Lawrence Berkeley National Laboratory
Recent Work

Title
Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators

Permalink
https://escholarship.org/uc/item/37w8n65h

Journal
Journal of Physical Chemistry C, 119(43)

ISSN
1932-7447

Authors
Hu, S
Lewis, NS
Ager, JW
et al.

Publication Date
2015-10-29

DOI
10.1021/acs.jpcc.5b05976

Peer reviewed
Thin-Film Materials for the Protection of Semiconductor Photoelectrodes in Solar-Fuel Generators

Shu Hu,1,‡ Nathan S. Lewis,1,*†‡∥ Joel W. Ager,1,# Jinhui Yang,1,# James R. McKone,1 and Nicholas C. Strandwitz*‡¶

1Division of Chemistry and Chemical Engineering, ‡Joint Center for Artificial Photosynthesis, †Beckman Institute, and ¶Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125, United States
7‡Joint Center for Artificial Photosynthesis and #Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
9Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
10Department of Materials Science and Engineering and Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, Pennsylvania 18015, United States

ABSTRACT: The electrochemical instability of semiconductors in aqueous electrolytes has impeded the development of robust sunlight-driven water-splitting systems. We review the use of protective thin films to improve the electrochemical stability of otherwise unstable semiconductor photoelectrodes (e.g., Si and GaAs). We first discuss the origins of instability and various strategies for achieving stable and functional photoelectrolytic interfaces. We then focus specifically on the use of thin protective films on photoanodes and photocathodes for photosynthetic reactions that include oxygen evolution, halide oxidation, and hydrogen evolution. Finally, we provide an outlook for the future development of thin-layer protection strategies to enable semiconductor-based solar-driven fuel production.

1. INTRODUCTION

Photoelectrochemical (PEC) systems capture the energy of sunlight and enable the storage of that energy in the chemical bonds of a commodity chemical or fuel, such as hydrogen. Chemical fuel can be used to power vehicles or to generate electricity on demand, in contrast to photovoltaic systems that cannot generate electricity during cloudy weather or at night. Efficient, inexpensive, and long-lasting PEC systems that could allow for the harvesting and storage of a small fraction (0.02%) of the ~96 000 TW of solar power incident on the surface of the earth could, in principle, meet all current global fuel and electricity needs.1

In general, a PEC system uses light-absorbing materials, such as semiconductors or molecular systems, to capture photons and convert the energy of the photons to excited states of charge carriers. The internal energy in these excited states can be transported to the interface between the light absorber and an electrolyte, at which reactive sites can facilitate oxidative or reductive electron-transfer half-reactions. The reductive half-reaction produces a chemical fuel, whereas the oxidative half-reaction produces O2 or another chemical oxidant, such as halogens: I2, Br2, or Cl2. Because electrolysis of halide compounds also stores energy in the form of renewable H2 fuel, hydrogen halide splitting is also technologically relevant to solar-fuel production. Protons or hydroxide ions liberated by one-half-reaction must be transported to the sites where the other half-reaction occurs. The products of the overall reaction, a chemical fuel and an oxidant, may be formed and collected in a single compartment, yielding a system that produces a mixture of reactive products that subsequently must be separated. Alternatively, the oxidation and reduction reactions can be carried out in separate compartments; this configuration obviates the need for a subsequent separation strategy but often impedes the requisite mass transport to neutralize chemical potential gradients while minimizing product crossover.

Solar-driven water-splitting cells that specifically use semiconducting materials to produce H2(g) and O2(g) from water have been a focus of much recent research attention, as evidenced by the extensive recent review literature and commentary.2−11 In context of the preceding paragraph, semiconductors are responsible for light absorption, and photocathodes and/or photoanodes drive the hydrogen-evolution reaction (HER) and oxygen-evolution reaction (OER), respectively. A single semiconductor (e.g., SrTiO3) under solar illumination can generate charge carriers that have sufficient electrochemical potential difference to split water under standard conditions at room temperature. However, such materials can only absorb photons with energies of the ultraviolet (>3 eV) and thus cannot effectively convert an appreciable amount of energy available in the visible and infrared portions of the solar spectrum, leading to low terrestrial solar-to-hydrogen conversion efficiencies.12

One of the primary strategies for realizing an efficient water-splitting cell is to use two semiconducting light absorbers placed optically and electrically in series. In this tandem-absorber approach, the total electrochemical potential available...
to drive the water-splitting reaction is ideally the sum of the photovoltages produced by each semiconductor. Electrochemical water splitting requires a minimum potential difference of 1.23 V between the anode and cathode under standard conditions; however, kinetic barriers to the HER and OER are overcome only when a substantial overpotential (at least 0.3–0.4 V) is applied. Thus, in addition to semiconducting light absorbers, efficient solar-driven water splitting requires electrocatalysts to minimize the required overpotential. Figure 1a,b shows a schematic for tandem-absorber-based water-splitting cells operating in acidic and alkaline aqueous solutions, respectively.

![Schematic of a tandem-absorber-based solar-driven water-splitting cell](image)

Figure 1. Schematic of a tandem-absorber-based solar-driven water-splitting cell operating in (a) acidic and (b) alkaline aqueous solution. The light absorbers are semiconductors arranged in series with respect to the direction of the incident light, with the bottom semiconductor absorbing lower-energy photons than those absorbed by the top semiconductor. The light absorbers support oxygen-evolution and hydrogen-evolution catalysts which are in physical contact with an aqueous electrolyte, and the light absorbers are embedded in a gas-impermeable ion-exchange membrane. A protective coating conformally covers and passivates the top and sides of the tandem light absorber component of the system, while allowing for integration of catalysts on the outer surface.

The requirements associated with a tandem-absorber strategy for solar-driven water-splitting cells have been analyzed in detail, and these criteria can be used to identify suitable semiconductor absorbers.1–17 An optimized tandem-junction solar-driven water-splitting system consists of a semiconductor with a band gap of 1.60–1.80 eV on the top and a semiconductor with a band gap of 0.95–1.20 eV on the bottom, with the exact values depending on the performance of the electrocatalysts and design of the water-splitting cell.15 These band gap requirements rule out the use of most known oxide semiconductors (SrTiO$_3$ and TiO$_2$, for example) and suggest the suitability of well-understood and technologically important Group IV, III–V, II–VI, and chalcopyrite semiconductors as light absorbers. However, these latter materials are typically unstable (either dissolving or developing insulating oxide coatings) under aqueous HER or OER conditions. Thus, the efficiency requirements of a viable water-splitting system present a materials conundrum: known chemically stable oxide semiconductors are unsuitable due to inappropriately large band gaps (e.g., SrTiO$_3$) and/or poor electronic properties (e.g., Fe$_2$O$_3$), while the technologically important semiconductors with appropriate band gaps (e.g., Si, GaAs) that accordingly are used in photovoltaic cells cannot be used in PEC-based systems directly due to the chemical instability of the photoelectrode materials. Two parallel paths are being pursued in response to this conundrum: (1) develop methods to protect those otherwise unstable semiconductors to enable their use in efficient water-splitting cells and (2) discover new, efficient semiconductors that are inherently stable under water-splitting conditions and that have band gaps in the range of 0.95–1.8 eV.

