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We employ the generalized Lorentz–Lorenz method to investigate how both magnetoelectric coupling and spatial
dispersion influence the artificial magnetic capabilities at terahertz frequencies of the representative case of a
metamaterial consisting of a three-dimensional (3D) lattice of TiO2 microspheres. The complex wavenumber
dispersion relations pertaining to modes supported by the array, traveling along one of the principal axes of
the array with electric or magnetic field polarized transversely and longitudinally (with respect to the mode
traveling direction), are studied and thoroughly characterized. Onemode with transverse polarization is dominant
at any given frequency for the analyzed dimensions, proving that the 3D lattice can be treated as a homogeneous
medium with defined electromagnetic material parameters. We show, however, that bianisotropy is a direct con-
sequence of magnetoelectric coupling, and the dyadic expressions of both effective and equivalentmaterial param-
eters are derived. In particular, we analyze the effect of spatial dispersion on the effective parameters relative to a
composite material made by a 3D lattice of TiO2 microspheres with filling fraction around 30% and near the first
Mie magnetic dipolar resonance. Finally, we homogenize the metamaterial in terms of equivalent index and
impedance, and by comparison with full-wave simulations, we explain the presence of the unphysical antireso-
nance permittivity behavior observed in previous work. © 2014 Optical Society of America

OCIS codes: (160.3918) Metamaterials; (160.1245) Artificially engineered materials; (260.2065) Effective
medium theory.
http://dx.doi.org/10.1364/JOSAB.31.001078

1. INTRODUCTION
Macroscopic field Maxwell equations must be supplemented
by constitutive relations that model the electromagnetic prop-
erties of a given medium [1–3]. The introduction of effective
electromagnetic parameters of a material describing a hetero-
geneous structure is called homogenization and has attracted
a great deal of attention. Homogenization leads to the predic-
tion of macroscopic effective dielectric properties of the
mixture, depending on the parameters characterizing the het-
erostructure, such as the constituent permittivities and their
fractional volumes. Simple theories, for example, the ones em-
ploying quasi-static approximation [4,5], do not deal with
electromagnetic coupling and spatial dispersion, and as such
may not be sufficient to describe the complex behavior of
metamaterials, artificial materials with nonconventional or
exotic electromagnetic response. Recently, more refined
homogenization theories [6–14] have been developed to take
into account complex effects, such as chirality, spatial
dispersion, and/or magnetoelectric coupling.

Metamaterials made of nonmagnetic dielectric micro-
spheres with large permittivity embedded in a host medium
were studied in the gigahertz [15,16] and infrared frequency
ranges [17,18]. Such metamaterials exhibit very strong

magnetic response due to the presence of a strong Mie mag-
netic dipolar resonance of the dielectric spheres. We note that
large losses are detrimental and indeed limit the artificial mag-
netic performance. For example, ceramic materials like the
one used in [19] are not suitable materials at terahertz frequen-
cies because they present large losses there, although they are
convenient at microwave frequencies, where they exhibit
large permittivity values with low losses. Among all potential
high-permittivity materials at terahertz frequencies, TiO2

(in rutile crystalline form as shown in Fig. 1) is in our opinion
the best candidate [20] with a permittivity around 100 [21,22].
We have indeed shown in [23], with the help of extended
Maxwell–Garnett theory, single dipole approximation [24],
and full-wave simulations that three-dimensional (3D) lattices
of TiO2 microspheres give rise to strong magnetic response
similar to that observed, for example, in [15–18].

We focus here on the generalized Lorentz–Lorenz method
reported in [6], based on the Floquet representation, to
homogenize a 3D lattice of TiO2 microspheres at terahertz
frequencies. Our aim is to thoroughly analyze the magnetic
properties of this 3D lattice and show how these are affected
by magnetoelectric effects. Similar properties are, however,
expected from other 3D structures made of resonators with
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different shapes and materials also in other frequency ranges,
provided each resonator exhibits a strong Mie dipolar mag-
netic resonance. As a step further in the understanding of
these systems, we also analyze the dependence of the effec-
tive parameters on the wavevector, generally referred to as
nonlocality or spatial dispersion.

