Title
RADIOLYTIC CLEAVAGE OF THE PEPTIDE MAIN-CHAIN IN CONCENTRATED AQUEOUS SOLUTION: ENERGY LEVEL OF EXCITED-MOLECULE INTERMEDIATES

Permalink
https://escholarship.org/uc/item/35k7r10q

Authors
Rodgers, Michael A.J.
Sokol, Harvey A.
Garrison, Warren M.

Publication Date
1970-05-01
RADIOLYTIC CLEAVAGE OF THE PEPTIDE MAIN-CHAIN IN CONCENTRATED AQUEOUS SOLUTION: ENERGY LEVEL OF EXCITED-MOLECULE INTERMEDIATES

Received Lawrence Radiation Laboratory
JUN 15 1970
Michael A. J. Rodgers, Harvey A. Sokol, and Warren M. Garrison
LIBRARY AND DOCUMENTS SECTION
May 1970

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

LAWRENCE RADIATION LABORATORY
UNIVERSITY of CALIFORNIA BERKELEY
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
The γ-radiolysis of oxygen-free solutions of simple peptides such as N-acetylglycine and N-acetylalanine at concentrations above 0.1 M leads to formation of excited species RCONHCHR₂⁺. Reactions of these excited-molecule intermediates lead to cleavage of the peptide main-chain with formation of amide and fatty acid functions. Through use of a series of aromatic second-solute as excitation quenchers it is possible to assign the energy level of RCONHCHR₂⁺ at ~3.5 eV.

In the γ-radiolysis of dilute aqueous solutions, the observed chemical changes arise through reactions of solute with the hydrated electron and the radicals OH and H which are produced in the radiation-induced decomposition of solvent water (1-4).³

\[H_2O \rightarrow H_2O_2, H_2, OH, H, e_{aq}^-, H^+ \]

Studies of the radiation chemistry of simple peptides such as N-acetylglycine and N-acetylalanine in dilute oxygen-free solution have shown that labile species e⁻aqu, OH, and H are preferentially removed through reaction at the peptide main chain. Such reactions do not, however, lead to main-chain cleavage in any appreciable yield (5-8). Small amounts of amide-like products are produced but the ammonia yield on mild hydrolysis is relatively low with \(G(\text{NH}_3) \approx 0.4 \).

¹This work was performed under the auspices of the U. S. Atomic Energy Commission.
²Present address: Chemistry Department, University of Manchester, Manchester, England.
³Bielski and Allen (4) report the following 100 eV yields (G values) for reaction 1: \(G_{OH} = 2.74, G_{e^-}_{aq} = 2.76, G_H = 0.55, G_{H_2} = 0.40, G_{H_2O_2} = 1.00 \).
We have also observed (7) that as the peptide concentration is increased above $\sim 0.1 \text{ M}$, the amide yield increases abruptly and approaches a limiting value of $G(\text{NH}_3) \approx 3$ in the concentration range 2M to 3M. We suggested in a preliminary report (7) that degradation of the peptide main-chain at high solute concentrations involves excited-molecule reactions. The present work extends the preliminary findings and provides experimental evidence that the excited level of N-acetyllalanine corresponds to $\sim 3.5 \text{ eV}$.

Materials and Methods

The N-acetyllalanine was obtained from Cyclo Chemical Corp. (NRC grade I) and was recrystallized twice from water. Water used in preparation of solutions was from a Barnstead still and was redistilled first from alkaline permanganate and then from phosphoric acid. The pH adjustments were made with sodium hydroxide.

Pyrex ampoules containing 10 ml of solution were de-gassed on the vacuum line and then sealed off with the torch. They were irradiated in a $10 \text{ kc} ^{60}\text{Co Gamma Cell (ambient temperature } \sim 35^\circ\text{C) at a dose-rate of}$

$$1 \times 10^{18} \text{ eV/gm-min } [G(\text{Fe}^{3+} = 15.5; \varepsilon_{305} = 2180 \text{ at } 24^\circ\text{C}].$$

Amide ammonia was determined after a modification of the method of Conway (9). Propionic acid was assayed by vapor-phase chromatography (10). Carbonyl products (pyruvic acid plus acetaldehyde) were determined after the method of Johnson and Scholes (11).