In developing PEC materials along either path described above, one must consider the environment in which the electrochemical reactions are carried out. An efficient water-splitting cell must make use of electrolytes that can support sizable photocurrent densities, typically ≥ 10 mA cm$^{-2}$ under nonconcentrated “1 Sun” illumination. In the absence of external energy inputs other than sunlight, operation at this current density corresponds to $\geq 12.3\%$ solar-to-hydrogen conversion efficiency.18 Inefficient ion transport will result in the development of a significant potential gradient in the cell, which will be manifested in part as a pH gradient in the aqueous electrolytes as well as possible concentration gradients associated with the transport of other ionic species in the electrolyte. Strongly acidic or alkaline electrolytes (pH < 1 or pH > 13, respectively) are capable of supporting the requisite current densities without developing significant pH gradients.19 However, many semiconductors are chemically unstable in contact with such potentially corrosive electrolytes. Thus, the discovery of electrocatalysts, semiconductors, and protective barriers that are stable in highly acidic or alkaline media is one of several key hurdles to realize a technologically viable, efficient, safe, and stable tandem solar-driven water-splitting system.20,21 Several reviews have recently been published that describe aspects of semiconductor-based solar-driven water splitting.22 These include a general review of water-splitting cells,23 experimental demonstrations,11 Si-based materials,24 and surface passivation layers with a focus on the electronic properties of the resulting devices.25 This review focuses on the use of thin-film materials to protect and stabilize otherwise unstable semiconductors for use as photoelectrodes in water-splitting systems. First, we discuss the origins of the chemical instability of materials and semiconductors specifically (Section 2). Additional background in Section 2 includes a discussion of strategies for realizing stable semiconductor/liquid junctions, which identifies thin protective films as a promising strategy. We then discuss various techniques for the formation of such coatings and how they impact interfacial electronic behavior. The literature that describes thin films for use as protective layers for photoanodes (Section 3) and photocathodes (Section 4) using unstable semiconducting light absorbers in water-splitting devices is then thoroughly reviewed. Finally, we present an outlook for the future of protective thin films to enable the robust, efficient production of solar fuels under a variety of operational conditions (Section 5).

2. BACKGROUND ON INSTABILITY AND STABILIZATION STRATEGIES

Corrosion of semiconductor electrodes represents a special case of the general phenomenon and conceptual treatment of
corrosion of electroactive substances, including metals, oxides, and other conductive materials. According to Pourbaix, corrosion is “the destruction of a material under the chemical or electrochemical action of the surrounding environment.” Corrosion processes have been most thoroughly characterized for metals in aqueous environments, for which corrosion generally occurs through the oxidation of zerovalent species, as in eq 1.

$M + ox \rightarrow M^{z+} + red$ (1)

Here, M is a zerovalent metal; M^{z+} is the oxidized metal product; ox is an oxidant; and red is the reduced form of the oxidant. The reduction process accompanying metal oxidation usually involves the conversion of protons to H_2 or reduction of oxygen to water. Both of these processes involve Brønsted–Lowry acid equivalents, so the pH of the electrolyte is a critical parameter in determining the thermodynamics of corrosion of metals. Sustained rapid corrosion requires that the relevant reaction is thermodynamically favorable as well as kinetically facile. However, even extremely slow corrosion can have a significant impact on the lifetime of industrial components (e.g., turbine blades, vehicle chassis, etc.), so thermodynamic calculations are generally considered to be the most important indicator of long-term material stability. For example, Pourbaix diagrams, or potential-pH predominance area diagrams, provide useful relationships between the stable phase and the electrochemical potential of the solid and solution environment. Figure 2 shows, by way of example, the potential-pH diagram for titanium. Several strategies for corrosion protection in aqueous environments have been implemented. The most straightforward approach involves use of a chemically stable coating. For example, Ti has a large passivation region involving the formation of a surface oxide layer, with this passivation region covering practical potential-pH values for both water oxidation and H_2 generation (Figure 2). Indeed, in pH 0–14 electrolytes, bulk titanium dioxide (TiO_2) is chemically stable at up to 600 mV anodic overpotentials and 200 mV cathodic overpotentials with respect to the OER and HER, respectively.

Many surface coatings that are used to prevent corrosion in metals are not suitable for use in semiconductor-based water splitting systems. First, thick metallic or insulating films are not universally applicable to semiconductor photoelectrodes because such films block light from reaching the semiconductor and/or impede the charge transfer processes that are required to effect the fuel-forming interfacial redox reactions that must be sustained in an operating water-splitting cell. Another method that is commonly used to protect metals from corrosion involves electrically connecting the material to be protected to a sacrificial anode that is more favorably oxidized. The connection causes the electrochemical potential of the metal to rest in the passivation or immunity region on a potential-pH diagram. In an analogous fashion, applied potentials can be used to protect metals from corrosion. This approach only works for PEC systems if a region of electrochemical potential stability happens to coincide with the potentials needed for the fuel-forming redox reactions. Such a situation is more likely to occur for photocathodes than photoanodes and, as such, will be discussed further in Section 4.

Corrosion of semiconductors is more complicated than corrosion of metals because the number of available electrons or holes at the surface that participate in electrochemical processes varies depending on the illumination, biasing conditions, surface/bulk electronic properties, and the solution composition. Further, many semiconductor materials of interest contain several different atoms, which allows for multiple corrosion mechanisms, each governed by different electrochemical equilibria.

The corrosion of semiconductor photoelectrodes can occur through three routes: photoelectrochemical, electrochemical, and chemical. Electrochemical and photoelectrochemical corrosion both require net charge transfer between the photoelectrode and the electrolyte; however, photoelectrochemical reactions involve photoexcited minority carriers, whereas electrochemical reactions involve majority carriers. Chemical corrosion involves reactions that lead to degradation or dissolution of the electrode material without the necessity of net charge transfer across the solid–electrolyte interface.

In the 1970s, Gerischer recognized the issue of photoelectrochemical corrosion of inorganic semiconductors and conducted an analysis of the corrosion potentials of several compound semiconductors. In particular, Gerischer related the quasi-Fermi levels of the minority carriers to the corrosion potential to determine if a given corrosion reaction was thermodynamically favorable when the semiconductor was illuminated. Figure 3 shows the band gap–corrosion potential relationships for stable and unstable semiconductors, using the band diagram formalism. The aqueous photocorrosion reactions for anodic and cathodic decomposition of a covalent compound semiconductor, respectively, can be written as

$MX + z\text{h}^+ \rightarrow M^{z+\text{aq}} + X$ (2)

$MX + ze^- \rightarrow M + X^{-\text{aq}}$ (3)

where M and X are the semiconductor cation and anion; $z\text{h}^+$ is the stoichiometric number of holes; and ze^- is that of electrons. The same reactions can proceed for an elemental semiconductor (e.g., Si), where formally M and X are the same zerovalent element.

As implied by eqs 2 and 3, the oxidized component (M) may become solvated by the aqueous solution through coordination with water or adventitious components of the electrolyte.
Alternatively, corrosion can produce insoluble species, which often remain attached to the surface of the semiconductor as a thin film and retard further corrosion. Regardless of the details of each given corrosion reaction, the position of the quasi-Fermi level with respect to the corrosion potential determines whether the photocorrosion process is thermodynamically favorable under illumination.

The studies by Gerischer were followed by further analysis of semiconductor stability by Park and Barber and by Fujishima et al. More recently, these analyses have been augmented with modern thermodynamic data and first-principles calculations, to provide a more general analysis for a wide range of semiconductors. Results to date indicate that all known nonoxide semiconductors are unstable during aqueous anodic oxygen evolution, and only a few materials, such as Si and WSe₂, are stable under cathodic conditions.

Although in many cases the corrosion of a semiconductor light absorber is driven by optical excitation, the corrosion reaction can also occur over a wide range of potentials in the dark. For example, dissolution of Si in alkaline media cannot be completely inhibited by varying the electrode potential. Attempts to quantify the contributions of the electrochemical corrosion and chemical corrosion processes indicate that chemical rather than electrochemical mechanisms dominate the dissolution of Si in alkaline media. Therefore, the changes in surface electron/hole concentrations due to optical excitation and/or biasing can change the electrochemical corrosion rates, but such treatments may not completely arrest the corrosion of Si.

