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2D LIDAR Aided INS for Vehicle Positioning in Urban Environments

Sheng Zhao and Jay A. Farrell

Abstract— This paper presents a novel method to utilize 2D
LIDAR for INS (Inertial Navigation System) aiding to improve
3D vehicle position estimation accuracy, especially when GNSS
signals are shadowed. In the proposed framework, 2D LIDAR
aiding is carried out without imposing any assumptions on
the vehicle motion (e.g. we allow full six degree-of freedom
motion). To achieve this, a closed-form formula is derived to
predict the line measurement in the LIDAR’s frame. This makes
the feature association, residual formation and GUI display
possible. With this formula, the Extended Kalman Filter (EKF)
can be employed in a straightforward manner to fuse the
LIDAR and IMU data to estimate the full state of the vehicle.
Preliminary experimental results show the effectiveness of the
LIDAR aiding in reducing the state estimation uncertainty
along certain directions, when GNSS signals are shadowed.

I. INTRODUCTION

Accurate vehicle positioning is an essential requirement
for next generation intelligent transportation systems. GNSS
aided INS is a standard technique that has been widely
adopted to provide accurate vehicle position [3]–[5]. The
drawback of the GNSS based positioning is that when
GNSS signals are shadowed (as in urban environments),
the positioning accuracy degrades at a rate determined by
the IMU quality. This rate can be rapid for MEM’s de-
vices. Without accurate positioning, the performance of other
position-dependent vehicle applications, like lane-departure
warning and route planning are also be affected. Therefore,
there is interest in sensors other than GNSS to aid INS.
Camera, LIDAR and RADAR are all potential sensors that
can improve INS performance. This paper addresses LIDAR
aiding of INS to improve vehicle positioning accuracy. In the
commercial market, there are 2D planar and 3D LIDAR’s.
The 3D LIDAR is able to obtain the 3D point cloud of the
surrounding environment, from which the 3D features can
be extracted. However, the high cost of 3D LIDAR prohibits
the mass deployment in personal vehicles. In contrast, the
2D LIDAR is small and lightweight with rapidly declining
cost. Hence, 2D LIDAR aiding is the focus of this paper.
The concept of LIDAR aiding, as discussed in this paper, is
illustrated in Fig. 1.

The use of 2D LIDAR in robot localization has been
extensively investigated by various authors [1], [10]. In some
existing approaches, the robot pose is tracked either by
matching sequential LIDAR measurements or by matching
the most recent LIDAR measurement with a 2D map. How-
ever, these approaches assume that the robot only moves in
a plane. Unfortunately, the planar motion assumption does
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Fig. 1. The typical use of 2D LIDAR aiding for vehicle positioning in urban
environments. The uncertainty in the longitude direction can be corrected
by GPS, while the LIDAR measurements can provide corrections in the
lateral direction where the GPS signals are blocked. Together, LIDAR and
GPS can reduce estimated position uncertainty to lane-level accuracy. Note,
in practice, the detected line is usually broken into multiple line segments
due to occluding objects (e.g., light poles, trees).

not apply to the vehicles driving on roads. Due to bumps,
road inclination, and the loaded suspension of the vehicle,
the vehicle and sensor motion define 3D trajectories. Motion
estimation in 3D is challenging, requiring estimation of the
position, velocity, attitude and sensor calibration vectors in
three dimensions.

The aiding approach taken in this paper falls into the
category of feature-based navigation wherein the raw LIDAR
data is processed to detect certain 2D shapes (e.g., lines)
that correspond to 3D features (e.g., planes). We assume
that a map of the features is known a priori. The detected
shapes are then associated with the mapped features to form
the measurement residuals. The measurement residuals are
then fed into an Extended Kalman Filter (EKF) to estimate
the state of the vehicle. Since the motion of vehicles is
3D, associating a 2D shape to a 3D feature is difficult,
as it requires the prediction of the nature of the curve of
intersection between the mapped feature and the LIDAR x-
y detection plane.

