Lawrence Berkeley National Laboratory
Recent Work

Title
The Spin Observables of Electron-Nucleon Scattering from the Formalism of Nucleon-Nucleon Scattering

Permalink
https://escholarship.org/uc/item/3532n9ff

Author
Conzett, H.E.

Publication Date
1994-03-09
The Spin Observables of Electron-Nucleon Scattering
from the Formalism of Nucleon-Nucleon Scattering

H.E. Conzett

March 1994
The Spin Observables of Electron-Nucleon Scattering
From the Formalism of Nucleon-Nucleon Scattering

H. E. Conzett

Nuclear Science Division, Lawrence Berkeley Laboratory
University of California, Berkeley, California 94720, USA

March 9, 1994

This work was supported by the Director, Office of Energy Research Division
of Nuclear Physics of the Office of High Energy and Nuclear Physics of the
U.S. Department of Energy under Contract DE-AC03-76SF0098
THE SPIN OBSERVABLES OF ELECTRON-NUCLEON SCATTERING
FROM THE FORMALISM OF NUCLEON-NUCLEON SCATTERING

H. E. Conzett
Nuclear Science Division, Lawrence Berkeley Laboratory
University of California, Berkeley, CA 94720

ABSTRACT

The eN scattering spin observables are derived from the long established
NN scattering formalism. Some conditions on the eN observables emerge more
transparently than from the specific eN calculations themselves.

INTRODUCTION

It is useful, and important, to recognize the common role that spin physics
plays in the seemingly dissimilar disciplines of nuclear, particle, and electron­
scattering physics. That of nuclear physics is the most complicated in the sense that
all of the reaction/scattering transition amplitudes that are allowed by parity
conservation (P), time-reversal (T) symmetry, and other specific symmetries (e.g.,
identical particles), are nonvanishing in general. Helicity conservation, a relativistic
condition, reduces substantially the number of nonvanishing amplitudes in electron
scattering and in particle physics. Thus, these disciplines are spin-physics subsets
of that of nuclear reactions. As an illustrative example, the few nonvanishing eN
scattering observables are identified through a reduction from the many
nonvanishing NN observables.

SPIN STRUCTURE $\frac{1}{2} + \frac{1}{2} \rightarrow \frac{1}{2} + \frac{1}{2}$

For the scattering of two spin-1/2 particles, the corresponding 4 X 4 spin­
space matrix of scattering amplitudes can be expanded in terms of direct products of
the 2 X 2 Pauli matrices σ_j and σ_k,

$$M(\theta) = \sum_{j,k} a_{jk}(\theta) \sigma_j \otimes \sigma_k, \quad j,k = o,x,y,z.$$ \hspace{1cm} (1)

In a more compact form, with the 4 X 4 matrix $\sigma_{jk} = \sigma_j \otimes \sigma_k$,

$$M = \sum_{j,k} a_{jk} \sigma_{jk}, \quad \hspace{1cm} (2)$$

and the 16 M-matrix amplitudes,

$$a_{oo}, a_{ox}, a_{oy}, a_{oz}, a_{xo}, a_{xx}, a_{xy}, a_{xz},$$
$$a_{yo}, a_{yx}, a_{yy}, a_{yz}, a_{zo}, a_{zx}, a_{zy}, a_{zz},$$

can be classified according to their P and/or T symmetries. For example, the
eight underlined amplitudes are P odd (with $a_{ox}, a_{xo}, a_{xy}, a_{yx}$ also T odd) and
a_{xz} and a_{zx} are T odd in the helicity frame with the z-axis taken along the
projectile momentum and the y-axis normal to the scattering plane. The experimental observables, expressed in a general form, are

\[X(jk,lm) = \text{Tr} M \sigma_j^k M^\dagger \sigma_l^m / \text{Tr} MM^\dagger, \quad j,k,l,m = o,x,y,z, \tag{3} \]

where \(j \) and \(k \) label the polarizations of the initial-state particles and \(l \) and \(m \) label the observed final-state polarizations. For example, the projectile analyzing power \(A_y = X(yo,oo) \). Since elastic scattering is its own time-reversed process, the T odd amplitudes \(axz \) and \(azx \) vanish in (2) along with the P odd amplitudes, reducing it to the six term

\[M = a_{oo} + ay \sigma_y o + ao \sigma_o y + a_{xx} \sigma_x x + a_{yy} \sigma_y y + a_{zz} \sigma_z z. \tag{4} \]