This paper is organized as follows: in Section 2, we derive
for the first time, to the authors’ knowledge, the dyadic
expressions for both the effective and the equivalent effective
parameters (according to the nomenclature introduced in
[11]) following the homogenization method reported in [6],
accounting for magnetoelectric coupling. We confirm that
when magnetoelectric coupling is not negligible the medium
becomes bianisotropic. In addition, the method further
allows for the computation of the eigenmodes with complex
wavenumber supported by the array, helpful in the under-
standing of wave propagation within the 3D lattice. In
Section 3, this formalism is eventually applied to a 3D lattice
of TiO2 microspheres. In particular, the modes with complex
wavenumber propagating inside the structure are character-
ized, and the effects of spatial dispersion and magnetoelectric
coupling on the effective parameters are emphasized.
Moreover, comparisons with full-wave simulations are pro-
vided, showing excellent agreement of both artificial magnet-
ism and scattering properties by using the equivalent
parameters.

2. FORMULATION FOR THE TREATMENT
OF 3D LATTICES ACCOUNTING FOR
MAGNETOELECTRIC COUPLING AND
SPATIAL DISPERSION
A. Microsphere Modeling
We consider a 3D lattice of TiO2 microspheres with radius R
and relative permittivity εrelm � 94� 2.35i (corresponding to
the permittivity of bulk TiO2 at terahertz frequencies [21])
embedded into a host medium with absolute permittivity εh.

Each sphere will in general scatter a field that can be
represented by a multipole series expansion. If the spheres’
dimensions are sufficiently subwavelength, one can approxi-
mate the response of each sphere with dipolar terms only, in
particular electric dipole pe in [Cm] and magnetic dipole pm in
[Wbm], given by

pe � εhαeeEloc; pm � αmmBloc; (1)

where αee and αmm (both in [m3]) are the isotropic electric and
magnetic polarizabilities of the microsphere, and Eloc and Bloc

are the local electric field and the local magnetic flux density
at the microsphere location. The dipolar approximation is a
good approximation when the two dipolar terms (or any of
them) dominate the scattered-field multipole expansion.
The monochromatic time harmonic convention, e−iωt, is
implicitly assumed throughout the paper and thus suppressed
hereafter. The dynamic Mie polarizabilities are [25]

αee � 6πia1
1

k3h
; αmm � 6πib1

1

k3h
: (2)

These polarizabilities depend on the electric a1 and magnetic
b1 Mie dipolar coefficients [26] given by

a1 �
mψ1�mkhR�ψ 0

1�khR� − ψ1�khR�ψ 0
1�mkhR�

mψ1�mkhR�ξ01�khR� − ξ1�khR�ψ 0
1�mkhR�

;

b1 �
ψ1�mkhR�ψ 0

1�khR� −mψ1�khR�ψ 0
1�mkhR�

ψ1�mkhR�ξ01�khR� −mξ1�khR�ψ 0
1�mkhR�

; (3)

where ψ1, ξ1 are the Riccati–Bessel functions [27],

kh � ω
����������
εhμ0

p � k0
�������
εrelh

q
is the wavenumber inside the host

medium, m �
����������������
εrelm ∕εrelh

q
is the relative refractive index con-

trast, and εrelh is the relative permittivity of the host medium.
The 0 in Eq. (3) denotes here the derivative with respect to the
argument.

B. Effective Medium Theory via Green’s Function
Method
We employ the model developed in [6] to compute the electro-
magnetic properties of a 3D lattice as in the left panel of Fig. 2
excited by an external electric current density

Je�r� � Je;aveik·r; (4)

where Je;av is an average current vector, k is an assigned wave-
vector, and r is the observation vector.

For the sake of simplicity, we keep the same notation used
in [6]. The local electric field Eloc and magnetic flux density
Bloc evaluated at r � 0 (i.e., at the reference sphere location),
given by Eq. (27) of [6], are

Fig. 1. TiO2 (rutile) microspheres with a diameter around 70 μm
provided by Dr. Chung-Seu, CNRS, Univ. Bordeaux, ICMCB, UPR
9048, F-33600 Pessac, France.
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Fig. 2. On the left, schematic for a 3D periodic cubic array with lat-
tice parameter a composed of TiO2 microspheres with radius R. On
the right, frequency behavior of the magnitude of the dipolar Mie mag-
netic (b1) and electric (a1) coefficients given by Eq. (3), in free space
for spheres of TiO2 with radius R � 52 μm.
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Eloc � Eav � ¯̄Cint�ω;k� ·
pe
εh

