Lawrence Berkeley National Laboratory

Recent Work

Title
RATE OF ATTACHMENT OF GASEOUS ELECTRONS TO NITROGEN DIOXIDE

Permalink
https://escholarship.org/uc/item/364417kc

Authors
Mahan, Bruce H.
Walker, Isobel C.

Publication Date
1967-06-01
RATE OF ATTACHMENT OF GASEOUS ELECTRONS TO NITROGEN DIOXIDE
Bruce H. Mahan and Isobel C. Walker
June 1967

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Submitted to the Journal of Chemical Physics

UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
AEC Contract No. W-7405-eng-48

RATE OF ATTACHMENT OF GASEOUS ELECTRONS TO NITROGEN DIOXIDE

Bruce H. Mahan and Isobel C. Walker

June, 1967
Rate of Attachment of Gaseous Electrons to Nitrogen Dioxide

Bruce H. Mahan* and Isobel C. Walker†

Department of Chemistry and Inorganic Materials Research Division of the Lawrence Radiation Laboratory, University of California, Berkeley

The rates of attachment of gaseous thermal electrons (300°K) to NO₂ in the presence of several inert gases have been measured. In the pressure range from 3 to 70 mm, the rate of attachment is independent of the pressure, but dependent on the nature of the inert gas. A mechanism is proposed that accounts for these observations.

*Alfred P. Sloan Foundation Fellow

†Present Address: University of Stirling, Stirling, Scotland
It is known that NO, because of its low ionization potential, is important as a 'sink' for positive charge in the upper atmosphere. It now seems that NO$_2$, which has a very high electron affinity (~ 4 eV)1 plays a similar role toward electrons. Indeed, NO$_2^-$ is the only negative ion detected by rocket-borne mass spectrometers.2 It is therefore of some interest to examine electron attachment processes in NO$_2$, particularly at low electron energies. In this investigation, we have measured the rate at which free thermal electrons attach to NO$_2$ in the presence of a non-attaching gas.

EXPERIMENTAL

Electrons were produced by the vacuum ultraviolet flash photolysis of nitric oxide and their concentration measured as a function of time by observing the departure from resonance of a microwave cavity that contained the reaction vessel. The technique has been described in detail in a previous publication.3 Briefly, the reaction vessel is a quartz cylinder located axially within a microwave cavity. The cavity is part of a Pound discriminator circuit, occupying the position usually taken by the reference cavity. A low level microwave signal whose frequency is near that of the TM$_{010}$ mode of the cavity (in this case 3080 MHz) is fed into the cavity. A small difference in frequency between probing signal and resonance produces a differential error signal which is fed into the type D preamplifier of a Tektronic oscilloscope. This error signal is directly proportional to the difference between the
probing and cavity resonance frequencies. The presence of electrons within the cavity causes a shift in its resonance frequency, the shift being proportional to the mean electron density in the cavity. The rate at which electrons disappear after the ionizing flash is equivalent to the rate at which resonance frequency approaches its original value and this is recorded photographically from the scope trace of error signal vs. time.

The gas-handling system was of glass and metal, employing Granville-Phillips Type C ultra-high vacuum valves. The reaction cell was a cylinder, 1" dia, closed at one end by an LiF window. This was attached to the quartz via a silver thimble with silver chloride as sealant. The system was bakeable at temperatures up to 200°C. It was evacuated by a 2" oil diffusion pump backed by a mechanical pump and the ultimate pressure attained was 10⁻⁷ Torr as measured on an Alpert gauge. Working gas pressures were measured on C.E.C. capacitance manometer.

The ionizing radiation was produced by an H₂ filled lamp. This lamp was also a 1" dia quartz cylinder with an LiF window positioned about 2 mm from the window of the reaction cell. The lamp was powered by a 1 MW square pulse of 2450 MHz microwave power which had a 2.5 microsecond duration. The most intense radiation from this lamp is at 1216 Å (10.2 eV). The ionization potential of NO is 9.3 eV and that of NO₂ is 9.8 eV. However, at about 10 eV the ionization cross-section of NO₂ is so low that no electrons could be detected on flashing
in the absence of NO. Radiation that might dissociate rather than ionize NO and NO\textsubscript{2} was attenuated by the atmospheric oxygen in the 2 mm path between lamp and cell.

The electrons from photoionization of NO can have up to about 1 eV initial energy. Calculations show, however, that thermalization times are only a few microseconds3 and, in estimating rate constants, concentration measurements were made only for times longer than 50 microseconds after the flash. Thus, the electrons were assumed to be at the gas temperature, 300\textdegree K. Deliberate attempts to heat the electrons by increasing the microwave power produced no change in attachment rate constant.

The NO and NO\textsubscript{2} employed were Matheson gases of 99.5\% stated purity and the inert gases were reagent grade obtained from Airco. All were used without further purification.

In any experiment, NO\textsubscript{2} from a lecture bottle was let into the system through an acetone/CO\textsubscript{2} cold trap. The gas was then condensed in a liquid N\textsubscript{2} trap and pumped on for several minutes. The liquid N\textsubscript{2} was removed and the NO\textsubscript{2} pressure measured with the capacitance manometer. The liquid N\textsubscript{2} was replaced and NO allowed to diffuse into the system through another liquid N\textsubscript{2} cold trap. Usually about 85 microns NO were admitted. Finally, the desired pressure of diluent gas M was added. At least 30 minutes were allowed to ensure mixing before flashing. The scope trace was photographed and a plot of ln (signal) vs. time drawn to give the first order rate constant for electron decay. An example of such a plot is given in Fig. 1. In general,
these plots were linear over a five-fold decrease in electron concentration, which indicates that electron decay by electron-ion recombination and higher order diffusion was negligible. The measured rate constant was independent of the number of flashes, so dissociation of NO and NO$_2$ was not important. As a result, the pressure of M could be increased and several runs performed with any one NO/NO$_2$ mixture at different pressures of M. Corrections for loss by diffusion and attachment to NO were obtained by doing runs in NO and M only. In general, this correction factor was 3%-5% of the measured rate constant, but in low pressures of He, where diffusion losses were high, it approached 20% of the measured value. The pseudo first-order rate constant for electron attachment to NO$_2$ thus obtained was shown to be independent of the concentration of NO.