The features that are commonly used in feature-based
navigation are created by the intersection of the LIDAR x-
y plane with common shapes: points (e.g. corners), arcs of
ellipses (e.g. cylinder created by trees or poles) and lines
(e.g. planes sides of buildings). Since buildings are common
in the urban environment, large, and unmoving, they can be
easily and reliably detected from 2D LIDAR data, this paper
focuses on planar features for LIDAR aiding.



In summary, this paper develops a complete solution that
enables the use of 2D LIDAR in aiding the 3D state estimate
of a vehicle driving in the urban environment. The presen-
tation of this article focuses on INS aiding, but the results
extent directly to encoder based dead-reckoning. Specifically,
for the purposes of feature association, residual formation
and GUI display, this paper derives an exact closed-form
prediction of the location of the line-of-intersection mea-
surement in the LIDAR frame. Due to the simplicity of this
formula, feature association and residual formation can be
easily solved. Moreover, being able to display the predicted
line-of-intersections in the LIDAR’s frame makes it easy to
visualize the residual and debug the code.

The paper is organized as follows. Section II reviews the
related literature. Section III gives an overview of the navi-
gation system. Section IV presents the INS time propagation
of the state and its uncertainty. Section V presents the line
extraction, feature association, residual formation and EKF
LIDAR aiding methods. Section VI presents experimental
results. Section VII concludes the paper.

II. RELATED WORK

Feature-based navigation is a very active research area [7],
[11]. Cameras are popular due to their low cost and capability
to capture 3D features. For aiding purposes, cameras are ef-
fectively treated as angle sensors. The performance of camera
image processing is not robust to the lighting conditions and
is computationally intense.

Compared to cameras, LIDARs are active sensors that
are significantly more robust to lighting conditions. Each
measurement returns angle, range, and reflection intensity.
Utilization of 2D LIDAR in localization has a long history
in the robotics community [8], [10]. There are two dominant
ways to use LIDAR data: raw point measurements processing
[9] and high-level features processing [1]. Often, such work
restricts the motion to 2D. Recently, there is a paper using
2D LIDAR aiding IMU to estimate the 3D state of an
aggressively flying UAV for an indoor environment [2]. The
approach in [2] uses point measurements directly and relies
on a 3D occupancy map of the operating environment. This
approach would be difficult to extend to outdoor applications
because the size of the 3D occupancy map grows cubically
in the outdoor environment.

The most closely related work to this paper is [6] which
uses 2D LIDAR IMU aiding to estimate the 3D position of a
person walking inside a building. The present paper differs
from [6] in the formation of residuals, and residual error
model equations. In [6], they use geometric constraints to
form the residuals, resulting in residual equations that are
nonlinear to the line measurement (φ and ρ, see Section
V) noise components. Herein, the measurement residuals
are formed directly resulting in equations that are linear
in the line measurement noise components. In addition,
the residual formulation herein is more natural – the error
between the measured line and the predicted line. Hence, the
measurements, predicted measurements and residuals can be
easily visualized for a GUI and for debugging.

III. NAVIGATION SYSTEM OVERVIEW

The system considered in this paper includes three sensors:
an Inertial Measurement Unit (IMU), a planar LIDAR, and
a Global Navigation Satellite System (GNSS) receiver. The
main focus of this paper is on LIDAR aiding of the IMU
system. But in a realistic application, all available sensors
would be fused to optimally estimate the state vector.

Herein we use {G} to denote the global frame which is
considered to be a non-accelerating and non-rotating frame.
It is also the navigation frame in which the estimated position
and velocity will be resolved. We use {I} to denote the IMU
frame, and {L} to denote the LIDAR frame.

IV. INS DESCRIPTION

This section is divided into four parts. Subsection IV-A
introduces the IMU measurements. Subsection IV-B presents
the model of the actual system. Subsection IV-C presents the
navigation system time propagation equations. Subsection
IV-D presents the error dynamic model.