With six amplitudes there are \(6^2 = 36 \) independent observables, of which the following, from (3) and (4), are listed for consideration in electron scattering:

\[
\begin{align*}
I &= X(oo,oo) = l_{a_{oo}}^2 + l_{a_{yo}}^2 + l_{a_{yo}}^2 + l_{a_{xx}}^2 + l_{a_{yy}}^2 + l_{a_{zz}}^2, \\
IA_y &= IX(yo,oo) = 2 \text{Re}(a_{oo} a_{yo}^* + a_{oy} a_{yy}^*), \\
IA_o &= IX(oy,oo) = 2 \text{Re}(a_{oo} a_{oo}^* + a_{oo} a_{yy}^*), \\
IA_{xz} &= IX(zx,oo) = 2 \text{Im}(a_{yo} a_{zz}^* - a_{yo} a_{xx}^*), \\
IK_{zx} &= IX(zo,ox) = -2 \text{Im}(a_{yo} a_{zz}^* + a_{yo} a_{xx}^*), \\
IA_{zz} &= IX(zz,oo) = 2 \text{Re}(a_{oo} a_{zz}^* - a_{xx} a_{yy}^*), \\
IK_{zz} &= IX(zo,oz) = 2 \text{Re}(a_{oo} a_{zz}^* + a_{xx} a_{yy}^*).
\end{align*}
\]

ELECTRON-NUCLEON SCATTERING

Electron scattering has been used for a long time to probe the electromagnetic structure of nucleons and nuclei. However, except for experiments designed to search for parity nonconserving effects, serious consideration \cite{1,2} of the use of polarized electrons in nuclear and particle physics is a relatively recent development when compared with the use of polarized nucleons and deuterons. This delayed application is easily understood, of course, when it is noted that (in the one-photon exchange approximation) the terms in the cross-section that depend on the transverse polarizations, \(p_x \) and \(p_y \), vanish as \(1/\gamma = m_e E \) in the scattering of polarized electrons \cite{3}. This relativistic behavior may be understood, heuristically, from the Lorentz transformation of the electron spin four-vector defined in the rest frame, \(S^0 = (0;s) = (0;s_x,s_y,s_z) \). Under a Lorentz boost of \(\beta \) in the z direction,

\[
S = L_z(\beta) S^0 = \begin{pmatrix} \gamma & 0 & 0 & \beta \gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \beta \gamma & 0 & 0 & \gamma \end{pmatrix} \begin{pmatrix} 0 \\ s_x \\ s_y \\ s_z \end{pmatrix} = \gamma \begin{pmatrix} \beta s_z \\ s_x/\gamma \\ s_y/\gamma \\ s_z \end{pmatrix},
\]

and, relative to the helicity \(s_z \), the transverse spin components vanish as \(1/\gamma \). Thus, at the electron energies of interest in nuclear and particle physics, except for a measurement of the PNC longitudinal (helicity) analyzing power \(A_z \),
nothing more is learned with polarized electrons (alone) than is available from
the scattering of unpolarized electrons. As has become clear, however, during the
past two decades of hadronic scattering, there are other (two-spin) observables such
as polarization-transfer coefficients, $K_{jm} = \langle \rho_{j}\sigma_{m}\rangle$, and spin-correlation
coefficients, $A_{jk} = \langle \rho_{j}\sigma_{k}\rangle$, which provide information concerning the spin
dependence of the interactions that can never be gleaned from unpolarized cross-
sections alone. These observables became experimentally accessible with useful
precision during that period only through the development of efficient polarimeters
and of polarized targets. It is that development, then, that has really made it
possible for electron scattering to join, experimentally, the field of spin physics.