� ¯̄Cem�ω; k� ·
pm����������
εhμ0

p ;

Bloc

μ0
� Hav −

¯̄Cem�ω;k� ·
pe����������
μ0εh

p � ¯̄Cint�ω; k� ·
pm
μ0

; (5)

where Eav and Hav are the average macroscopic fields, and
¯̄Cint�ω; k� is the so-called interaction dyadic (evaluated at
r � 0), defined by Eq. (14) of [6], that expresses the interac-
tion between the reference microsphere and the field pro-
duced by the other microspheres in the array. In other
words, the term ¯̄Cint�ω;k� is the dyadic Green’s function for
the periodic array of dipoles regularized in both the space
and spectral domains and is evaluated, for fast convergence,
through the Ewald method [14,23,28–30]. Two bars on top of a
bold letter indicate a dyadic quantity. The term ¯̄Cem�ω;k� is
the magnetoelectric coupling dyad, defined by Eq. (28) of
[6], that describes the interaction between electric and mag-
netic dipoles in the array (we do not account for magnetoelec-
tric coupling at the unit cell level that would rise only for
nonsymmetrical resonators [31]).

By using the definition of the average macroscopic mag-
netic field

Hav �
Bav

μ0
−

pm
Vcellμ0

(6)

with Vcell the volume of the unit cell of the 3D lattice, together
with the expression of the local fields (5) and the dipole in-
formation (1), we obtain the relation between the average
fields and the microscopic dipoles

�¯̄I − αee
¯̄Cint�ω;k�� ·

pe
εh

− αee
¯̄Cem�ω;k� ·

pm����������
εhμ0

p � αeeEav;

�¯̄I − αmm
¯̄Cint�ω;k�� ·

pm
μ0

� αmm
¯̄Cem�ω; k� ·

pe����������
μ0εh

p � αmmHav;

(7)

with ¯̄I denoting the unit dyad.

C. Dyadic Expressions for Effective Parameters
In the original paper [6], the term ¯̄Cem was neglected in the
definition of the effective parameters. Our goal in this section
is to derive the dyadic expressions of the effective parameters
¯̄εeff and ¯̄μeff , accounting also for the magnetoelectric coupling
term ¯̄Cem. A similar analysis has been recently done in [11],
where, however, the dyadic form for the effective parameters
was not investigated.

The macroscopic average polarization and magnetization
are defined by

Pav �
pe
Vcell

; Mav �
pm

Vcellμ0
; (8)

and allow us to write Eq. (7) in block matrix form as

�
Pav

μ0Mav

�
�

�
εh ¯̄χ ee�ω; k� ����������

εhμ0
p ¯̄χ em�ω; k�����������

εhμ0
p ¯̄χme�ω;k� μ0 ¯̄χmm�ω; k�

�
·
�
Eav

Hav

�
:

(9)

The block matrix of susceptibilities ¯̄χ is given by

� ¯̄χ ee�ω; k� ¯̄χ em�ω; k�
¯̄χme�ω; k� ¯̄χmm�ω;k�

�

� 1
Vcell

� ¯̄I − αee
¯̄Cint�ω;k� −αee

¯̄Cem�ω;k�
αmm

¯̄Cem�ω; k� ¯̄I − αmm
¯̄Cint�ω;k�

�
−1

·
�
αee

¯̄I ¯̄0
¯̄0 αmm

¯̄I

�
: (10)

In Eq. (9), the macroscopic polarization Pav and magnetization
Mav depend on both Eav and Hav, and, consequently, the dis-
placement field Dav � εhEav � Pav and the magnetic flux den-
sity Bav � μ0�Hav �Mav� depend also on both Eav and Hav. In
this condition, the medium is said to be bianisotropic [32,33]
and the constitutive relations in this type of medium are

Dav � ¯̄εeff�ω;k� · Eav � ¯̄ξeff�ω; k� ·Hav;

Bav � ¯̄μeff�ω;k� ·Hav � ¯̄ζeff�ω;k� · Eav: (11)

The electromagnetic properties of the material with this for-
mulation are then described by the four dyadics

¯̄εeff�ω;k� � εh�¯̄I� ¯̄χ ee�ω;k��; ¯̄ξeff�ω;k� �
����������
εhμ0

p ¯̄χ em�ω;k�;
¯̄ζeff�ω;k� �

����������
εhμ0

p ¯̄χme�ω;k�; ¯̄μeff�ω;k� � μ0�¯̄I� ¯̄χmm�ω;k��;
(12)

where the explicit expressions of the different susceptibility
dyadics ¯̄χ are given by Eq. (10).