A. IMU
The IMU provides measurements of rotational velocity

(ωm(t)) and specific force (am(t)), both are expressed in
IMU frame:

ωm(t) = IωGI(t) + Ibg(t) + ng(t) (1)

am(t) = I
GR(GaGI(t)− Gg) + Iba(t) + na(t) (2)

where ωGI and aGI are the angular rate and the acceleration
vectors of the {I}-frame with respect to the {G}-frame, Gg
is the gravity vector in {G}-frame, Ibg(t) and Iba(t) are
time correlated sensor errors that we will refer to as biases,
and ng(t) and na(t) represent white Gaussian measurement
noise processes with power spectral densities (PSD) Qa and
Qg , respectively.

B. Nature
The kinematic model of the IMU motion in the {G}-frame

based on the inputs IωGI and GaGI is
GṗI(t) = GvI(t),

Gv̇I(t) = GaGI(t) (3)
G
I Ṙ = G

I RbIωGI(t)×c (4)

where bω×c ,

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 .
The state vector is xI =

[
Gp>I

Gv>I
Gθ>I

]>
, where

GθI represents any one of the equivalent (attitude) represen-
tations (e.g., Euler angles or quaternion) for GI R.

C. Navigation System
The navigation system maintains the estimated state vector

x̂ =
[
Gp̂>I

Gv̂>I
Gθ̂
>
I

I b̂
>
a

I b̂g
>
]>

by numerically
integrating the following equations:

G ˙̂pI(t) = Gv̂I(t),
G ˙̂vI(t) = GâGI(t) (5)

I ˙̂
bg(t) = 03×1,

I ˙̂
ba(t) = 03×1 (6)

G
I

˙̂
R = G

I R̂bIω̂GI(t)×c (7)



where GâGI and Iω̂GI(t) are computed from the IMU
measurements as

GâGI(t) = G
I R̂

(
am(t)− I b̂a(t)

)
+ Gg (8)

Iω̂GI(t) = ωm(t)− I b̂g(t). (9)

The numerical integration is performed at the IMU sample
rate to propagate the INS state vector between the time
instants when aiding measurements are available.

D. Error Analysis

This section summarizes the model for the INS error state
temporal dynamics (see e.g., Section 11.4 in [3]).

Let x =
[
x>I

I b̃a
> I b̃g

>
]>

. The IMU biases are
modeled as random walk processes

I ḃa = nωa,
I ḃg = nωg (10)

where the power spectral densities of nωa and nωg are the
positive definite matrices Qωa and Qωg , respectively.

The error state vector is defined as

x̃ =
[
Gp̃>I

Gṽ>I
Gδθ> I b̃a

> I b̃g
>
]>

(11)

where x̃ = x − x̂ for position, velocity and biases vectors.
For rotation error, the error angle vector Gδθ represents the
small angle rotation from the actual global frame {G} to the
estimated global frame {Ĝ} (see page 359 in [3]).

G
I R̂ = (I− bGδθ×c)GI R (12)
I
GR = I

GR̂(I− bGδθ×c) (13)
G
I R = (I + bGδθ×c)GI R̂. (14)

The linearized differential equation for the INS error state
is

˙̃x = Fcx̃ + Gcn (15)

where n = [na ng nωa nωg]
> with PSD matrix Q =

diag([Qa,Qg,Qωa,Qωg]). The linearization process and
the matrices Fc and Gc are described in Section 11.4 in [3].
The error covariance is propagated through time according
to

Pk+1 = ΦkPkΦ
>
k + Qdk (16)

where Φk is the discrete-time state transition matrix and
Qdk is the process noise covariance matrix computed from
Fc, Gc, and the PSD matrix Q, see Section 7.2.5.2 in [3].

V. LIDAR PROCESSING

The vehicle is assumed to be operating in a known envi-
ronment where certain plane features have been previously
mapped. The planes may represent, for example, signs or
sides of buildings. The map database is known a priori and
stored onboard the vehicle. For the i-th plane feature, we
store two parameters: Gπi ∈ <3 and Gdi ∈ <+. Hence,
we have a library of mapped plane features, following the
notation in [6]:

GΠ = {Gπi,Gdi}i=1,...,Nπ .