Several general conclusions can be drawn from the above discussion. First, corrosion is ubiquitous for nonoxide semiconductors that have suitable band gaps for tandem-based PEC solar splitting. Second, such corrosion can give rise to two conductors that have suitable band gaps for tandem-based PEC discussion. First, corrosion is ubiquitous for nonoxide semiconductors. Several general conclusions can be drawn from the above discussion. Second, such corrosion can give rise to two conductors that have suitable band gaps for tandem-based PEC systems. In such cases, the desirable interfacial electron-transfer reaction kinetically outcompetes the oxidation or reduction of the semiconductor photoelectrode, resulting in greatly suppressed rates of corrosion. Although kinetic stabilization is possible in the regenerative PEC case, for which the oxidation/reduction of the solution redox pair is extremely rapid, oxygen evolution and hydrogen evolution are generally slower than the corrosion reactions and hence lead to high branching ratios of electrochemical corrosion relative to the desired water-splitting chemistry. Exceptions to this general rule likely exist for oxide semiconductors. For example, kinetic stabilization may explain the increased robustness of Fe hydroxide- or CoO₂-functionalized BiVO₄, where the corrosion/photopassivation of this oxide semiconductor is slower than water oxidation by Fe hydroxide or CoO₂.

Surface functionalization by organic reagents has been explored for stabilization and manipulation of the interfacial energetics and kinetics of semiconductor electrodes in aqueous electrolytes. Functionalization of surfaces with covalently bonded organic moieties can enhance the stability of semiconductor electrodes. One of the most studied systems in this regard is the methyl-terminated Si(111) surface because nearly 100% of the surface Si atop sites can be functionalized with a methyl group. While such molecular functionalization may provide stable photocathodes due to the lack of a reductive degradation mechanism, such functionalization for photoanode stabilization is likely to be limited in general because aliphatic C−H bonds are more readily oxidized than water or hydroxide ions. As an example of utility for photocathodes, p-Si has been functionalized with a modified viologen that acts as a support and charge-transfer layer for Pt particles that electrocatalyze H₂ production in water.
The primary approach, and the focus of this review, is the strategy of coating unstable semiconductor surfaces with thermodynamically stable films (Figure 4). In this case, the protective film should be electrically conductive, electrochemically stable, and optically transparent and should prevent the semiconductor surface from directly contacting the electrolyte. Ideally, such a layer would also possess favorable optical and electronic properties (e.g., highly transparent and perhaps antireflective; large barrier for transfer of majority carriers; small interface trap state density). Clearly, not all coatings will fulfill all of these requirements. For example, thick (i.e., more than a few nanometers) metal films will not be antireflective or optically transparent and will generally produce low open-circuit voltages when relied upon for the formation of the photoactive junction (i.e., Schottky contact), so the utility of such films is likely limited. In some cases, the protective film could be catalytic for the reaction of interest; however, catalysts or cocatalysts can also be added to the outer surface or incorporated as an additional component in the protective layer. The composition of the protective film, the deposition technique, and the structure at the interface can play significant roles in determining the resulting photoelectrosynthetic behavior.

The location and coverage of conductive and protective films are also relevant parameters that must be considered. Variation of such geometric factors includes the patterning of 2D metal islands where the metal protective contacts can be optically thick, provided that the islands are sparse enough to allow for passage of a large fraction of solar light. Further, strategies including 3D structuring, and the passage of current through optically thick metal films or metal particles at the base of high aspect ratio structured absorbers, have been proposed and implemented experimentally. While these strategies may enable the use of optically thick catalytic/protective films in well-defined locations, protection is still required on the remainder of the semiconductor surface where the requirement of electronic conductivity is lifted, but transparency and stability are not.

2.2. Methods for Forming Protective Films. Various techniques can be employed for forming protective films on semiconductor light absorbers, each with its own basic principles and merits. Broadly, the deposition technique chosen will influence the uniformity, stoichiometry, interfacial characteristics, and other structural and electronic properties of the film and hence may critically impact the stability and performance of the resulting composite photoelectrodes.

Physical-vapor deposition (PVD) techniques, such as thermal or electron-beam evaporation, magnetron sputtering, and pulsed-laser deposition, allow for precise control over the composition and thickness of the protective film. The principle drawback of PVD techniques is line-of-sight deposition, which can result in shadowing and inhomogeneous deposition on structured semiconductor surfaces. This drawback can be somewhat circumvented by tuning the deposition conditions (e.g., chamber pressure and deposition geometry). Sputtering is one of the most common and popular PVD methods, but it can result in damage to the semiconductor absorber surface due to impact of high-energy ions. Another drawback of PVD techniques broadly is the lack of chemical control at the interface between the semiconductor and the deposited film.

Chemical vapor deposition (CVD) techniques have also been used for forming corrosion protection coatings. These techniques are limited by the precursor volatility, stability, and deposition chemistry, all of which limit the available deposition conditions and material compositions. CVD can be used to coat nonplanar surfaces under appropriate deposition conditions. Atomic-layer deposition (ALD), the subset of CVD techniques that utilizes sequential, self-limiting surface reactions, is particularly suitable for conformal and uniform deposition on high aspect-ratio or porous materials. Further, ALD exhibits a high degree of thickness control relative to traditional CVD and PVD techniques. Due to these advantages, a large number of recent studies on the protection of photovoltaic electrodes have used ALD.

Electrodeposition is another well-studied technique that can coat high aspect-ratio materials and generally deposits material where a conductive path and precursor species are simultaneously present. This technique is limited by the deposition conditions (e.g., near room temperature, liquid environment) and generally results in porous coatings. A heavily investigated method of catalyst formation is the electrodeposition of Co and Ni oxides, which result in a porous film that maximizes the number of sites for catalysis. However, the resulting film is unsuitable for corrosion protection of nonoxide semiconductors due to porosity. Sol–gel, chemical bath, and spray deposition of materials are also of interest due to their low cost of implementation, but like electrodeposition, these techniques often result in porous films that can even remain somewhat porous after postdeposition annealing/densification steps.

2.3. Behavior of Semiconductor/Electrolyte Interfaces. The deposition chemistry, as well as the structure of the resulting semiconductor/protective film interface, can significantly influence the resulting electronic properties and hence the energy-conversion efficiency of photovoltaic electrodes. Figure 5 shows...
3. PROTECTION OF PHOTOANODES

3.1. Overview. Due to the early observation of photo-corrosion in aqueous electrolytes, in conjunction with the general instability of nonoxide photoanode materials, significant attention has been devoted to protection of photoanodes.28,31 This section focuses on thin-layer materials that stabilize semiconductor light absorbers for the sunlight-driven oxidation of water or hydroxide, as well as for anode reactions that are important processes in photosynthetic halide-splitting reactions. Hence, the key oxidative electrochemical half-reactions are

\[
\begin{align*}
\text{H}_2\text{O} & \leftrightarrow \frac{1}{2}\text{O}_2 + 2\text{H}^+(\text{aq}) + 2e^- \\
E^0 & = 1.23 \text{~V vs RHE (in acid)} \\
2\text{OH}^- (\text{aq}) & \leftrightarrow \frac{1}{2}\text{O}_2 + \text{H}_2\text{O} + 2e^- \\
E^0 & = 1.23 \text{~V vs RHE (in base)} \\
\text{Cl}_2 (\text{g}) + 2e^- & \leftrightarrow 2\text{Cl}^-(\text{aq}) \quad E^0 = 1.39 \text{~V vs RHE (in acid)} \\
\text{Br}_2 (\text{aq}) + 2e^- & \leftrightarrow 2\text{Br}^- (\text{aq}) \quad E^0 = 1.09 \text{~V vs RHE (in acid)} \\
I_3^- (\text{aq}) + 2e^- & \leftrightarrow 3\text{I}^- (\text{aq}) \quad E^0 = 0.54 \text{~V vs RHE (in acid)}
\end{align*}
\]

where RHE is the potential of the reversible hydrogen electrode.