For example, it can be emphasized that when k � kx̂,
where the hat indicates a unit vector, the yy and zz compo-
nents of the tensors in Eq. (12) correspond exactly to the ef-
fective parameters derived in Eq. (23) of [11] (e.g., using the

notation in [11], looking at Eq. (22), the parameters ¯̄ζeff and
¯̄ξeff

would be written as χoeff�k̂ × ¯̄I� and −χoeff�k̂ × ¯̄I�, respectively,
with k̂ � k∕k).

D. Modes Supported by the Metamaterial Array
In the previous section we have derived the effective material
parameters for an arbitrary pair �ω; k�, where ω, k are inde-
pendent of each other. However, in the absence of external
excitation Je, only a discrete number of allowed pairs �ω;k�
exists. Moreover, at a given radian frequency ω only a limited
number of wavevectors are supported assuming low attenua-
tion constant. These wavevectors correspond to the eigenm-
odes of the system described next and are of essential interest
for the physical description of wave propagation.

In [34], it is demonstrated that by using the homogenized
parameters into the homogeneous medium wave equation
one can calculate the wavevector dispersion relation of the
metamaterial.

The homogeneous wave equation is deduced from Maxwell
equations with no sources together with the constitutive
relation for the bianisotropic medium (11)

k × Eav � ωBav � ω� ¯̄μeff�ω;k� ·Hav � ¯̄ζeff�ω; k� · Eav�;
k ×Hav � −ωDav � −ω� ¯̄εeff�ω; k� · Eav � ¯̄ξeff�ω;k� ·Hav�: (13)

Equations (13) can be rearranged as
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Hav � ¯̄μ−1eff ·
�
k
ω
× ¯̄I − ¯̄ζeff

�
· Eav;

Eav � −

¯̄ε−1eff ·
�
k
ω
× ¯̄I� ¯̄ξeff

�
·Hav: (14)

Combining the two equations in (14) we obtain the homo-
geneous wave equation in a matricial form for the electric field��

k
ω
× ¯̄I� ¯̄ξeff�ω;k�

�
· ¯̄μ−1eff�ω; k�

·
�
k
ω
× ¯̄I − ¯̄ζeff�ω; k�

�
� ¯̄εeff�ω; k�

�
· Eav � 0; (15)

and for the magnetic field��
k
ω
× ¯̄I − ¯̄ζeff�ω; k�

�
· ¯̄ε−1eff�ω;k�

·
�
k
ω
× ¯̄I� ¯̄ξeff�ω; k�

�
� ¯̄μeff�ω;k�

�
·Hav � 0: (16)

The solutions of these equations are found by imposing the
determinant of the matrices to vanish. Solutions are mainly
found in the following two important scenarios: (i) imposed
real-valued angular frequency ω to determine the complex-
valued wavevector k, for the study of wave propagation prob-
lems, and (ii) imposed real-valued wavevector k to determine
the complex-valued angular frequency, for the study of time-
related problems. We focus here on case (i) and investigate
wave propagation inmetamaterials as in the left panel of Fig. 2,
assuming a real-valued angular frequency. In practice, we fix
the direction of propagation along one of the principal axes of
the 3D lattice (in the following we assume k � kx̂) and find
numerically, for each angular frequency ω, modes with com-
plex wavenumber propagating inside the periodic array with
the electric or magnetic field polarized both in the transverse
(along y or z) and in the longitudinal (along x) directions. We
want to stress that the analysis of complex wavenumber is not
trivial and only a few studies are devoted to that, such as
[23,35,36]. This is a further motivation for our present work.
As we will see in the following, the eigenmodes with trans-
verse polarization computed by solving Eqs. (15) and (16)
coincide. However, since the electric and magnetic fields
are decoupled for longitudinal propagation, these equations
give distinct wavenumbers for modes with either the electric
or the magnetic field polarized longitudinally.

