Title
Schedule and Latency Control in S-MAC

Permalink
https://escholarship.org/uc/item/36n1n3k

Authors
Yuan Li
Wei Ye
John Heidemann

Publication Date
2003
Approaches: Global Schedule and Latency Control by Adjusting Schedules

Selecting Global Schedule

Goal:
Nodes in multiple clusters can incrementally switch to one global schedule

Algorithm:
- Assign unique schedule id (randomly)
- Nodes incrementally shift schedules
 - Prefer schedule with lowest id
- Over time, all nodes shift to a single global schedule

Control Sleep Schedules

- Select and control sleep schedules to obtain different effects on propagation delay
- Different latencies in different directions when nodes on the path adopt different sleep schedules
- Skew sleep schedules to allow rapid data forwarding in one direction, and slow forwarding in the opposite direction

Latency Analysis

In a line topology of N nodes (no adaptive listening)
- \(P \): schedule phase difference
- \(T_f \): length of a frame
- \(t_{cs} \): carrier sense delay at hop \(n \), which is random
- \(t_{m} \): mean carrier sense delay
- \(t_{tx} \): transmission delay
- \(D(N) \): total delay

\[
E[D(N)] = \frac{T_f}{2} (N - 1)[(P + T_f] + t_{cs} + t_{tx}
\]

Conclusions:
- Average latency linearly increases with the number of hops
- Average latency can be controlled by adjusting \(P \)

Implementation and Demo

- Simulation: ns-2
- Implementation:
 - Motes running TinyOS
 - PC-104
- Visualization: NAM in real time

Conclusions

- S-MAC can adopt single global schedule
- S-MAC can control schedules to get different latency effects
- We have quantified latency analytically and validated those results experimentally