Below, we present data compiled from a large number of reports of oxygen-evolving photoanodes that have been stabilized with thin films. We summarize the available library of metal oxides for protective coatings because metal oxides are generally considered thermodynamically stable for oxidative chemistry and also because the corrosion behavior of metal oxides is well-documented. Coating strategies will then be discussed and are categorized by the protective thin-film composition, including metals and metal silicides, oxides, phosphides, and nitrides, as well as organic layers.

Table 1 summarizes reported efforts to produce thin-layer protection for oxygen-evolving photoanodes. In chronological order, the table lists the semiconductor being protected, the protective film composition, deposition method, and electrolyte(s) used. When possible, the stability and performance metrics are also noted, including the time during which a noted current density was passed, the approximate onset potential vs the reported reference potential, and vs the Nernst potential for the oxidation reaction of interest. If not specified specifically in the work, the approximate onset potential was estimated as the potential at which the photocurrent reached ~1 mA cm\(^{-2}\). A value for \(V_{\text{shift}}\) is also reported, based on the absolute value of the shift along the potential axis in the current density vs potential curve (\(j-E\)) of an illuminated protective film, relative to the behavior of a photoinactive metallic electrode in the dark with the same near-surface composition (i.e., same electrocatalytic behavior). This figure of merit is related to the photovoltage generated or “power saved” by the semiconductor absorber relative to the dark electrolysis case and therefore quantifies the maximum free energy for the photosynthetic oxidation reaction that is produced by illumination of the photoanode. Table 1 does not include reports of thin-layer protection in nonphotosynthetic redox systems, although many of these reports will also be discussed.

A variety of reference electrodes have been used historically to evaluate the electrochemical behavior of stabilized oxygen-evolving photoanodes. A reversible hydrogen electrode (RHE) is often used to report potential values and provides a convenient reference potential because the value of RHE accounts for the actual composition of the electrolyte and represents a fixed potential relative to the reaction of interest (1.23 V vs the reversible OER potential at 25 °C). Other reference electrodes that are often used include the saturated calomel electrode (SCE), the reversible hydrogen electrode (RHE), and the normal hydrogen electrode (NHE).
Table 1. Photoelectrosynthetic Systems for Oxygen Evolution