The set
Πi = {Gx ∈ <3|Gπi · Gx = Gdi}

represents the i-th 2D-plane feature in the {G}-frame where
Gπi is the unit normal vector to the plane and Gdi is the
shortest distance to the plane from the {G}-frame origin.

The intersection, if it exists, between the LIDAR measure-
ment plane (i.e., x-y) and any other plane is a line. Such lines
must be detected and tested for association with planes in
the feature library. When a detected line is associated with
a plane in the feature library, then 2D LIDAR based state
correction is possible using an appropriately formed residual
between the two lines.

The k-th scan of the LIDAR at time tk returns a set of
data Dk = {(θi, Ri)}Nli=1 where for the Hokuyo LIDAR,
Nl = 760, θi ∈ [−π2 ,

π
2 ] and Ri is the range measurement.

This section discusses the processing of each LIDAR data
scan Dk to extract lines, to associate extracted lines with
plane features to form line measurements, to compute the
covariance of line measurements, to form the residual mea-
surement between each predicted and extracted line, and to
aid IMU in an EKF framework.

Any line in the LIDAR x-y plane that does not pass
through the origin is uniquely defined by the shortest vector
from the origin of {L}-frame to the line. The shortest vector
is represented as Lx = ρ L`, where L` = [cosφ sinφ 0]> is
a unit vector and ρ is the magnitude of Lx. Because the line-
of-intersection cannot pass through the LIDAR origin, it can
be represented by two parameters: φ and ρ. Let χ = [φ ρ]>.

In this paper, we assumes all the points in one LIDAR scan
are taken simultaneously. This assumption is reasonable at
low speeds. At higher speeds, the method can be extended,
using the IMU data, to compensate for vehicle motion.

A. Measurement Prediction

For various purposes (e.g., association of detected lines
with mapped planar features, measurement residual forma-
tion, and graphical display), it is useful to have formulas to
compute χ̂i = [φ̂i, ρ̂i]

>, when Πi, Gp̂I , GI R̂ and the LIDAR
extrinsic calibration parameters I

LR, IpL, are given.
The problem can be solved in an optimization framework

with two constraints. The first constraint, that the vector Lxi
must be in the LIDAR x-y plane, is

LzL · Lxi = 0 (17)

where LzL = [0 0 1]>. The second constraint is that the end
of the vector Lxi must be on the plane Πi:

(LGRGπi) · Lxi = Ld̂i (18)

where Ld̂i = Gdi − Gπi · (Gp̂I + G
I R̂ IpL). The problem

is to find the shortest vector Lx̂i satisfying constraints (17)
and (18):

Lx̂i = arg min
Lxi

(‖Lxi‖2) (19)

s.t. eqn. (17) and (18). (20)
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Fig. 2. LIDAR’s GUI showing raw measurements (purple dots), the
extracted line (red) and the predicted line (green).

The closed form solution is (see the appendix)

φ̂i = arctan

(
sgn(Ld̂i)

a2

a1

)
, ρ̂i =

|Ld̂i|√
a2

1 + a2
2

(21)

where Lai = [a1 a2 a3]> and Lai = L
GRGπi. The computed

variable χ̂i = [φ̂i ρ̂i]
> allows prediction of the line-of-

intersection in the LIDAR frame, which is required both for
aiding and for a LIDAR frame GUI. The LIDAR GUI is
shown in Fig. 2.

B. Line Extraction & Feature Association

This section discusses the method to obtain line measure-
ments, represented by χ, from Dk and how to associate
mapped features to the line measurements.

