Title
PHOTOELECTRON DIFFRACTION ANALYSIS OF THE STRUCTURE OF c(2x2)O ON Ni(001)

Permalink
https://escholarship.org/uc/item/3635m5tg

Author
Tong, S.Y.

Publication Date
1983
Submitted to Physical Review B

PHOTOELECTRON DIFFRACTION ANALYSIS OF THE STRUCTURE OF c(2x2)O ON Ni(001)

S.Y. Tong, W.M. Kang, D.H. Rosenblatt, J.G. Tobin, and D.A. Shirley

January 1983

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Photoelectron Diffraction Analysis of the Structure of \(\text{c}(2\times2)\) on \(\text{Ni}(001) \)

S. Y. Tong* and W. M. Kang
Laboratory for Surface Studies and Department of Physics
University of Wisconsin-Milwaukee, WI 53201

and

D. H. Rosenblatt,** J. G. Tobin, and D. A. Shirley
Materials and Molecular Research Division
Lawrence Berkeley Laboratory
and
Department of Chemistry
University of California
Berkeley, California 94720

* Visiting Investigator, Synchrotron Radiation Center, Stoughton, WI 53589.

**Permanent Address: Watkins-Johnson Company, Palo Alto, CA 94304.
Abstract

Calculated energy-dependent photoelectron diffraction (EDPD) curves for oxygen-nickel perpendicular spacings (d_\perp) between 0.0 and 1.2 Å are presented and compared with experimental data for the $c(2x2)$ O-Ni(001) system. Using a normalized R factor, we found that the only acceptable agreement is for d_\perp spacings in the range 0.78 to 0.90 Å. The experimental observation that adsorbate-induced modulations remain strong over a wide energy range in EDPD curves but not in low energy electron diffraction (LEED) intensity curves is explained.
1. Introduction

Because of the site specificity of the photoelectron diffraction (PD) process, angle-resolved photoelectron diffraction of core-level electrons has been used to determine the binding location of several adsorbate atoms and one molecule. The coherence length of the diffraction process is about equal to the mean free path of the final-state photoelectron (4-8 Å); therefore, the technique probes the local geometry surrounding the adsorbate site.

The c(2x2)O on Ni(001) system is a very interesting case because studies using different techniques have produced two conflicting results: \(d_\perp \), the spacing between the oxygen layer and the topmost nickel layer, has been found to be either 0.8-0.9 Å [8] or nearly coplanar [9-13]. Earlier, Rosenblatt et al. [7] used energy-dependent photoelectron diffraction (EDPD) to study this system. Searching over \(d_\perp \) spacings between 0.5 Å to 1.7 Å, they found good agreement at \(d_\perp = 0.90 \pm 0.04 \) Å. Smaller \(d_\perp \) spacings were not tested due to difficulty in the computation method. Also, an R-factor analysis was not carried out for this system.

Because of reports of the near coplanar adsorption site for O on Ni(001) we developed a method which allows calculation of emission and diffraction processes in layers having any \(d_\perp \) spacing, including coplanar. We present here, for the first time, EDPD curves for c(2x2) O-Ni(001) with \(d_\perp \) between 0.0 and 0.4 Å. The method is based on the combined space formulation [14] and its details are presented elsewhere [15]. EDPD curves at normal exit angle for \(d_\perp \) values from 0.0 to 0.4 Å were computed in steps of 0.05 Å and from 0.5 to 1.2 Å in steps of 0.1 Å. Five phase shifts were used in the calculation. Other conditions and all dynamical inputs (e.g., phase shifts, inner potential (11.2 eV), inelastic damping, vibration
amplitudes, etc.) are identical to those reported by Rosenblatt et al. Finally, an R-factor analysis was carried out for the full range of \(d_{\perp}\) spacings.