<table>
<thead>
<tr>
<th>Year</th>
<th>Base SC</th>
<th>Coating (thickness, nm)</th>
<th>Deposition Method</th>
<th>Electrolyte</th>
<th>pH</th>
<th>Stability, Time (at J, mA cm⁻²)</th>
<th>E°(OER) vs ref (V)</th>
<th>E°(OER) vs SCE (V)</th>
<th>Vshift (mV)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>n-GaP</td>
<td>Au(–)</td>
<td>evaporation</td>
<td>borate buffered 0.5 M K₂SO₄</td>
<td>9.2</td>
<td>–</td>
<td>+0.5 vs SCE</td>
<td>+0.05</td>
<td>560</td>
<td>Nakato²⁰</td>
</tr>
<tr>
<td>1975</td>
<td>n-GaP</td>
<td>Pd(–)</td>
<td>evaporation</td>
<td>borate buffered 0.5 M K₂SO₄</td>
<td>9.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>600</td>
<td>Nakato²⁰</td>
</tr>
<tr>
<td>1977</td>
<td>n-GaP</td>
<td>Au(40)</td>
<td>sputter or evaporation</td>
<td>buffered 0.5 M K₂SO₄</td>
<td>4.3</td>
<td>–</td>
<td>–0.45 vs SCE</td>
<td>−1.18</td>
<td>300–500</td>
<td>Harris¹⁴</td>
</tr>
<tr>
<td>1977</td>
<td>n-GaP</td>
<td>Ag(30)</td>
<td>sputter or evaporation</td>
<td>buffered 0.5 M K₂SO₄</td>
<td>4.3</td>
<td>–</td>
<td>−0.5 vs SCE</td>
<td>−1.23</td>
<td>–</td>
<td>Harris²¹</td>
</tr>
<tr>
<td>1977</td>
<td>n-Si, n-GaAs, n-GaP, n-InP, n-GaS</td>
<td>TiO₂(–)</td>
<td>CVD</td>
<td>Na₂SO₄</td>
<td>–</td>
<td>w</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Kohl¹⁴²</td>
</tr>
<tr>
<td>2014</td>
<td>n-GaP</td>
<td>TiO₂(118)/NiO₃(2)</td>
<td>ALD, e-beam evaporation</td>
<td>1 M KOH</td>
<td>13.7</td>
<td>>5 h (2.5)</td>
<td>−0.16 vs SCE</td>
<td>−0.35</td>
<td>590</td>
<td>Hu³⁹</td>
</tr>
<tr>
<td>1977</td>
<td>n-GaAs, n-GaAlAs</td>
<td>Al₂O₃, TiO₂, Si₃N₄</td>
<td>sputtering</td>
<td>Na₂SO₄ + NaOH</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Tomkiewicz¹⁴¹</td>
</tr>
<tr>
<td>1977</td>
<td>n-GaAs, n-GaAlAs</td>
<td>SnO₂, Nb₂O₅</td>
<td>electodeposition</td>
<td>Na₂SO₄ + NaOH</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Tomkiewicz¹⁴¹</td>
</tr>
<tr>
<td>1987</td>
<td>n-GaAs</td>
<td>Pt or Pd(–)/MnO₃(20)</td>
<td>chemical bath deposition</td>
<td>0.5 M NaOH</td>
<td>13</td>
<td>>80 min (11)</td>
<td>–0.4 vs NHE</td>
<td>−0.86</td>
<td>–</td>
<td>Kainthla¹²¹</td>
</tr>
<tr>
<td>1994</td>
<td>n-GaAs</td>
<td>ITO(280)</td>
<td>sputtering</td>
<td>0.5 M NaClO₄</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Kraft⁷⁹</td>
</tr>
<tr>
<td>2014</td>
<td>np⁺-GaAs</td>
<td>TiO₂(118)/Ni/ NiO₃(2)</td>
<td>ALD, e-beam evaporation</td>
<td>1 M KOH</td>
<td>13.7</td>
<td>>25 h (14)</td>
<td>−0.38 vs SCE</td>
<td>−0.57</td>
<td>810</td>
<td>Hu¹⁹⁹</td>
</tr>
<tr>
<td>1975</td>
<td>n-Si</td>
<td>Au(–)</td>
<td>evaporation</td>
<td>borate buffered 0.5 M K₂SO₄</td>
<td>9.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>170</td>
<td>Nakato²⁰</td>
</tr>
<tr>
<td>1975</td>
<td>n-Si</td>
<td>Pd(–)</td>
<td>Evaporation</td>
<td>borate buffered 0.5 M K₂SO₄</td>
<td>9.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>Nakato²⁰</td>
</tr>
<tr>
<td>1980</td>
<td>n-Si</td>
<td>Fe₂O₃(2-5800)</td>
<td>sputtering/oxidation</td>
<td>0.1 M NaOH</td>
<td>13</td>
<td>–</td>
<td>+0.4 vs SCE</td>
<td>+0.2</td>
<td>–</td>
<td>Morisaka⁴³</td>
</tr>
<tr>
<td>1983</td>
<td>n-Si</td>
<td>ITO(3-100)/RuO₂(–)</td>
<td>sputtering</td>
<td>buffered NaOH</td>
<td>12</td>
<td>–</td>
<td>+0.2 vs SCE</td>
<td>−0.1</td>
<td>–</td>
<td>Hodes¹⁶</td>
</tr>
<tr>
<td>1984</td>
<td>n-Si</td>
<td>Fe₂O₃(75)/Pd(10)</td>
<td>electron-beam evaporation</td>
<td>0.2 M KOH</td>
<td>13.3</td>
<td>–</td>
<td>+0.36 vs Hg/HgO</td>
<td>+0.01</td>
<td>–</td>
<td>Osaka⁶⁵</td>
</tr>
<tr>
<td>1984</td>
<td>n-Si</td>
<td>Pt-SiO₂(10)/Pt</td>
<td>photothermal oxidation</td>
<td>0.5 M H₂SO₄</td>
<td>0</td>
<td>100 h (1)</td>
<td>+1.4 vs NHE</td>
<td>+0.17</td>
<td>–</td>
<td>Bockris⁶²</td>
</tr>
<tr>
<td>1986</td>
<td>n-Si</td>
<td>Pt or Pd(–)/MnO₃(20)</td>
<td>chemical bath deposition</td>
<td>0.5 M K₂SO₄</td>
<td>13, 7</td>
<td>600 h (1)</td>
<td>+0.6, +1.2 vs NHE</td>
<td>+0.14, +0.38</td>
<td>500, 500</td>
<td>Kainthla⁹⁰</td>
</tr>
<tr>
<td>1987</td>
<td>n’-n-Si, n+p-Si</td>
<td>Ni(30)</td>
<td>sputtering</td>
<td>1 M KOH</td>
<td>14</td>
<td>~45 min</td>
<td>+0.25 vs Hg/HgO</td>
<td>−0.06</td>
<td>370</td>
<td>Guizheng¹⁴²</td>
</tr>
<tr>
<td>1987</td>
<td>n’-n-Si, n’-p-Si</td>
<td>Pt(3)</td>
<td>sputtering</td>
<td>1 M KOH</td>
<td>25</td>
<td>>8 h</td>
<td>+0.51 vs Hg/HgO</td>
<td>+0.2</td>
<td>170</td>
<td>Guizheng¹⁴²</td>
</tr>
<tr>
<td>1989</td>
<td>n-Si</td>
<td>Cr₂O₃(–)/TiO₂(–)/ Sb₂O₃(–)</td>
<td>CVD/sol–gel</td>
<td>1 M H₂SO₄ + 1 M IPA</td>
<td>~0</td>
<td>20 h (2.0)</td>
<td>+0.5 vs SCE</td>
<td>−0.50</td>
<td>–</td>
<td>Poznya⁷⁵</td>
</tr>
<tr>
<td>1991</td>
<td>n-Si</td>
<td>BP(–)</td>
<td>CVD</td>
<td>1 M H₂SO₄</td>
<td>~0</td>
<td>–</td>
<td>+0.4 SCE</td>
<td>−0.6</td>
<td>–</td>
<td>Geossens¹²⁷</td>
</tr>
<tr>
<td>2004</td>
<td>a-Si:Ge nip</td>
<td>BTO(–)/Fe₂O₃(–)</td>
<td>sputtering or spray pyrolysis</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>650</td>
<td>Miller¹⁶³</td>
</tr>
<tr>
<td>2011</td>
<td>n-Si</td>
<td>TiO₂(2)/Ir(3)</td>
<td>ALD</td>
<td>1 M H₂SO₄</td>
<td>0</td>
<td>8 h (5.1)</td>
<td>–</td>
<td>–0.22</td>
<td>532</td>
<td>Chen¹¹⁹</td>
</tr>
<tr>
<td>2011</td>
<td>n-Si</td>
<td>TiO₂(2)/Ir(3)</td>
<td>ALD</td>
<td>0.4 M Na₂HPO₄ and 06 M Na₂HPO₄ and NaOH</td>
<td>8</td>
<td>8 h (5.1)</td>
<td>–</td>
<td>−0.28</td>
<td>565</td>
<td>Chen¹¹⁹</td>
</tr>
<tr>
<td>2011</td>
<td>n-Si</td>
<td>TiO₂(2)/Ir(3)</td>
<td>ALD</td>
<td>1 M NaOH</td>
<td>14</td>
<td>24 h (15)</td>
<td>–</td>
<td>−0.20</td>
<td>555</td>
<td>Chen¹¹⁹</td>
</tr>
<tr>
<td>2011</td>
<td>a-Si</td>
<td>ITO(70)/Co-oxide</td>
<td>–</td>
<td>1 M potassium borate</td>
<td>9.2</td>
<td>3 h (~3.7)</td>
<td>−0.4 vs RHE</td>
<td>−1.63</td>
<td>–</td>
<td>Reece⁷⁷</td>
</tr>
<tr>
<td>2012</td>
<td>n-Si</td>
<td>TiO₂(30)</td>
<td>sol–gel</td>
<td>buffered Na₂SO₄</td>
<td>7.25</td>
<td>30 min</td>
<td>–</td>
<td>−0.05</td>
<td>300</td>
<td>Sun⁹²</td>
</tr>
<tr>
<td>2012</td>
<td>n-Si</td>
<td>TiFe₂O₃(20)</td>
<td>CVD</td>
<td>NaOH-NaHPO₄, 1 M NaOH</td>
<td>13.8</td>
<td>–</td>
<td>+1.2 vs RHE</td>
<td>0</td>
<td>~400</td>
<td>Jun⁸⁸</td>
</tr>
<tr>
<td>2012</td>
<td>Ta₂N₃</td>
<td>CoO₂(–)</td>
<td>impregnation</td>
<td>1 M KOH</td>
<td>13.6</td>
<td>2 h (1)</td>
<td>+0.6 vs RHE</td>
<td>−0.60</td>
<td>–</td>
<td>Liao¹⁰⁶</td>
</tr>
<tr>
<td>year</td>
<td>base SC</td>
<td>coating (thickness, nm)</td>
<td>deposition method</td>
<td>electrolyte</td>
<td>pH</td>
<td>stability, time (at J, mA cm⁻²)</td>
<td>E_{onset} vs ref (V)</td>
<td>E_{onset} vs OER (V)</td>
<td>ΔV (mV)</td>
<td>ref</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>----</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>2012</td>
<td>n-GaN</td>
<td>NiO</td>
<td>spin coating + annealing</td>
<td>1 M NaOH</td>
<td>14</td>
<td>110 h (0.5 mL cm⁻² h⁻¹)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Hayashi¹⁰³</td>
</tr>
<tr>
<td>2013</td>
<td>n-Si</td>
<td>Ni(2)</td>
<td>e-beam evaporation</td>
<td>1 M KOH</td>
<td>14</td>
<td>12 h (10)</td>
<td>–</td>
<td>–0.15</td>
<td>~500</td>
<td>Kennéy²²</td>
</tr>
<tr>
<td>2013</td>
<td>n-Si</td>
<td>Ni(2)</td>
<td>e-beam evaporation</td>
<td>0.45 M K-borate and 0.35 M Li-borate</td>
<td>9.5</td>
<td>80 h (10)</td>
<td>–</td>
<td>–0.05</td>
<td>~500</td>
<td>Kennéy²²</td>
</tr>
<tr>
<td>2013</td>
<td>n-Si</td>
<td>NiRuO₃(30)</td>
<td>sputtering</td>
<td>buffered Na₂SO₄</td>
<td>7.25</td>
<td>2 h (1)</td>
<td>–</td>
<td>–0.05</td>
<td>–</td>
<td>Sun⁹³</td>
</tr>
<tr>
<td>2013</td>
<td>n-Si</td>
<td>MnO(10)</td>
<td>ALD</td>
<td>1 M KOH</td>
<td>13.6</td>
<td>~30 min (10)</td>
<td>–</td>
<td>–0.025</td>
<td>450</td>
<td>Strandwitz³⁸</td>
</tr>
<tr>
<td>2013</td>
<td>BiVO₄</td>
<td>CoOₓ(1)</td>
<td>ALD</td>
<td>0.1 M KOH</td>
<td>13</td>
<td>30 min (1.5)</td>
<td>+0.40 vs RHE</td>
<td>–0.83</td>
<td>–</td>
<td>Lichterman⁴⁴</td>
</tr>
<tr>
<td>2013</td>
<td>BiVO₄</td>
<td>CoOₓ(–), CoOₓ + IrOₓ(–), CoOₓ + RuOₓ(–)</td>
<td>calcination</td>
<td>0.1 M Na₂HPO₄(aq) and 0.1 M Na₂HPO₄(aq)</td>
<td>8</td>
<td>1 h (2)</td>
<td>–</td>
<td>–0.30</td>
<td>300</td>
<td>Higashi⁴⁰</td>
</tr>
<tr>
<td>2013</td>
<td>TaON</td>
<td>CaFe₂O₄ + Co-Pi cocatalyst</td>
<td>electrophoretic deposition + calcination</td>
<td>0.1 M potassium phosphate buffer solution</td>
<td>11</td>
<td>3 h (0.5)</td>
<td>+0.6 vs RHE</td>
<td>–0.63</td>
<td>–</td>
<td>Domen¹⁰¹</td>
</tr>
<tr>
<td>2014</td>
<td>np⁺-Si</td>
<td>ITO(100)/Au(5)/ITO(100)/NiOx(—)</td>
<td>sputtering</td>
<td>1 M NaOH</td>
<td>14</td>
<td>2.5 h (10.8)</td>
<td>–</td>
<td>–0.05</td>
<td>388</td>
<td>Sun⁶⁰</td>
</tr>
<tr>
<td>2014</td>
<td>np⁺-Si</td>
<td>CoOₓ(2)</td>
<td>ALD</td>
<td>1 M NaOH</td>
<td>13.6</td>
<td>24 h (30)</td>
<td>+1.1 vs RHE</td>
<td>–0.13</td>
<td>610</td>
<td>Yang⁹⁴</td>
</tr>
<tr>
<td>2014</td>
<td>BiVO₄</td>
<td>FeOOH(—)/NiOOH(—)</td>
<td>(photo) electrodeposition</td>
<td>phosphate buffer</td>
<td>7</td>
<td>50 h (2.6)</td>
<td>+0.2 vs RHE</td>
<td>–1.0</td>
<td>–</td>
<td>Kim¹¹²</td>
</tr>
<tr>
<td>2014</td>
<td>BiVO₄</td>
<td>CaFe₂O₄(—) + Co-Pi cocatalyst (—)</td>
<td>electrophoretic deposition + calcination</td>
<td>0.1 M potassium phosphate buffer solution</td>
<td>7</td>
<td>2 h (2)</td>
<td>+0.3 vs RHE</td>
<td>–0.93</td>
<td>–</td>
<td>Kim¹¹²</td>
</tr>
<tr>
<td>2014</td>
<td>BiVO₄</td>
<td>TiO₂(1)/Ni(2)</td>
<td>ALD</td>
<td>0.1 M KOH</td>
<td>13</td>
<td>2 h (1.4)</td>
<td>+0.6 vs RHE</td>
<td>–0.63</td>
<td>–</td>
<td>McDowell¹⁰⁹</td>
</tr>
<tr>
<td>2014</td>
<td>n-CdTe</td>
<td>TiO₂(100-140)/NiOₓ(2)</td>
<td>ALD, e-beam evaporation</td>
<td>1 M KOH</td>
<td>14</td>
<td>100 h (20)</td>
<td>+0.7 vs RHE</td>
<td>–0.53</td>
<td>–</td>
<td>Lichterman¹⁴⁴</td>
</tr>
<tr>
<td>2014</td>
<td>n-Si</td>
<td>TiO₂(3-13)/Ni/ NiOₓ(100)</td>
<td>ALD, e-beam evaporation</td>
<td>1 M KOH</td>
<td>13.7</td>
<td>–</td>
<td>+0.03 vs SCE</td>
<td>–0.16</td>
<td>430</td>
<td>Hu¹⁹</td>
</tr>
<tr>
<td>2014</td>
<td>np⁺-Si</td>
<td>TiO₂(68)/Ni/NiOₓ(100) islands</td>
<td>ALD, e-beam evaporation</td>
<td>1 M KOH</td>
<td>13.7</td>
<td>>100 (35)</td>
<td>+0.12 vs SCE</td>
<td>–0.07</td>
<td>520</td>
<td>Hu¹⁹</td>
</tr>
<tr>
<td>2014</td>
<td>Ta₃N₅</td>
<td>ferrhydrite (—) + CoOₓ calcocatalyst (—)</td>
<td>chemical bath deposition + calcination</td>
<td>1 M NaOH</td>
<td>13.6</td>
<td>6 h (5)</td>
<td>0.7 vs RHE</td>
<td>–0.53</td>
<td>–</td>
<td>Liu¹⁰⁵</td>
</tr>
<tr>
<td>2014</td>
<td>np⁺-Si</td>
<td>Ir/IrOₓ(4)</td>
<td>sputtering</td>
<td>1 M H₂SO₄</td>
<td>0</td>
<td>18 h (25.5)</td>
<td>+1.05 vs RHE</td>
<td>–0.18</td>
<td>–</td>
<td>Mei⁷³</td>
</tr>
<tr>
<td>2014</td>
<td>np⁺-Si</td>
<td>Fe-treated NiO (50)</td>
<td>sputtering</td>
<td>1 M KOH</td>
<td>14</td>
<td>300 (15)</td>
<td>+1.05 vs RHE</td>
<td>–0.18</td>
<td>–</td>
<td>Mei⁹⁵</td>
</tr>
<tr>
<td>2015</td>
<td>n-Si microwire</td>
<td>TiO₂(94)/NiCrO₄(40)</td>
<td>ALD and Sputtering</td>
<td>1 M KOH</td>
<td>13.6</td>
<td>–</td>
<td>–</td>
<td>+0.07</td>
<td>180</td>
<td>Shan'er¹²²</td>
</tr>
<tr>
<td>2015</td>
<td>np⁺-Si microwire</td>
<td>TiO₂(94)/Ni(40)</td>
<td>ALD and sputtering</td>
<td>1 M KOH</td>
<td>13.6</td>
<td>2200 h (4.5)</td>
<td>–</td>
<td>–0.13</td>
<td>440</td>
<td>Shan'er¹²²</td>
</tr>
<tr>
<td>2015</td>
<td>np⁺-Si</td>
<td>NiOₓ(75)</td>
<td>sputtering</td>
<td>1 M KOH</td>
<td>14</td>
<td>1200 h (30)</td>
<td>–</td>
<td>–0.25</td>
<td>520</td>
<td>Sun⁹⁶</td>
</tr>
<tr>
<td>2015</td>
<td>HTJ-Si</td>
<td>NiOₓ(75)</td>
<td>sputtering</td>
<td>1 M KOH</td>
<td>14</td>
<td>200 h (34)</td>
<td>+0.95 vs RHE</td>
<td>–0.28</td>
<td>600</td>
<td>Sun⁹⁷</td>
</tr>
<tr>
<td>2015</td>
<td>a-Si:H</td>
<td>NiOₓ(75)</td>
<td>sputtering</td>
<td>1 M KOH</td>
<td>14</td>
<td>100 h (5.4)</td>
<td>+1.1 vs RHE</td>
<td>–0.12</td>
<td>–</td>
<td>Sun⁹⁷</td>
</tr>
<tr>
<td>2015</td>
<td>BiVO₄</td>
<td>CoOₓ (1 wt %)/NiOₓ(—6)</td>
<td>bulk calcination/ALD</td>
<td>0.1 M KPi</td>
<td>7</td>
<td>16 h (2.5)</td>
<td>+0.4 vs RHE</td>
<td>–0.83</td>
<td>–</td>
<td>Zhong¹¹³</td>
</tr>
<tr>
<td>2015</td>
<td>n-CdTe</td>
<td>NiOₓ(75)</td>
<td>sputtering</td>
<td>1 M KOH</td>
<td>14</td>
<td>1000 h (229)</td>
<td>+1.15 vs RHE</td>
<td>–0.07</td>
<td>440</td>
<td>Sun⁹⁷</td>
</tr>
</tbody>
</table>
Table 1. continued