The starting point is a set of 2D points Lpi =
[xi yi]

>, i = 1 . . . n extracted from the k-th LIDAR data
scan Dk and represented in {L}-frame that are assumed to
be associated with a line. This set of points could be found,
for example, by the Hough transform or the Split-and-Merge
algorithm [8]. The LIDAR raw data Ri and θi for the i-th
point are related to the {L}-frame rectangular coordinates
by Lpi = Ri[cos θi sin θi]

>. We define the range and angle
measurement noise to be n̄ = [nR nθ]

>, and assume nR and
nθ are uncorrelated zero mean Gaussian noises with standard
deviation σR and σθ respectively. The covariance of n̄ is

Pn̄ =

[
σ2
R 0
0 σ2

θ

]
. (22)

1) Line Fitting: If the set of points was exactly on the
line χ, then they would each satisfy the equation

0 = LN · Lpi − ρ (23)

which is equivalent to ᾱx + β̄y = ρ. For our set of points
{Lpi}ni=1 the distance ρ and the unit vector LN> = [ᾱ β̄] =
[cosφ sinφ] are unknown. In addition, the point locations,
are computed from the noise corrupted raw LIDAR data.

For any hypothesized χ, due to the measurement noise n̄,
the distance of each point Lpi from the line

rli = LN · Lpi − ρ (24)

is a random variable. The (linearized) covariance of rli is
Prli = LM̄iPn̄

(
LM̄i

)>
, where

LM̄i = LN>
[
cos θi −Ri sin θi
sin θi Ri cos θi

]
. (25)

The linearized covariance is accurate when nθ is small,
which is typically the case for LIDAR applications. Under
this assumption, the distribution of M̄i is accurately approx-
imated as Gaussian. For the optimal line, the sequence rli is
zero mean and white.

With the above discussions, the goal of the line fitting
algorithm is to find the line parameters χ that maximizes
the likelihood function

L({rli}ni=1 | χ) = L(rl1 | χ) . . .L(rln | χ) (26)

= exp

(
−1

2

n∑
i=1

r>liP
−1
rli
rli

)
(27)

where we have used the fact that rli is independent of rlj for
i 6= j and dropped the constant of normalization. Because
L({rli}ni=1 | χ) is a nonlinear function of χ, there is no
closed-form solution to the above problem. However, the
minimum of the cost function can be found rapidly by an
iterative algorithm.

Algorithm Setup: To fit a line, we reparameterize it using
[α, β] = [ᾱ, β̄]/ρ as

αx+ βy − 1 = 0. (28)

This representation is appropriate for LIDAR applications
because any detected line cannot pass through the origin of
the LIDAR frame (i.e., ρ 6= 0).

Define η = [α β]>, then, from eqn. (24), we can form a
linear estimation problem as

Aη = b +
1

ρ
rl (29)

where A = [Lp1, . . . ,
Lpn]>, b = [1, . . . , 1]> and rl =

[rl1 , . . . , rln ]>. The symbol rl ∈ <n represents error in
units of meters with cov(rl) = Prl = diag(Prl1 , . . . , Prln )

as discussed in eqn. (25), while nL , 1
ρrl is a dimensionless

quantity with cov(nL) = PnL = 1
ρ2 Prl .

We also define a function χ = h(η) to extract the line
parameter χ from η. The function h(·) is defined as

φ = arctan

(
β

α

)
, ρ =

1

‖η‖
. (30)

Initialization: At the initialization, because χ is not yet
available, PnL and Pnl cannot be computed; therefore, mini-
mization of eqn. (27) is not possible. Instead, we approximate
Pnl = I and minimize

∑n
i=1 r

>
li
rli using η0 that is the

solution of
(
A>A

)
η0 = A>b. Then we have χ0 = h(η0).

Step 1: Let the superscript k denote the k-th iteration. Use
eqn. (25) with χk−1 to compute PnL . Then we re-solve (29)
as (A>P−1

nLA)ηk = A>P−1
nLb for ηk.

Step 2: Compute χk using χk = h(ηk).
Step 3: If

∥∥χk − χk−1
∥∥ > δc, then return to Step1;

otherwise the algorithm ends, having computed χk. The
parameter δc is chosen to trade off the accuracy and speed.