Therefore, attachment to trace quantities of N$_2$O$_3$ present because of the equilibrium NO + NO$_2$ \rightarrow N$_2$O$_3$ was not important.

RESULTS AND DISCUSSION

The pseudo first-order rate constants corrected for diffusion and attachment to NO are displayed as functions of total gas pressure in Fig. 2. It is clear than in the pressure range studied, the pseudo first-order rate constant for electron attachment to NO$_2$ depends on the nature, but not on the concentration of inert gas. Consequently the rate law for the attachment reaction is
where \(k \) depends on the nature of the inert gas. The values of \(k \) are given in Table I.

The dependence of the attachment role on the nature but not the concentration of inert gas is similar to the behavior found for some atom-diatomic molecule radiative association reactions.\(^5\) By analogy to these cases we can postulate the electron attachment mechanism is

\[
\begin{align*}
\text{NO}_2 + e & \rightarrow (\text{NO}_2)^* & (1) \\
(\text{NO}_2)^* & \rightarrow \text{NO}_2 + e & (2) \\
(\text{NO}_2)^* + M & \rightarrow \text{NO}_2 + M & (3) \\
(\text{NO}_2)^* + M & \rightarrow \text{NO}_2 + M + e & (4)
\end{align*}
\]

Making the steady state assumption for \((\text{NO}_2)^*\) we find

\[
\begin{align*}
- \frac{d(e)}{dt} = \frac{k_1 k_3 (\text{NO}_2)(M)(e)}{k_2 + (k_3 + k_4)M} \quad (5)
\end{align*}
\]

If the lifetime with respect to electron ejection is longer than the time between collisions, we have \(k_2 \ll (k_3 + k_4)M \), and Eq. (5) reduces to

\[
\begin{align*}
- \frac{d(e)}{dt} = \frac{k_1 k_3 (\text{NO}_2)(e)}{k_3 + k_4} \quad (6)
\end{align*}
\]

Equation (6) is consistent with the experimentally observed order of the reaction, and with the dependence of the rate constant on the nature of the inert gas.
If the stabilization of the excited ion is pictured as a vibrational deactivation of a highly excited molecule similar to those that occur in thermal unimolecular reactions, \(k_3 \) should be approximately \(10^{-10} \) cc/molecule sec. The value of \(k_3 \) might be even larger because of the effect of ion induced dipole forces on the total cross section. It is unlikely that \(k_4 \) is much larger than \(k_3 \), and if it were much less than \(k_3 \), the effect of the nature of the inert gas on the rate would disappear. Thus \(k_3 \) and \(k_4 \) are of the same order. In the pressure range of our experiments, we then can estimate that

\[
(k_3 + k_4)M \geq 10^8 \text{ sec}^{-1},
\]

which implies that the lifetime of the ion with respect to spontaneous electron detachment is greater than \(10^{-8} \) sec.

If \(k_3 \) and \(k_4 \) are of approximately equal magnitude, \(k_1 \) must be roughly \(10^{-10} \) cc/molecule sec in order to be consistent with the experimental rate constants. This value for \(k_1 \) means that the cross section for the attachment process is \(10^{-16} \) cm², which is not an unreasonable value. Therefore the direct attachment mechanism with collisional deactivation and detachment of the excited ion is consistent with the reaction order, the inert gas effect, and with reasonable values of the individual rate constants.

Although the overall attachment rate constant \(k \) varies by only a factor of 2.5 for the inert gases investigated, a systematic variation of \(k \) with the mass of the inert gas molecule is evident. A plot of \(k \) as a function of the mass of the inert shows a clear maximum at the argon mass, with the rate constant
decreasing monotonically for higher and lower masses. This behavior implies k_3/k_4 has its maximum value for argon. The significance of this behavior is not clear. One might expect the rate constant for the detachment process to increase as the strength of the intermolecular forces increase with atomic number. On the other hand, one might anticipate a similar behavior for the deactivation rate constant. Until more is known about the detachment and deactivation processes individually, a detailed interpretation of the overall attachment rate will not be possible.

This work was supported by the U. S. Atomic Energy Commission.
Table 1
Rate Constants for Electron Attachment to NO₂.

<table>
<thead>
<tr>
<th>Added Gas M</th>
<th>k (cc/molecule sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>2.0×10^{-11}</td>
</tr>
<tr>
<td>Ne</td>
<td>3.1×10^{-11}</td>
</tr>
<tr>
<td>Ar</td>
<td>4.5×10^{-11}</td>
</tr>
<tr>
<td>Kr</td>
<td>3.0×10^{-11}</td>
</tr>
<tr>
<td>Xe</td>
<td>2.5×10^{-11}</td>
</tr>
<tr>
<td>N₂</td>
<td>4.0×10^{-11}</td>
</tr>
</tbody>
</table>
References

Figure 1. Logarithm of the electron concentration as a function of time for NO-Ar and NO-NO₂-Ar mixtures. Pressures of NO₂, NO, and Ar were 8μ, 85μ, and 10 Torr, respectively.
Figure 2. First order rate constant for electron attachment to NO₂ as a function of total pressure in different inert gases. The NO₂ pressure for each run is given in parenthesis. NO pressure was 85 microns.
Figure 3. First order rate constant for electron attachment to NO₂ as a function of NO₂ pressure.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.