<table>
<thead>
<tr>
<th>year</th>
<th>base SC</th>
<th>coating thickness, nm</th>
<th>deposition method</th>
<th>electrolyte</th>
<th>pH</th>
<th>outermost layer</th>
<th>V_{shift} (V)</th>
<th>E_{corr} (V) vs RHE</th>
<th>E_{OER} (V) vs RHE</th>
<th>stability time (at J, onset vs ref)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>np+ Si</td>
<td>Ti3O5 (40) or 1 M HClO4</td>
<td>ALD</td>
<td>0.1 M KOH</td>
<td>14</td>
<td>Ta2O5 (75)</td>
<td>0.05 vs RHE</td>
<td>0.69 vs RHE</td>
<td>0.87 vs RHE</td>
<td>5 h (0.68)</td>
</tr>
<tr>
<td>2015</td>
<td>np+ Si</td>
<td>Ti3O5 (40) or 1 M HClO4</td>
<td>ALD</td>
<td>0.1 M KOH</td>
<td>14</td>
<td>Ta2O5 (75)</td>
<td>0.05 vs RHE</td>
<td>0.69 vs RHE</td>
<td>0.87 vs RHE</td>
<td>5 h (0.68)</td>
</tr>
<tr>
<td>2015</td>
<td>np+ Si</td>
<td>Ta2O5 (75)</td>
<td>ALD</td>
<td>0.1 M KOH</td>
<td>14</td>
<td>Ta2O5 (75)</td>
<td>0.05 vs RHE</td>
<td>0.69 vs RHE</td>
<td>0.87 vs RHE</td>
<td>5 h (0.68)</td>
</tr>
</tbody>
</table>