E. Dyadic Expressions for Equivalent Parameters
An alternative representation to the four dyadics (12) to de-
scribe the electromagnetic properties of the infinite periodic
system involves the definition of equivalent parameters rather
than effective parameters. Equivalent parameters embed the
contribution of the out-of-diagonal tensors ¯̄ζeff and ¯̄ξeff into
permittivity and permeability, as done in scalar form in
[11]. In this way, the four dyadics of Eq. (12) reduce to two
equivalent dyadics, the equivalent permittivity ¯̄εeq and
permeability ¯̄μeq defined by

Dav � ¯̄εeff · Eav � ¯̄ξeff ·Hav � ¯̄εeq · Eav;

Bav � ¯̄μeff ·Hav � ¯̄ζeff · Eav � ¯̄μeq ·Hav: (17)

The transformation of the out-of-diagonal dyadics is again
realized with the help of Maxwell equations without sources,

which gives Eq. (14) and leads to the expression of the equiv-
alent permittivity and permeability dyadics as

¯̄εeq�ω;k� � ¯̄εeff � ¯̄ξeff · ¯̄μ−1eff ·
�
k
ω
× ¯̄I − ¯̄ζeff

�
;

¯̄μeq�ω;k� � ¯̄μeff −
¯̄ζeff · ¯̄ε−1eff ·

�
k
ω
× ¯̄I� ¯̄ξeff

�
: (18)

As mentioned in [11], equivalent parameters can be used to
model the array scattering properties. However, they should
not be used to separately describe the electric and magnetic
response of a metamaterial as the frequency dispersion of the
equivalent parameters may contain nonphysical artifacts and
may not satisfy passivity, reciprocity, or other causality con-
straints typical of local parameters [11,37,38], as will also be
shown in the next section.

3. ILLUSTRATIVE EXAMPLES FOR A 3D
LATTICE OF TiO2 MICROSPHERES IN THE
THZ RANGE
We apply in this section the formalism introduced in Section 2
to a 3D cubic lattice of TiO2 microspheres of radius R �
52 μm embedded in free space (εh � ε0) with a filling fraction
of 29.44% (corresponding to a lattice period a � 126 μm). For
the chosen microsphere’s size, the first dipolar Mie magnetic
resonance appears around 300 GHz as illustrated in the right
panel of Fig. 2 by the plot of the magnitude of Mie scattering
coefficients in Eq. (3). However, note that around 300 GHz
residual electric effects due to the electric resonance around
420 GHz are present and need to be considered for accurate
results.

We show the result of the eigenmode computation, as well
as the k-dependent effective parameters. The effects of mag-
netoelectric coupling as well as spatial dispersion are empha-
sized. By comparison with full-wave simulations we confirm
the improved accuracy of the method in Section 2 for the
modeling of 3D lattices as the ones analyzed in this paper.

A. Modes with Complex Wavenumber Supported by a
3D Lattice of TiO2 Microspheres
In this section, we show the complex wavenumbers of the
modes propagating along the x direction (k � kx̂), with elec-
tric and magnetic fields polarized along the y or z directions
and along the x direction. We show only modes whose power
flow is toward the positive x direction (i.e., with Im�k� > 0)
and restrict ourselves to showing only modes with low or
moderate attenuation constant such that Im�ka∕π� < 1.5.

The trajectories in the complex plane of the complex wave-
numbers when frequency is varying, relative to the modes
with longitudinal and transverse polarization, are shown for
a frequency range between 200 to 500 GHz together with
the corresponding wavenumber dispersion diagram for each
mode in Fig. 3.

For a normalized attenuation 0 < Im�ka∕π� < 1.5, we find
five modes in the structure, two longitudinal and three trans-
verse, as detailed in the following subsections. Since we re-
strict ourselves to the modes whose power flow is toward
the positive x direction, those with Re�ka∕π� > 0 are forward
modes (modes 1 and 2 longitudinal and modes 1 and 3 trans-
verse) and those with Re�ka∕π� < 0 are backward modes
(mode 2 transverse) [28].
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1. Longitudinal Modes
a. Mode Characterized by the Electric Field Polarized
Along the Direction of Propagation
Mode 1 longitudinal, computed with Eq. (15), exhibits an elec-
tric field polarized along the direction of propagation. The real
and imaginary parts of the normalized wavenumber pertaining
to this mode are shown in Fig. 3 as a function of normalized
frequency, which corresponds to a frequency range between
200 and 500 GHz. This longitudinal eigenmode is strongly
attenuated and is a static mode in almost the entire frequency
range since Re�k� � 0. This behavior confirms the absence of
free charges inside the medium, in accordance with the
Maxwell equation associated with the divergence of the
electric field.

