Title
MEASUREMENTS OF THE EFFICIENCY OF LiF THERMOLUMINESCENT DOSIMETERS TO HEAVY IONS

Permalink
https://escholarship.org/uc/item/348417d6

Author
Henson, Anna M.

Publication Date
1977-06-01
MEASUREMENTS OF THE EFFICIENCY OF 7LiF THERMOLUMINESCENT DOSIMETERS TO HEAVY IONS

Anna M. Henson and Ralph H. Thomas

June 15, 1977

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
MEASUREMENTS OF THE EFFICIENCY OF 7LiF
THERMOLUMINESCENT DOSIMETERS TO HEAVY IONS

Anna M. Henson and Ralph H. Thomas
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

June 15, 1977

Introduction

We continue to accumulate the necessary experimental data to facilitate
reliable and flexible heavy-ion dosimetry.

In a previous paper measurements of the efficiency, ε, of 7LiF
thermoluminescent dosimeters (TLD's) relative to 60Co, to 6C, 8O, and
Ne$^{+10}$ ions in the energy range 250-1050 MeV/amu have been reported (Sm 77).

This note reports measurements of the efficiency of 7LiF TLD's to
798 MeV/amu 1H and 447 MeV/amu 18A ions.

Experimental Technique

The experimental technique used has been described in detail elsewhere
(Sm 77). Briefly, the heavy-ion fluence incident upon the dosimeters, ϕ,
is determined by nuclear emulsion or other visual techniques, or by activa-
tion detectors. The absorbed dose in the irradiated dosimeters may then
be calculated from their known stopping power, $(dE/dx)_{LiF}$, for the incident
ions. Finally, the dosimeter response to heavy ions, L, is compared with
the dosimeter response to 60Co photons for an exposure of 1 roentgen, τ.

It may then be readily shown that:

$$\varepsilon = \frac{5.025 \times 10^{-7}}{\tau(dE/dx)_{LiF}} \cdot (\frac{L}{\phi})$$ \hspace{1cm} (1)

In the work reported here, 7LiF TLD's were irradiated by 798 MeV
protons (798 MeV/amu 1H ions) and by 447 MeV/amu 18A ions. The incident
proton fluence was determined by measuring the production of 11C in
polystyrene (Ca 76). The incident argon ion fluence was determined by
scanning Kodak Type NTA film (He 76). The results obtained were
$\varepsilon = 1.08 \pm 0.08$ and 0.523 ± 0.021, respectively.
Summary and Conclusions

Table 1 summarizes all the measurements of ϵ reported to date by our group.

Table 1. Measurements of ϵ

<table>
<thead>
<tr>
<th>Ion Species</th>
<th>Energy (dE) in MeV/amu</th>
<th>$(\frac{dE}{dx})$ in 7LiF MeV g$^{-1}$ cm2</th>
<th>ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>H^+</td>
<td>798</td>
<td>1.89</td>
<td>1.08 \pm 0.08</td>
</tr>
<tr>
<td>C^{+6}</td>
<td>252</td>
<td>116</td>
<td>0.89 \pm 0.02</td>
</tr>
<tr>
<td>O^{+8}</td>
<td>300</td>
<td>112</td>
<td>0.90 \pm 0.05</td>
</tr>
<tr>
<td>O^{+8}</td>
<td>1050</td>
<td>186</td>
<td>0.82 \pm 0.05</td>
</tr>
<tr>
<td>Ne^{+10}</td>
<td>372</td>
<td>259</td>
<td>0.73 \pm 0.05</td>
</tr>
<tr>
<td>A^{+18}</td>
<td>447</td>
<td>770</td>
<td>0.52 \pm 0.02</td>
</tr>
</tbody>
</table>

The two new values of ϵ reported here are consistent with our previous measurements and those of Jähnert (Ja 72). The value of ϵ measured for protons of 1.08 \pm 0.08 is consistent with the expected value of 1.0 within the experimental accuracy of the determination. The rather large area is due to some uncertainties in the beam distribution used during the measurement (Ca 76). Measurements of ϵ in the energy loss region of \sim10 MeV g$^{-1}$ cm2 and \sim2000 MeV g$^{-1}$ cm2 are now needed.

Acknowledgments

We would like to thank Ted de Castro for assistance in the TLD measurements and Joe McCaslin and Al Smith for the activation detector measurements. This work was done under the auspices of the U.S. Energy Research and Development Administration.
References

He 76 Henson, A.M. and Thomas, R.H., 1976, The Efficiency of 7LiF Thermoluminescent Dosimeters to 447 MeV/amu 18Ions, Relative to 60Co Photons. Lawrence Berkeley Laboratory Health Physics Department internal memorandum HPN #58, December 7, 1976 and Addendum March 31, 1977.

This report was done with support from the United States Energy Research and Development Administration. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the United States Energy Research and Development Administration.