At the conclusion of the iteration, the covariance of ηk

is Pη = (A>P−1
nLA)−1. The covariance of χk can be



computed by linearizing h(·) around ηk to get χ̃ = Hη̃,
where

H =

[
− β
α2+β2

α
α2+β2

− α
‖η‖3 − β

‖η‖3

]
. (31)

Hence the linearized covariance of χk is

Pχ = HPηH>. (32)

Note: In practice, this algorithm converges rapidly. With
δc chosen to be 10−5, the algorithm converges in 2 or 3
iterations.

Note: In practice, QR decomposition is used to compute
ηk to improve the computational efficiency.

Note: As the number of points n associated with the line
increases, the variance of the estimated line parameter η
decreases. This can be seen from

Pη = (A>P−1
nLA)−1 (33)

= ((P−>/2nL A)>(P−>/2nL A))−1 (34)

= (Ā>Ā)−1 (35)

= (Lp̄1
Lp̄>1 + . . .+ Lp̄n

Lp̄>n )−1. (36)

The diagonal elements of each Lp̄i
Lp̄>i are positive. Hence,

the more points used in the line fitting, the smaller the
diagonal elements of Pη will be.

2) Line Merging: Several lines may be extracted from Dk.
The i-th and j-th lines can be merged if their Mahalanobis
Distance passes the chi-squared test:∥∥χi − χj∥∥2

(Pχi
+Pχj

)
< δd (37)

where the threshold δd is computed from the chi-squared
distribution.

After we decide to merge the i-th and j-th line, we group
the set of points together from two lines and then go back
to the line fitting step to obtain the merged line parameters.

3) Feature Association: After the line merging step, the
j-th line measurement will be associated to no more than
one of the mapped features to form its residual. Feature
association uses the Mahalanobis Distance: find the k-th
mapped feature that minimizes

∥∥χj − χ̂k∥∥Pχj

, where χ̂k
is the predicted line-of-intersection for the k-th mapped
feature computed from eqn. (21). If the k-th mapped feature
satisfies

∥∥χj − χ̂k∥∥Pχj

< δa, then we associate the k-th
mapped feature to the j-th line masurement. Otherwise no
measurement is associated to this feature. The threshold δa
is obtained from the chi-squared distribution.

C. LIDAR Residual Formation

To use measurements in the EKF, we define the measure-
ment equation and the measurement prediction as:

y = h(x,n), ŷ = h(x̂,0) (38)

where h(·, ·) is a nonlinear function of the current state x
and measurement noise n, y is the measurement vector and
ŷ is the predicted measurement. Then the residual is defined

as r = y− ŷ. The measurement equation h(x,n) linearized
around the estimated state x̂ is

r = Hx̃ + Γn (39)

where x̃ = x− x̂.
In LIDAR aiding, we use two measurements: φ and ρ.

Here we define φ and ρ to be the measurements obtained
from the line extraction step. The measurement noise is
defined as n = [φ̃ ρ̃]>, and we assume n to be zero-mean,
white Gaussian with covariance matrix R , Pχ, where Pχ

is given in eqn. (32). The measurement equations of φ and
ρ are given in eqn. (21), and are rewritten here for clarity:

φ = h1(x,n) = arctan

(
sgn(Ldi)

a2

a1

)
+ φ̃, (40)

ρ = h2(x,n) =
|Ldi|√
a2

1 + a2
2

+ ρ̃ (41)

where Ldi = Gdi−Gπi·(GpI+G
I RIpL), Lai = [a1 a2 a3]>

and Lai = L
GRGπi. The prediction φ̂ and ρ̂ are computed

by φ̂ = h1(x̂,0) and ρ̂ = h2(x̂,0). Hence we can define
two residuals r1 and r2 to be r1 = φ − φ̂ and r2 = ρ − ρ̂.
Since r1 is an angle residual, it is normalized into [−π, π]
in practice. In the following we will form the residual model
equations in the form of eqn. (39) for φ and ρ, respectively.