b. Mode Characterized by the Magnetic Field Polarized
Along the Direction of Propagation
Mode 2 longitudinal, computed with Eq. (16), exhibits a mag-
netic field polarized along the direction of propagation. Both
real and imaginary parts of the normalized wavenumber per-
taining to this mode are also shown in Fig. 3. This longitudinal
eigenmode is also strongly attenuated, static at low frequency,
and experiencing a change of behavior at �kha∕π� � 0.28, cor-
responding to f � 329 GHz. This mode exactly corresponds to
the longitudinal mode reported previously in [23].

2. Transverse Modes and Dominant Mode
Modes 1, 2, and 3 transverse have both electric and magnetic
fields orthogonal to the direction of propagation. For the
structure at hand, only one transverse polarized mode
(mode 1) is dominant; i.e., its imaginary part in the frequency
range of interest is smaller than the imaginary part of any
other transverse mode, and contributes the most to the field
in the array as shown in [14,23]. Modes 2 and 3 are instead
largely attenuated and thus evanescent. Mode 1 transverse
can then be used to deduce the effective properties of the
periodic array giving an accurate description of the physical
properties of the structure. In Fig. 3 we can see that mode 1

transverse experiences two resonances at �kha∕π� � 0.245
and 0.35 (i.e., f � 290 and 415 GHz) that correspond to the
first dipolar Mie magnetic and electric resonances of the di-
electric microspheres, respectively (see Fig. 2).

B. Effective Parameters
The effective parameters given by Eq. (12) depend on the pair
�ω;k�, where each parameter is in general arbitrary. To have a
general understanding of the effect of spatial dispersion on the
effective parameters, we compute Eq. (12) for three different
real values of the wavevector: k � 0, π

2a x̂, π
a x̂ for the fre-

quency range 220–380 THz that includes the first magnetic di-
polar resonance of the TiO2 microspheres. As a remark, we
consider in this section the effect of the wavevector on the
effective parameters but, for the sake of clarity, only for real
values of k. However, as shown in the previous section, k is in
general complex, and a wider range of effects can be observed
(change in the amplitude of resonance, for instance).

We show in Figs. 4 and 5 the yy (same of zz) and xx com-
ponents of both relative permittivity and permeability tensors.
We first remark that in Fig. 4 spatial dispersion has a strong
influence on the yy component of the effective permittivity
since it gives rise to a new (though weak) resonance (the ef-
fective permittivity is nearly constant in the absence of spatial
dispersion), but affects only weakly its xx component.

On the other hand, the strong magnetic resonance of both
xx and yy components of the effective permeability is weakly
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Fig. 3. Top row: trajectories in the complex plane of both longi-
tudinal and transverse normalized wavenumbers computed with
Eqs. (15) and (16) for a cubic array of TiO2 microspheres of 52 μm
with a filling fraction of 29.44%. Bottom row: dispersion diagrams (real
and imaginary parts) corresponding to the wavenumber of eachmode.

Fig. 4. yy, zz, and xx components of the relative effective permittiv-
ity in Eq. (12) computed for three different values of the wavevector
k � 0, π

2a x̂, π
a x̂.
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affected by spatial dispersion as shown in Fig. 5. This collec-
tive magnetic Mie dipolar resonance of the array of micro-
spheres is robust with respect to the wavevector.

For a wavevector directed along one of the main axes of the
cubic array, in this case the x axis, the out-of-diagonal dyadics
ζ̄eff and

¯̄ξeff are of the form

¯̄ζeff �
2
4 0 0 0
0 0 ζyzeff
0 ζzyeff 0

3
5 ¯̄ξeff �

2
4 0 0 0
0 0 ξyzeff
0 ξzyeff 0

3
5; (19)

and possess, due to reciprocity, the following properties:
ξyzeff � −ξzyeff � ζzyeff � −ζyzeff . Thus, only one component of the
tensor is needed to describe the electromagnetic coupling,
and we plot in Fig. 6 the yz component of the out-of-diagonal
tensor ¯̄ζeff . It canbenoted that the tensors

¯̄ξeff and
¯̄ζeff are differ-

ent from zero when spatial dispersion is present but null when
k � 0: bianisotropy (due to magnetoelectric coupling) in this
centrosymmetric system is not arising from a cross coupling
of the unit element as in [39], but as stated in [11], is a direct
consequence of weak spatial dispersion associated with the
nonzero value of the wavevector [because ¯̄Cem�k � 0� � ¯̄0].