Table 1 contains additional entries for stable materials used in electrocatalysis. The stability time indicates the duration until significant decomposition or dissolution of the coating. E_{corr} and E_{OER} are voltages measured vs the RHE reference electrode. The V_{shift} values represent the change in potential compared to a reference electrode. The deposition methods include ALD, sputtering, and electron-beam evaporation. The electrolytes used are 1 M KOH or 1 M HClO4. The pH conditions are specified for each entry. The outermost layer is noted, and the final layer listed is the material closest to the semiconductor. This information is crucial for understanding the performance and stability of the electrocatalysts in aqueous media.

2. The proposed energy-band diagram suggests that, upon contact with liquid electrolytes, a thin Ni layer may stabilize n-Si photoanodes in 1 M KOH (pH = 14) for 12 h as well as in 1 M HClO4, or the mercury/magnesium oxide (Hg/HgO with 1.0 M NaOH, 0.098 V vs NHE at 25 °C) electrodes because these references are conveniently used for PEC experiments performed in aqueous media. These reference potentials can be converted to the RHE scale by explicitly measuring the RHE potential in the electrolyte of interest or by an arithmetic conversion using the known potential differences between the reference electrode and the RHE potential. We note, however, that due to nonzero temperature coefficients, junction potentials, and the tendency for reference electrode potentials to drift over time, it is always preferable to provide an explicit calibration to the RHE scale when possible. In Table 1, when potential values other than RHE were reported, a specified arithmetic conversion has been performed to calculate the potential vs RHE, based on the solution pH, but the onset potential is also provided with respect to the reported reference electrode.

Summary of Available Library of Stable Materials

The corrosion stability of oxide coatings and semiconductor light absorbers is generally referenced to the Pourbaix diagrams (vide supra) of the corresponding metal oxide. Many metals form insoluble oxides and self-passivate under water oxidation potentials ($E > 1.23$ V vs RHE) and certain pH conditions, by being biased into the “passivation” region (Figure 2). However, under certain electrochemical and pH conditions, many oxides form soluble species, resulting in film destruction/dissolution. Due to their insolvency over certain ranges of pH, but without considering their electronic transport properties, the following metal oxides can be considered as candidates for photoanode protective coatings over some appreciable range of pH values: TiO2, ZrO2, HfO2, SnO2, In2O3, Fe2O3, MnO2, NiO, WO3, ZnO, Ta2O5, NbO4, Al2O3, MgO, SiO2, BiO. Thermodynamic stability (through the formation of insoluble oxides/hydroxides), however, is not a sufficient condition for corrosion protection. For example, thin layers of NiO, CoO, and MnO2 may become porous during passage of current and may thus allow for eventual permeation of electrolyte to the underlying semiconductor surface.

3.2. Protection of Photoanodes for Water Splitting

3.2.1. Metals and Metal Silicide Protective Layers. Although metals and metal silicides absorb or reflect considerable light, thin layers or sparse coverages allow for their use as protective coatings and functional films. An additional drawback of metals is that metal/semiconductor Schottky contacts generally have large majority-carrier-based recombination currents due to thermionic emission processes at the semiconductor/metal interface and thus produce small photovoltages. Attempts to protect n-type GaP (n-GaP) and n-type Si (n-Si) photoanodes in the late 1970s relied on thin layers of Au, Pd, and Ag films deposited by electron-beam evaporation or sputtering. Later, Wilson et al. revisited such a metal-layer stabilization strategy by studying an Au/n-GaP combination. The energy-band diagram indicated that the metal overlayer formed a buried Schottky junction with n-GaP; hence this metal coatingcontacted the electrolyte (similar to Figure 5b).

Recently, a 2 nm Ni layer was reported to stabilize n-Si photoanodes in 1 M KOH (pH = 14) for 12 h as well as in borate buffer (pH = 9.5) for 80 h with an initial current density of 10 mA cm$^{-2}$. The proposed energy-band diagram suggests that, upon contact with liquid electrolytes, a thin Ni layer on Si forms a buried Schottky junction with a higher barrier height than a thick Ni layer on Si. This hypothesis is
supported by the observation of a photovoltage under light illumination of 500 mV, which is larger than the V_{oc} observed for conventional n-Si/Ni junctions with thicker Ni layers. NiO_x can become porous during prolonged water oxidation, which makes this method potentially problematic in terms of the film permeability. The anodization depth is also critical to the protection capabilities of the metal films and is a function of several parameters including the current density, potential, temperature, and electrolyte composition.

Chorkendorff and co-workers used a 4 nm Ir layer to stabilize Si p-n junction photoanodes (n-type bulk with a p' emitter at the surface) in 1.0 M H_2SO_4 for 18 h at an average current density of 25.5 mA cm^{-2}. They posited that the operative semiconductor/electrolyte interface involved a buried photovoltaic junction in contact with metallic Ir serving as an ohmic contact as well as a water-oxidation catalyst. The XPS depth profiling data indicated that the Ir anodized to a depth of less than 4 nm and maintained protection of the Si photoanodes. These results are encouraging because even slower anodization of Ir is expected in alkaline media. The coating thus needs to be sufficiently thin to obviate obscuration of incident light yet sufficiently thick to prevent anodization that leads to porous protective and catalytic coatings under operating conditions.