II. Results and Discussion

The comparisons between calculated curves and measured data are shown in Figs. 1 and 2. Starting with the best agreement near 0.9 Å, the agreement worsens as \(d_{\perp}\) is decreased. At \(d_{\perp} = 0.5\) Å, all five experimental peaks at 37, 66, 99, 155, and 193 eV are in disagreement with theory. The worst agreement is in the range \(d_{\perp} = 0.2\) Å to 0.6 Å. As \(d_{\perp}\) is further decreased, agreement improves somewhat in the low energy range. However, even at \(d_{\perp} = 0.0\) Å, the agreement is poor above 80 eV. Thus, according to our visual inspection, there is no acceptable agreement for \(d_{\perp}\) in the range 0.0 to 0.4 Å.

The R-factor analysis is shown in Fig. 3. We used a normalized R factor \((R_N)\) based on putting weights on six individual R factors which were discussed earlier\(^4,16\). The R factors \(R_1, \ldots, R_6\) and \(R_N\) are defined as:

\[
R_1 = A_1 \frac{\Delta E_s}{\Delta E_{\text{tot}}}
\]

\[
R_2 = A_2 \int (l_e - c l_t)^2 dE
\]

\[
R_3 = A_3 \int (l'_e - c l'_t)^2 dE
\]

\[
R_4 = A_4 \int (l''_e - c l''_t)^2 dE
\]

\[
R_5 = A_5 \int \frac{|l''_e - c l''_t| x |l''_e - c l''_t|}{|l'_e| + \max|l'_e|} dE
\]

\[
R_6 = A_6 \frac{(Y_e - Y_t)^2 dE}{(Y_e^2 + Y_t^2) dE}
\]
Here, \(I_e \) are the experimental intensity data, and \(I'_e \) and \(I''_e \) refer to the first and second derivatives of \(I_e \) with respect to energy. \(I_t, I'_t, \) and \(I''_t \) are the corresponding quantities for the calculated intensities. \(\Delta E_s \) is the energy range with slopes of opposite signs and \(\Delta E_{\text{tot}} \) is the total energy range. Also,

\[
R_N = \frac{1}{6} (R_1 + R_2 + R_3 + R_4 + R_5 + R_6) .
\]

(7)

where \(V_o \) is the inner potential and \(E \) is the electron energy, in electron volts, above the vacuum level. The weights are chosen such that the average value of each R-factor over all geometries considered is the same. This ensures that the influence of each R factor is roughly the same, and in taking the overall average, no one R factor dominates the others. In earlier works\(^4,16\) we have set the average of each R factor over all geometries considered to unity. In this work, in order to give \(R_N \) a quantitative meaning, we set each average equal to the average of the Zanazzi-Jona R factor\(^17\) over all geometries tried (\(d_A = 0.0 \) through \(1.2 \) Å). Because the Zanazzi-Jona R factor is widely used, the \(R_N \) obtained here can be directly compared to the values of the Zanazzi-Jona R factor found in other works.

The \(R_N \) has the additional features contained in \(R_1, \ldots, R_6 \).

In the R-factor plot (Fig. 3), we note a deep minimum between 0.8 Å
and 0.9 Å, in complete agreement with the previous discussion based on visual inspection. The minimum of the R-factor curve occurs at 0.85 Å. The value of \(R_N \) is a maximum at \(d_\perp = 0.5 \) Å. As \(d_\perp \) is further decreased, the value of \(R_N \) becomes smaller. However, at \(d_\perp = 0.0 \) Å, the value of \(R_N \) is still larger than 0.2, a value presently considered as the upper bound for a good fit between theory and experiment. In the full range of spacings, \(R_N \leq 0.2 \) only in the region \(d_\perp = 0.78 \) Å - 0.90 Å, again in agreement with our previous discussions based on visual analysis. We also varied the inner potential in steps of 1 eV between 8.2 eV and 13.2 eV and found no improvement on the values of the R factor. We conclude from the R-factor analysis that \(d_\perp = 0.85 \pm 0.04 \) Å.