C. Scattering Properties: Comparison with Full-Wave
Simulations
In this section, we compare the results obtained with the
method in Section 2 to the one given by finite-element

simulations with HFSS software. We simulate a five-layer slab
of a cubic array of TiO2 microspheres, represented in Fig. 7,
illuminated by a normally incident plane wave. The cubic
array of lattice period a � 126 μm is five layers long along
the direction of propagation and infinite along the other
directions.

1. Reflection and Transmission Coefficients
We use the method in Section 2 to calculate the reflection and
transmission coefficients from a five-layer slab of TiO2 meta-
material. We assume the slab to be homogenizable with
thickness d � 5a as in Fig. 7. We use the standard Fresnel
formulas [40]

S11 �
Γ�1 − e2ikd�
1 − Γ2 · e2ikd

; S21 �
4z

�1� z�2 ·
eikd

1 − Γ2 · e2ikd
(20)

Fig. 5. yy, zz, and xx components of the relative effective permeabil-
ity in Eq. (12) computed for three different values of the wavevector
k � 0, π

2a x̂, π
a x̂.

Fig. 6. Main component of the relative out-of-diagonal tensors,
normalized by

����������
ϵ0μ0

p � 1∕c, computed for three different values of
the wavevector k � 0, π

2a x̂, π
a x̂.

Fig. 7. On the left, representation of the five-layer slab with thick-
ness d of TiO2 microspheres used for HFSS simulations. On the right,
equivalent homogeneous slab of same thickness d.
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where d is the slab thickness, and k is the wavenumber of
the dominant mode 1. Moreover, z is the normalized (to
free space) characteristic impedance of the metamaterial
slab and Γ is the single interface reflection coefficient
defined by

z �
���������������
ε0 · μ

yy
eq

μ0 · ε
yy
eq

s
; Γ � z − 1

z� 1
; (21)

where εyyeq and μyyeq are the yy components of the equivalent
permittivity and permeability tensors (18).

We thus compare in Fig. 8 the magnitude and the phase of
reflection and transmission coefficients to the ones obtained
directly from HFSS full-wave simulations of a five-layer slab of
TiO2 metamaterial. We observe an excellent agreement be-
tween the two results that, first, confirms the validity of the
dipolar assumption even for high filling fractions. Second, this
good agreement also confirms the accuracy of the method in
Section 2 (including both spatial dispersion and magnetoelec-
tric coupling) to describe such systems. Third, as we men-
tioned previously, the equivalent parameters, which reduce
the description of the system to two parameters only, give
the same scattered field as the original structure (regardless
of their physical meaning).

2. Equivalent Parameters
From the S parameters given by the full-wave simulation, it is
possible to retrieve the equivalent index and impedance of the
simulated material by using the Nicolson–Ross–Weir (NRW)
retrieval method [41] (we refer to these parameters as equiv-
alent consistently with the terminology in [11], though they
are usually referred to as effective). This method is largely em-
ployed in the metamaterial community and is generally used
to derive the equivalent permittivity and permeability from the
equivalent index and impedance. However, because it as-
sumes that the composite material behaves as a natural
material (assumption not always valid for composite materi-
als) an unphysical behavior can be observed [38,41–43].

We compare in Fig. 9 the yy component of the equivalent
parameters given by Eq. (18) with the parameters obtained
from the full-wave simulation of a five-layer slab with HFSS
using the NRW retrieval method [41]. We can see that for both
results, the relative permeability experiences a classical res-
onance behavior, but on the other hand, the relative permit-
tivity experiences an antiresonance in the real part together
with a negative imaginary part. This behavior, which violates
passivity and causality laws, was justified in [37], where it is
claimed that the equivalent parameters, which include the

contribution of the out-of-diagonal dyadics ¯̄ζeff and
¯̄ξeff , as well

as the NRW parameters (which assume the metamaterial can
be described as a natural material and give nonlocal param-
eters [7–9]), have no physical meaning for the description of
electric and magnetic properties separately [11]. This absence
of physical meaning is due to the fact that more complex
effects such as magnetoelectric coupling are included inside
the permittivity and permeability.

