

Specimens quenched as 0.4 mm\(^6\) thick polycrystalline sheet from 540°C into water at 40°C contain many well developed rhombus shaped loops with \(\frac{a}{2} <110>\) Burgers vector. The remainder are large stacking fault loops of the type \(\frac{a}{3} <111>\) (see Fig. 1). These imperfect loops which must lie exactly on (111) and have sides that lie along \(110\) provide means for determining the orientation of the foil. If it is assumed that the rhombus loops have four sides of equal length all of which lie on a plane of the type (111) then it is possible from the shape of their projections to estimate their orientations on their glide cylinders. In this way the habit planes for many of the loops in Fig. 1 were determined. The poles of these habit planes are plotted on the stereographic projection (Fig. 2). Figure 1 is close to being an exact (001) projection. Two loops, (a and d), can be seen edge-on. They can be assumed to be perfect because they do not lie on (111). Figure 2 shows that the orientations of the rhombus shaped loops cluster about (320) rather than (110). By assuming that the hexagonal
perfect loops, i, were also symmetrical in shape, when viewed in the
direction of the Burgers vector, it was also possible to estimate their
orientation. All of these loops had an orientation between (111) and
(110).

The results are in agreement with the calculations of Bullough and
Foreman.\(^4\) The fact that the loops of well developed rhombus shape were
rotated to orientations near [320] suggests that their glide mobility was
great enough to allow them to assume an orientation near that of lowest
energy. The considerable scatter about the average [320] orientation is also
consistent with the calculations. The energy minimum for large (4000Å)
loops is not sharply defined. Within the range between (110) and (210)
the change in loop energy is very small. Therefore, the exact orientation
of a given loop probably depends on the sign of the last stress to act on
it. Any stress that has a shear component on the glide planes in the
direction of the Burgers vector exerts a torque on the loop. Therefore,
orientations anywhere within the region of small energy change should be
expected. Image forces due to the nearness of external surfaces in a thin
foil can also affect the orientation of various loops in different ways
depending on loop position relative to the two foil surfaces. Hexagonal
perfect loops had probably been converted from stacking fault loops at a
late stage of growth or even during handling of the electron microscope
specimen. For these loops, their orientation between (111) and (110)
suggests that their glide mobility was less than that of rhombus loops,
probably because two sides of the glide cylinder are [100] rather than
(111).
The authors are pleased to acknowledge the support of this work by the United States Atomic Energy Commission through the Inorganic Materials Research Division of the Lawrence Radiation Laboratory and by the Miller Institute for Basic Research in Science through award of a fellowship to one of us (J.W.).
References

Figure Captions

Fig. 1. Perfect rhombohedral $\frac{a}{2} <110>$ loops and hexagonal stacking fault $\frac{a}{3} <111>$ loops in 99.999 aluminum.

Fig. 2. Stereogram showing poles of habit planes for loops identified on Fig. 1.
Fig. 1
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.