Title
SIP4: Towards Automated Analysis of Minirhizotron Images

Permalink
https://escholarship.org/uc/item/34b2t2f5

Authors
B. Fulkerson
S. Soatto
W. Swenson
et al.

Publication Date
2005
Towards Automated Analysis of Minirhizotron Images

Brian Fulkerson Stefano Soatto William Swenson Mike Allen Michael Hamilton
UCLA Vision Lab UCR ccb.ucr.edu/allenlab James Reserve www.jamesreserve.edu

Introduction: The scientific and technical challenges

Background
- What is a minirhizotron?
 A clear tube with graduated markings buried in soil with a camera that slides inside.
- Scientific goal:
 - Determine plant growth patterns by analyzing changes in soil structures over time
 - Image analysis currently performed manually (trained subjects count roots and other structures).

Technical challenges
- Can analysis of minirhizotron images be automated?
 - Need registration of multiple images in space (mosaics) and time (motion estimation for deforming structures).
 - Need a classification system to detect, localize and count various structures (roots, hyphae)

Problem Description: Automate the process of finding roots in images from a minirhizotron.

The Case For Automation
- Why should an automated system be created?
 - The ability to do robust, meaningful research with minirhizotron images is currently limited by the amount of time that can be spent by a human expert classifying the data.
 - Automating some or all of this process could speed it up dramatically, allowing more data to be collected from more locations.

Towards Automation: Planned stages

Developing a Suite of Algorithms
- Preliminary work
 - An interactive software application has been developed to facilitate manual classification.
 - This will be used both to speed up manual analysis, and to provide training data for automatic (supervised) classification.
 - A set of 8000 images have been classified so far (Figures 1 and 2).

- Off-the-shelf tools:
 - Hough transform to find linear structures in images (Figure 3).
 - Results in many false positives.
 - Fails to find small features or hard to see roots.
 - Edge co-localization after edge detection (Canny) (Figure 4):
 - Trained a naïve Bayes classifier on the distance between the segments and color information.
 - Marginal improvement over chance.

- Current research
 - Expanding the classification program to:
 - Allow general image processing operations to be used as plug-ins in order to aid in classification.
 - Allow the user to view multiple images tiled together vertically to increase effective resolution and remove edge effects.
 - Allow the user to navigate forward and backward in time at the same location.
 - Developing supervised learning algorithms to move toward automatic classification of the data using:
 - Multi-scale representations based on the response of filter banks (wavelets, ridgelets, curvelets) or super-pixels based on segmentation from local statistics (textures and color).
 - Adaboost and other methods involving banks of weak classifiers to represent the data.

Figures

Figure 1: Two easily recognizable images of roots. The green crosses are where the user clicked.
Figure 2: These images both contain roots and are more representative of the data. Presence and location of the roots is not immediately evident to the untrained eye.
Figure 3: The leftmost image of Figure 1 and 2 after the Hough transform. The white lines are edges and the red lines are linear structures detected in the image.
Figure 4: The same images with a candidate edge pair that was classified as belonging to a root. The algorithm failed on the rightmost image.