Results and Discussion

The radiation chemistry of N-acetylglycine and N-acetyllalanine in dilute, neutral solution in the absence of O_2 may be represented (6,8,12) in terms of the radiation-induced step 1 followed by

$$e_{\text{aq}}^- + \text{RCONHCHR}_2 \rightarrow \text{R}^\cdot(\text{O}^-)\text{NHCHR}_2$$

(2)
The radical products of reactions 2, 3 are subsequently removed mainly through the reconstitution reaction

$$H_2O + R'\cdot (O^-)NHCR + RCONHCR \rightarrow 2RCONHCHR_2 + OH^-$$ \hspace{1cm} (4)

A fraction of the RCONHCHR_2 radicals undergo further oxidation of the type

$$2RCONHCHR_2 \rightarrow RCON=CHR_2 + RCONHCHR_2$$ \hspace{1cm} (5)

$$H_2O_2 + RCONHCHR_2 \rightarrow RCONC(OH)R_2 + OH$$ \hspace{1cm} (6)

where the H_2O_2 of reaction 6 is derived from the radiation-induced step 1. The oxidized products of reactions 5, 6 are labile and readily decompose on mild hydrolysis

$$H_2O + RCON=CHR_2 \rightarrow RCONH_2 + R_2CO$$ \hspace{1cm} (7)

$$RCONC(OH)R_2 \rightarrow RCONH_2 + R_2CO$$ \hspace{1cm} (8)

$$H_2O + RCONH_2 \rightarrow RCOOH + NH_3$$ \hspace{1cm} (9)

to give $G(NH_3) = G(R_2CO) = 0.4$.

Although reactions 1–9 provide an explanation of the radiation chemistry of the simpler N-acetyl amino acids in dilute solution, other processes become of major importance at higher solute concentrations. In the case of N-acetylalanine there is a very marked increase in the amide ammonia yield as the solute concentration is increased above 0.1 M as shown in Figure 1. We also see that the carbonyl yield is essentially independent of solute concentration over the range studied. Propionic acid is the principle concomitant product associated with the enhancement in the amide yield from N-acetylalanine.

The production of amide and fatty acid at the higher solute concentrations does not appear to be related in any significant way to the reactions of OH, H, e_aq. We have found (7) that addition of second-solutes at concentrations
sufficient to quantitatively scavenge the products of water radiolysis has relatively little effect on the amide yield in concentrated aqueous solution. The evidence is that a new reaction mode sets in at concentrations above 0.1 M. We have suggested (7) that such reaction is of the form

\[e^- + \text{RCONHCHR}_2 \rightarrow \text{RCONHCHR}^*_2 + e \]

\[\text{RCONHCHR}^*_2 + \text{RCONHCHR}_2 \rightarrow \text{RCONHR}_2 + \text{RCONH}_2 + \text{CHR}_2 \]

Platzman (13) proposed some years ago that in the \(\gamma \)-radiolysis of concentrated aqueous solutions the solute may undergo electronic excitation through interaction with low-energy electrons as formulated in equation 10.

Now, aromatic compounds are, of course, known to be effective scavengers of excited states providing the energy level of the aromatic compound is lower than that of the excited species (14). We find experimentally that naphthalene sulfonic acid, benzoic acid and benzaldehyde are remarkably effective in quenching the formation of amide ammonia in 2M N-acetylanine. Phenol and benzene sulfonic acid on the other hand are without effect even at the higher concentrations. Typical data are summarized in Figure 2.

The reason that certain aromatic compounds are effective quenchers and others are not becomes evident on examination of the energy-level diagram given in Figure 3. Data for the singlet and triplet levels of the aromatic compounds are taken from Calvert and Pitts (15). The value of the singlet level of N-acetylanalanine is from the work of Saidel (16). We note first that although all of the aromatic solutes studied here have singlet levels below the peptide upper singlet all are not effective quenchers as we have noted. The correlation appears when the triplet levels are considered. We see that those compounds that are effective quenchers viz., benzaldehyde, naphthalene sulfonic acid, and benzoic acid have the lower triplet levels as compared to phenol and benzene sulfonic acid. The change from quenching to nonquenching occurs between benzoic acid (27,200 cm\(^{-1}\)) and phenol (28,500 cm\(^{-1}\)). In other words
the energy of the excited state, RCONHCHR₂\(^*\), in the case of N-acetylalanine must be between these two values, at \(\approx 28,000 \text{ cm}^{-1} \approx 80 \text{ kcal} \approx 3.5 \text{ eV}\).
References

Legends for Figures

Figure 1. Ammonia (○), propionic acid (□), and carbonyl (△) yields as a function of N-acetylaminoine concentration in oxygen-free solution at pH 7 under γ-radiolysis.

Figure 2. Effects of excitation scavengers on ammonia yields in oxygen-free, 2M N-acetylaminoine solutions under γ radiolysis; benzene sulfonic acid (○), phenol (●), benzoic acid (○), naphthalene sulfonic acid (●).

Figure 3. Singlet (—) and triplet (—) energy levels of excitation scavengers used in the present study. The line (···) represents the energy level of RCONHCHR₂.
Fig. 1

G (product) vs. Acetyllalanine (M)

XBL705-2908
Fig. 3

- Benzaldehyde
- Napthalene sulfonic acid
- Benzoic acid
- Peptide
- Phenol
- Benzene sulfonic acid

cm⁻¹ (x10³)
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.