1) Residual of φ: For φ, we have ∂h1(·)
∂Lai

= 1
µλ
>, where

µ = a2
1+a2

2 and λ> = sgn(Ld̂i)
[
−a2 a1 0

]
. To compute

∂Lai
∂(δθ) , we linearize Lai using the estimated state to obtain

Lai = L
GRGπi (42)

= L
I RI

GRGπi (43)

= L
I RI

GR̂(I− bδθ×c)Gπi (44)

= Lâi + L
I RI

GR̂bGπi×cδθ. (45)

The above equation yields

∂Lai
∂(δθ)

= L
I RI

GR̂bGπi×c. (46)

Thus we can write

∂h1(·)
∂(δθ)

=
∂h1(·)
∂Lai

· ∂
Lai

∂(δθ)
(47)

=
1

µ
λ>LI RI

GR̂bGπi×c. (48)

Hence the linearized residual model for φ is

r1 = h>1 x̃ + φ̃ (49)

where h>1 =
[
01×6

∂h1(·)
∂(δθ) 01×6

]
.

2) Residual of ρ: For ρ, we have

∂h2(·)
∂GpI

=
1
√
µ

sgn(Ld̂i)
∂Ldi
∂GpI

+ Ldi

(
κ>

∂Lai
∂GpI

)
(50)

=
1
√
µ

sgn(Ld̂i)(−Gπ>i ) + Ldi(κ
> · 0) (51)

= −sgn(Ld̂i)
Gπ>i√
µ

(52)



where κ> , ∂(1/
√
µ)

∂Lai
= −µ− 3

2

[
a1 a2 0

]
. In addition,

we have

∂h2(·)
∂(δθ)

=
1
√
µ

sgn(Ld̂i)
∂Ldi
∂(δθ)

+ Ldi

(
κ>

∂Lai
∂(δθ)

)
. (53)

The partial ∂Lai
∂(δθ) is given in eqn. (46). To compute ∂Ldi

∂(δθ) ,
we have
Ldi = Gdi − Gπi · (Gp̂I + G

I RIpL) (54)

= Gdi − Gπi · Gp̂I − Gπi · (I + bδθ×c)GI R̂IpL (55)

= Ld̂i + Gπi · bGI R̂IpL×cδθ. (56)

So

∂Ldi
∂(δθ)

= Gπ>i bGI R̂IpL×c. (57)

Substituting eqn. (46) and (57) into eqn. (53) yields

∂h2(·)
∂(δθ)

= sgn(Ld̂i)
Gπ>i√
µ
bGI R̂IpL×c

+ Ldi(κ
>L
I RI

GR̂bGπi×c). (58)

Hence the linearized residual model of ρ is

r2 = h>2 x̃ + ρ̃ (59)

where h>2 =
[
∂h2(·)
∂GpI

01×3
∂h2(·)
∂(δθ) 01×6

]
.

3) Stacked Residual Dynamics: Stacking (49) and (59)
together, we obtain the residual dynamics in the form shown
in (39), with

H =
[
h1 h2

]>
, Γ = I (60)

and the residual vector r =
[
r1 r2

]>
.

D. Measurement Aiding

The Kalman filter gain is computed as

K = Pk+1|kH
>(HPk+1|kH

> + R)−1. (61)

The state and covariance measurement update equations are

x̂k+1|k+1 = x̂k+1|k + Kr,

Pk+1|k+1 = (I−KH)Pk+1|k(I−KH)> + KRK>.

VI. EXPERIMENTAL RESULTS

The IMU used in this project is a MEM’s device with 60
Hz bandwidth that provides measurements at 200 Hz. The
LIDAR scan rate is 20 Hz, but we only use its measurements
to aid the INS at 1.0 Hz. The effective LIDAR range is
0.3 to 30 m, and the angular resolution is 0.25 degree.
The scanning angle is configured to be 180 degrees. GPS
aiding occurs at 1.0 Hz. It provides range, Doppler, phase
measurements. With carrier phase differential GPS aided
INS, the positioning accuracy will be centimeter to decimeter
level when we have an open sky.