We now comment on the recent high-resolution electron-energy-loss-spectroscopy (EELS) results. Data indicating a large downshift in the oxygen-nickel frequency from 430 cm\(^{-1}\) for p(2x2) to 310 cm\(^{-1}\) for c(2x2) were reported independently by Anderson\(^9\) and by Lehwald and Ibach\(^10\). No such shift was observed between p(2x2) and c(2x2) S on Ni(001)\(^9\). If we accept the diffraction results using LEED\(^1-4\), surface-EXAFS\(^5\), ion scattering spectroscopy\(^6\), and EDPD (this work and Ref. 7), then most of the c(2x2) oxygen atoms are adsorbed at the 0.8 - 0.9 Å \(d_\perp \) spacing. To explain the large EELS frequency shift without a change in \(d_\perp \), the force constant for O-Ni vibrations must decrease significantly from p(2x2) to c(2x2). Whether such a large decrease is reasonable is unclear, because the surface chemical bond is very poorly understood. Surface-chemistry models published to date have not realistically accounted for the effects on bonding of c(2x2) vs. p(2x2) coverage. These models rely on clusters of single oxygen atoms with many nickel atoms, and do not take into account the effects of neighboring oxygen atoms in the c(2x2) structure. Recent theoretical work by Bauschlicher et al.\(^8\) has brought the prediction of a
near coplanar symmetry for the c(2x2)0 overlayer into question. It will be interesting to learn whether the EELS result is consistent with potential energy curve calculations using larger slab geometries.

III. Comparison Between EDPD and LEED

The strength of our conclusions about d_\perp values as derived from EDPD results is based on the sensitivity of EDPD curves to d_\perp of the O-Ni separation explicitly. Because of the similarities between EDPD and low-energy electron diffraction (LEED), it is useful to point out some important differences. In a LEED intensity-voltage (IV) curve for an integral order spot (e.g. the (00) beam), the diffraction interference between oxygen and nickel is obscured by intensity modulations from the nickel substrate. Assuming normal incidence, we can write the (00) beam intensity as:

$$I_{00} = |f_0 e^{i\phi_0} + e^{2ikx} R_s e^{i\psi_s} + ...|^2$$

where f_0 is the back-scattering amplitude from the oxygen layer, and R_s is that from the nickel substrate slab. The quantities ϕ_0 and ψ_s are their respective phases, k is the electron wave-vector and x is the perpendicular distance between O and the topmost Ni layer. We have taken only the incident beam and one reflected beam in Eq. (11). Inclusion of more beams will complicate matters but will not affect the following arguments. The first term R_s^2 is the (00) beam IV curve for clean nickel. We note that it does not contain the O-Ni spacing x. The second term contains x but is smaller by the ratio $2f_0/R_s$. Thus we have a cosine curve containing the unknown x superposed on I_{00} of clean Ni. At low energies, this produces shifts in peak positions and formation of split peaks and shoulders on I_{00}
of clean nickel. At higher energies, \(f_{\text{o}} \) (backscattering from oxygen) decreases more rapidly than \(R_s \), so we approach the clean nickel IV curve.

It is also clear from Eq. (11) that the Fourier transformation of \(l_{\infty} \) does not readily give distances simply related to \(x \).

In LEED, there is the option of studying an oxygen induced spot (e.g., the \(\frac{1}{2} \frac{1}{2} \) beam). Again, taking only the incident beam and one scattered beam, we can write its leading terms as:

\[
\frac{1}{2} \frac{1}{2} \sim 2R_s f_{\text{o}}^0 \frac{f_{\text{o}}^0}{\pi - \theta} \cos(2kx + \psi_s - \psi_{\theta}) + R_s^2 f_{\text{o}}^2 + \ldots
\]

where \(\theta \) is the angle between the surface normal and the \(\frac{1}{2} \frac{1}{2} \) beam direction. We see from Eq. (12) the leading term of \(\frac{1}{2} \frac{1}{2} \) does depend on \(x \).