However, by comparing these results, it can be seen that
the equivalent permeability agrees very well with full-wave
simulations, and more interestingly, the behavior of the per-
mittivity (antiresonance and negative imaginary part) given
by the NRW retrieval process is qualitatively reproduced by
the present method, and this, only when considering magneto-
electric coupling. As we will see in the next section, the
difference of magnitudes between permittivities mainly comes
from the disagreement of impedances.

Fig. 8. Comparison between the magnitude and the phase of the S
parameters obtained with HFSS and computed with the present
method for a cubic array of TiO2 microspheres of 52 μm with a filling
fraction of 29.44%.

Fig. 9. Comparison between the yy component of the relative equiv-
alent permittivity and permeability (18) and the full-wave relative per-
mittivity and permeability retrieved with NRW method for a cubic
array of TiO2 microspheres of 52 μm with a filling fraction of 29.44%.
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So, even if these parameters have no physical meaning,
they allow us to have physical insight on the underlying
mechanism of these noncausal and nonpassive effects already
observed in [41–43], i.e., magnetoelectric coupling effects that
are forced into permittivity and permeability effects.

3. Equivalent Index and Equivalent Impedance
From the dominant complex eigenmode k pertaining to mode
1 transverse in Fig. 3 we can deduce the equivalent refractive

index of the composite medium neq �
�����������������
εyyeq · μ

yy
eq

p
� �k∕k0�.

This index (with or without neglecting the ¯̄Cem dyadic) is
compared in Fig. 10 to the one obtained from the full-wave
simulation of a five-layer slab with HFSS using the NRW
retrieval method. We can see that in this frequency range,
the three results agree very well and show a strong resonance
associated with the lowest-order Mie dipolar magnetic reso-
nance of the microspheres. However, it is important to note
that including the magnetoelectric coupling term ¯̄Cem results
in an improved accuracy with respect to the full-wave
simulations as already concluded in [39].

Finally, we also compare in Fig. 11 the impedance obtained
by full-wave simulations with that computed using the
equivalent parameters (21), limiting ourselves to the most ac-
curate case that accounts for ¯̄Cem. We observe there exists a

disagreement at resonance between the impedances (respon-
sible for the disagreement of the permittivities in Fig. 9). This
was previously interpreted in [9] as the difference between
surface impedance and Bloch impedance (obtained form
numerical simulations) for nonlocal media.

4. CONCLUSIONS
In this paper, we have shown the accuracy of the generalized
Lorentz–Lorenz method reported in [6] to describe the electro-
magnetic behavior of metamaterials made of a cubic array of
TiO2 microspheres embedded in a host medium around the
first Mie magnetic dipolar resonance and under normal illumi-
nation. We have observed good agreement with full-wave sim-
ulations under the assumption of dipolar approximation (both
electric and magnetic, coupled). We have emphasized the ef-
fect of the magnetoelectric coupling as well as weak spatial
dispersion effects in this kind of systems. Finally, we have
confirmed the underlying physical mechanism giving rise to
artifacts into the equivalent parameters (antiresonance in
the real part and negative imaginary part of the equivalent per-
mittivity) reported in [37]. This effect is observed when one
forces the description of the complex electromagnetic behav-
ior (such as spatial dispersion and electromagnetic coupling)
into permeability and permittivity contributions, defining the
so-called equivalent parameters [11,37].

Fig. 10. Comparison between the equivalent refractive index ob-
tained with HFSS (NRW), with the equivalent refractive index com-
puted with the present method taking into account or not the ¯̄Cem
dyadic, for a cubic array of TiO2 microspheres of 52 μm with a filling
fraction of 29.44%.

Fig. 11. Comparison between the equivalent relative impedance ob-
tained with HFSS (NRW), with the yy component of the equivalent
impedance computed with the present method, for a cubic array of
TiO2 microspheres of 52 μm with a filling fraction of 29.44%.
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