In typical urban environments, GPS signals are blocked by
buildings in the lateral direction while the longitude direction
remains relatively open. As our GNSS+INS system uses
a tightly coupled design, the positioning uncertainty will

The plane feature (the wall) The vehicle trajectory 

Fig. 3. The vehicle trajectory and the plane feature. The red line points
due east.

therefore be larger in the lateral direction. The goal is to
use the LIDAR to aid state estimation by detecting features
along the road in the lateral direction. Therefore, the LIDAR
is mounted on the right hand side of the vehicle, pointing to
the right. This mounting also facilitates detection of features
such as the sides of buildings in the urban environment. The
IMU/GPS unit is mounted on top center of the vehicle.

Only one feature Π1 is mapped for this preliminary
experimental demonstration. The parameters of this feature
are Gπ1 = [1 0 0]> and the Gd1 = 2771.93. The method
extends directly to larger numbers of mapped planes.

We simulate the urban environment by driving the car
parallel to a building in a parking lot (see Fig. 3). In this
experiment, LIDAR aiding is on for the entire time. The
GPS aiding is on in the beginning and turned off at time 70
sec to simulate the loss of GPS signals. The plane feature
can be detected by LIDAR roughly after 65 sec. In Fig.
4, the measurement residuals and the number of points
used to fit the line measurement are shown. The standard
deviation of the estimated position and yaw angle are given
in Fig. 5. In Fig. 4, we can see that even with GPS aiding
off after 70 sec, the use of the LIDAR residuals by the
EKF keeps the LIDAR residuals small and within the three
standard deviation prediction for the residuals (blue curve),
which is computed in part using the covariance of the line
parameters. We plot the predicted 3σ of residuals (blue) using
the theory presented in Section V, which is time varying as a
function of the number of LIDAR points used for line fitting.
This is consistent with the time variation of the observed
residuals (red). The variation in the number of points used
for line fitting is due to the trees in front of the building
cutting the line-of-intersection into multiple line segments.
In spite of the interference from trees, our LIDAR processing
methods can still merge the line segments into a single line
measurement to aid the INS. Fig. 5 shows that the estimation
accuracy in the north direction and the yaw angle remains
accurate. This is due to the LIDAR aiding using a wall
with its normal vector in the north direction. In contrast,
the uncertainty along east and down directions grow because
these directions are not observable from (i.e., are orthogonal
to) the LIDAR measurement. The increase in the standard
deviation in the north direction near t = 80 sec is due to the
decreased number of points used in the line fitting during
that period of time.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a novel solution utilizing 2D LIDAR to
aid an INS to maintain or improve the 3D vehicle positioning
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Fig. 4. Feature residuals (red), 3σ standard deviation (blue) and the number
of points used to fit the line (blue dots).
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Fig. 5. The standard deviation (1σ) of the estimated position and yaw.

accuracy, especially when the GNSS signals are shadowed.
An analytic formula is derived to predict the line measure-
ment in the LIDAR frame and based on this formula, new
solutions are proposed for the feature association, residual
formation and GUI display. Preliminary experimental results
show the effectiveness of the LIDAR aiding to reduce the
lateral direction uncertainty along the road when the GPS
signals are unavailable.
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APPENDIX

This section derives eqn. (21) which is a closed-form
solution to the optimization problem of eqn. (19). The
solution of this optimization problem is

Lx̂i = A>(AA>)−1b (62)

where A =
[
LzL

L
GRGπi

]>
and b =

[
0 Ld̂i

]>
. Let

a = L
GRGπi = [a1 a2 a3]> which is a unit vector. The

solution procedes as follows:

(AA>)−1 =

[
1 −a3

−a3 1

]
1− a2

3

. (63)

Substituting eqn. (63) into eqn. (62) yields

Lx̂i = A>(AA>)−1b =

a1

a2

0

 Ld̂i
a2

1 + a2
2

. (64)

Therefore, we have

φ̂i = arctan

(
sgn(Ld̂i)

a2

a1

)
, ρ̂i =

|Ld̂i|√
a2

1 + a2
2

. (65)