However, its intensity is smaller as it contains two scattering off the overlayer: \(f_{\text{o}}^0 \) (backscattering) and \(f_{\pi - \theta}^0 \) (large angle forward scattering). The oxygen-induced spots are very sensitive to the unknown \(x \), but these beams have strong intensities only at low energies. Good surface order and low temperature measurements are essential for obtaining useful half-order LEED IV curves in a wide energy range.

In an EDPO curve, there are no integral-order or half-order directions. Any exit-angle direction has a leading modulation term sensitive to \(x \), the O-Ni spacing. For example, at emission normal to the surface, we can write:

\[
\theta = 0 = A_o^2 + 2A_o^2 R_s \cos(2kx + \psi_s + \phi^+ - \phi^-)
\]

\[
= A_o^2 + 2A_o^2 \sum_{\alpha=1}^{N} R_{\alpha} \cos\left\{ 2k(x + d_{\alpha \perp}) + \phi_{\alpha} + \phi^+ - \phi^- \right\}
\]

where \(A_o \) is the atomic emission amplitude, \(d_{\alpha \perp} \) the perpendicular distance from the 1st nickel layer to the \(\alpha \)th layer, \(R_{\alpha} \) the back-scattering amplitude of the \(\alpha \)th nickel layer, \(\phi_{\alpha} \) is its phase, and \(\phi^+ \) and \(\phi^- \) are the phases of
emission in and out of the solid. Again, for simplicity, we have taken only the direct emission and backscattered directions only. The largest term in Eq. (13) is the first term, but this term is just the atomic emission cross-section, which for states without a Cooper minimum, is a smooth function of energy. The second term in Eq. (14) contains the unknown x and is a cosine modulation. The normalized modulation term

$$\chi = \frac{1 - I}{I_0} - 2 \sum_{\alpha=1}^{N} R_\alpha \cos\left\{2k(x+d_\alpha) + \phi_\alpha + \phi^+ - \phi^-\right\}$$

where $I_0 = A_0^2$, is a sum of cosine functions whose Fourier transformation gives peaks related to distances $(x+d_\alpha)$. We note that either Eq. (13) or (14) is independent of the oxygen backscattering factor. Thus, the modulations in EDPD curves depend mainly on the backscattering factors R_α of nickel. Since R_α is appreciable over a wide energy range, this allows measurements of EDPD curves of overlayer systems for a 200 to 300 eV energy range at room temperature.

Acknowledgements

We acknowledge informative discussions on the subject matter with Drs. H. Ibach and D. L. Mills. Work at the University of Wisconsin-Milwaukee was supported by NSF Grant No. DMR 8101203 and PRF Grant No. 11584-AC5,6. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. It was performed at the Stanford Synchrotron Radiation Laboratory, which is supported by the NSF through the Division of Materials Research. One of us (J.G.T.) acknowledges support by an NSF Postgraduate Fellowship. S.Y.T. acknowledges the Synchrotron Radiation Center, Stoughton, WI, for support as a Visiting Investigator.
References

Figure Captions

Figure 1. Experimental NPD curve for c(2x2) O (1s)-Ni(001), compared with theoretical curves for $d_\perp = 0.5$ to 1.2 Å (hollow site).

Figure 2. Experimental NPD curve for c(2x2) O(1s)-Ni(001), compared with theoretical curves for $d_\perp = 0.00$ to 0.40 Å (hollow site).

Figure 3. Plot of normalized R factor (R_w) vs. d_\perp spacing.
Figure 1

Electron kinetic energy (eV)

Relative O(1s) intensity

Theory d_\perp (Å):
- 1.2
- 1.1
- 1.0
- 0.9
- 0.8
- 0.7
- 0.6
- 0.5

Expt.
Figure 2

Theory

d_{L} (Å) =

0.40
0.30
0.25
0.20
0.15
0.10
0.05
0.00
Expt.
Figure 3

$C(2 \times 2) \cdot O-Ni(001)$

Normalized R Factor (R_N) vs. d_L (Å)
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.