The vanishing, then, of the electron transverse-spin amplitudes $a_{0y}, a_{xy},$
and a_{yy}, reduces (4) to

$$M = a_{00} + a_{yy}\sigma_{0y} + a_{zz}\sigma_{zz}. \tag{6}$$

Thus, the relativistic nature of the electron results in a remarkable simplification of
the scattering process. With the number of amplitudes reduced to three, the
independent observables are reduced to nine. In the process, all of the amplitudes
that flip the electron helicity have vanished, so the electron helicity is conserved.
The correlated result from (5) is that

$$A_{y0} = 0,$$

$$A_{zx} = -K_{zx}, \quad A_{zz} = K_{zz}. \tag{7} \tag{8}$$

These results are all known [2], but the relativistic origin of the "turn around"
relations (8) had not been noted explicitly. These relations have important
experimental consequences, since, with them, a double-scattering experiment to
determine a polarization-transfer coefficient K_{jk} can, in principle, always be
replaced by a single-scattering experiment to determine the equivalent spin-
correlation coefficient A_{jk}. Further simplification results from the dynamical
description of the electron scattering process in the one-photon exchange plane-
wave Born approximation. One can associate the surviving amplitudes of (6) with
components of the hadronic electromagnetic current. The nucleon electromagnetic
current, in terms of the two-component nucleon spinors, is [4]

$$J_{\mu} = X_{\mu}^{\dagger} M_{\mu} x_{i},$$

with

$$M^{0} = 2imGE\sigma_{y},$$

$$M^{1} = iqGM\sigma_{y},$$

$$M^{2} = -iqGM\sigma_{x},$$

$$M^{3} = 0. \tag{9}$$

$GE(q^{2}) = \sqrt{4\pi FT/(1+\tau)}$ and $GM(q^{2}) = -\sqrt{2\pi FT/\sqrt{\tau(1+\tau)}}$ are the charge and
magnetic form factors of the nucleon, m is the nucleon mass, q is the four-
momentum transfer, and $\tau = q^{2}/4m^{2}$. Here, the longitudinal, z, coordinate
direction is taken along the momentum transfer q, which is effectively the x
coordinate in the helicity frame of (4). Thus, the transformation from the helicity frame to this in-plane transversity frame is given by \(\sigma_z \to \sigma'_{x} \) and \(\sigma_x \to -\sigma'_{z} \), where the primed coordinates refer to this final-state transversity frame, in which (6) becomes

\[
M = a_{00} + a_{0y} \sigma_{0y} + a_{zx'} \sigma_{zx'}.
\]

(10)

By inspection, noting that the \(\sigma \) components in (9) are the \(\sigma_k \) of (1), the hadronic-current contributions to these amplitudes are shown explicitly in

\[
a_{00} = 2i m G_E C_{00}(\theta), \quad a_{0y} = q G_M C_{0y}(\theta), \quad a_{zx'} = -iq G_M C_{zx'}(\theta),
\]

(11)

where the \(C_{jk}(\theta) \) are the electron kinematical factors. Thus, the independent amplitudes are reduced to the two that correspond to \(G_E \) and \(G_M \), which has long been established. However, it is interesting to see these results emerge, as they must, from the general formalism of this spin structure, and to see that the one-photon exchange electron-scattering process is a particularly simple example. From (5) and (11), then,

\[
I = |a_{00}|^2 + |a_{0y}|^2 + |a_{zx'}|^2 = C_{00}^2 + 4m^2 G_E^2 + (C_{0y}^2 + C_{zx'}^2) q^2 G_M^2
\]

\[
I a_{0y} = 2Re a_{00} a_{0y}^* = 0,
I a_{zx'} = 2Re a_{00} a_{zx'}^* = -C_{00} C_{zx'} q G_M G_E,
I a_{zz'} = 2Im a_{0y} a_{zx'}^* = C_{0y} C_{zx'} 2q G_M^2.
\]

(12)

In this example of elastic electron scattering as a special case of the general formalism, some results emerge more transparently than from the detailed calculations themselves. Here, one readily sees that the projectile analyzing power \(A_{0y} = 0 \) from the relativistic electron helicity conservation, while the target analyzing power \(A_{0y} = 0 \) from the dynamics of the one-photon exchange process. One final consequence of the results (12) is that only two of the three surviving observables are independent. In view of the recognized importance of providing a more accurate determination of the charge form factor of the neutron, (12) shows that \(A_{zx'} \) is the observable most sensitive to \(G_E^n \), depending linearly on it [1].

ACKNOWLEDGMENTS

This work was partially supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

REFERENCES