3.2.2. Metal Oxide Protective Layers. Due to their chemical stability and optical transparency, metal oxides represent the most common class of thin layers used for photoanode protection. Due to the abundance of research conducted with this class of materials, we have further subdivided this class into the following categories: (1) catalytically inactive transparent conductive oxides (TCO), (2) catalytically active metal oxides, and (3) redox-inactive metal oxides.

3.2.2.1. Catalytically Inactive TCO Protective Layers. Catalytically inactive TCOs, such as Sn-doped In_2O_3 (ITO), SnO_2, or F- or Sb-doped SnO_2, resist corrosion in neutral or near-neutral pH aqueous electrolytes but corrode at extreme pH values. These protective coatings either form Schottky barriers or create ohmic contacts to underlying solid-state photovoltaic junctions. TCO-semiconductor Schottky contacts are generally subject to high recombination velocities and therefore generally produce low V_{oc} values. However, when a PV junction is decorated with a TCO layer, high V_{oc} values can still be obtained.

ITO layers have been used to protect a wide variety of semiconductors, including n-Si, n-GaAs, a GaP/amorphous Si/crystalline Si tandem, triple-junction amorphous Si, and Si-Ge alloy solar cells. Due to a low catalytic activity toward oxygen evolution, ITO surface layers are usually further functionalized with catalysts such as RuO_2, FeO_x, and CoO. ITO-coated triple-junction amorphous Si solar cells have shown >3 h of stability at a photocurrent density of ~3.7 mA cm^{-2} in 1.0 M potassium borate buffer (pH = 9.2) but showed <30 min of stability in 0.10 M KOH (pH = 13), likely because In_2O_3 is soluble in aqueous media with high pH values. n-Si coated with 40 nm of ITO as well as with a RuO_2 cocalyst showed an onset of photoanodic current at 0.1 V negative of the water-oxidation potential in buffered pH = 12.5 NaOH(aq), but neither oxygen yields nor long-term stability data were reported. Recently, an ITO/Au/ITO stack was deposited on a Si p-n junction and produced 2.5 h of photoanodic stability in 1.0 M NaOH (pH = 14). Most TCOs are n-type semiconductors and thus do not generally form high barrier-height contacts to many n-type semiconductors, due to a close alignment of the Fermi levels of the TCO to the conduction band of the semiconductor. Therefore, many attempts to realize high performance for water oxidation have used PV junctions coated with TCO protective films, as described above.

Chromium-containing oxides have been used to stabilize oxygen-evolving photoanodes, perhaps motivated or justified by the utility of chromia scales in protecting stainless steels. For example, Cr_2O_3 films deposited by CVD at 500 °C have been used to stabilize n-Si photoanodes in 1.0 M H_2SO_4 with a photovoltage of 0.5 V. A mixed oxide containing Cr_2O_3:TiO_2:SnO_2 deposited on the Cr_2O_3 was reported to stabilize an n-Si photoanode in an electrolyte consisting of 1 M H_2SO_4 and 1 M isopropanol. However, the measured photocurrent diminished continually over 20 h, and the effect of the added isopropanol was not explained. It is possible that the measured current was due to isopropanol oxidation, rather than oxidation of water to produce O_2(g).

3.2.2.2. Catalytically Active Metal Oxide Protective Layers. Catalytically active transition-metal oxides and silicates have also been widely explored as protective coatings. This strategy attempts to exploit a possible dual function of the metal oxide film: protection and catalysis. Bockris and co-workers used Pt-doped SiO_2 (SiO_2 electrochemically grown on Pt-coated Si surfaces) formed by photoanodic oxidation to stabilize n-Si photoanodes in 0.5 M H_2SO_4 (pH = ~0) for 100 h at a photocurrent density of 1 mA cm^{-2}. Electron-beam-evaporated Fe_2O_3 has also been used to stabilize n-Si and showed an onset of photoanodic current at ~0.4 V vs SCE (~1.3 V vs RHE) in 0.1 M KOH, indicating a low photovoltage and almost no power saved by the n-Si photoelectrode when coated with iron oxide. Iron oxide coatings on n-Si photoanodes have been further investigated in terms of structure and performance in contact with electrochemically reversible redox couples as well as in contact with alkaline media and without methanol. Jun et al. used hematite (α-Fe_2O_3) mixed with 4% Ti to cover an n-Si electrode surface and observed a photoanodic current onset of ~1.1 V vs RHE in 1 M NaOH (pH = 13.8). In this study, a potential shift of ~0.5 V between an ITO electrode coated with iron oxide in the dark relative to an n-Si photoanode coated with iron oxide in the light can be inferred, indicating an appreciable photovoltage produced by this type of stabilized Si photoanode.

MnO_x coatings deposited by chemical-bath deposition, along with an electrodeposited noble-metal layer, have shown promise. MnO_x-coated GaAs and Si showed stable anodic current for 80 min (at 11 mA cm^{-2}) in 0.5 M NaOH and 60 min (at 1.2 mA cm^{-2}) in 0.5 M K_2SO_4, respectively. In both studies, electrodeposited noble metal layers of Pt or Pt were used prior to the deposition of MnO_x, making it unclear if the noble metal played a role in protection. Strandwitz et al. showed that manganese oxide deposited using ALD stabilized n-Si without noble metal layers when the electrodes were contacted by the electrochemically reversible, one-electron ferri-/ferrocyanide redox couple, and they also showed that the protected n-Si photoanode oxidized hydroxide for ~30 min at 1 M KOH(aq). A photovoltage of 0.45 V was observed for MnO_x coated Si photoanodes, and the light-limited current density indicates that the MnO_x coating partially absorbs incident illumination. It was hypothesized in this case that electrochemically induced porosity was ultimately responsible for failure of the protective film.

J. Phys. Chem. C XXX, XXX, XXX–XXX

DOI: 10.1021/jacs.9b05976
Other first-row transition metal oxides have stabilized photoanodes under neutral and alkaline conditions. Recently, NiO, COO, and NiO protective layers comprised of OER catalysts have been used for this purpose.2,92–94 Sol-gel deposited NiO on n-Si showed 4 h of photoanodic water oxidation in phosphate-buffered Na2SO4(aq) at an initial current density of 7 mA cm−2, with the current density decreasing to 1 mA cm−2 over several days of continuous operation (pH = 7.25).92 Sputtered NiRuO2 and ALD-grown CoO stabilized n-Si in 1 M KOH (aq) for 2 h (at 1 mA cm−2) and for 24 h (at 10 mA cm−2), respectively. Chorkendorff and co-workers recently reported that Fe-treated NiO thin films with a Ti underlayer protected Si-based photoanode assemblies for water oxidation for 300 h at 1.3 V vs RHE, although the current declined continuously during the reported stability test.95 Sun et al. reported that sputtered NiO films protected heterojunction-Si (a-Si/c-Si), amorphous Si (a-Si:H), n-CdTe, and buried junction np−/nnp− for water oxidation for up to 1200 h in 1 M KOH, while the photoanodes were operated continuously at their light-limited current densities.96,97 Electrochemically induced porosity that is common in many metal oxide coatings was not considered to be an issue for these NiO coatings. Chen et al.98 investigated p-type NiCoO as a protection layer for Si. In situ Raman spectroscopy was used to show that the metal oxide was structurally stable under electrochemical cycling. The photovoltaic and photoelectric performance was similar to that of the NiO-coated photoanodes discussed above. Stability testing was conducted for 72 h, but analysis of the electrolyte for corrosion products suggested a much longer lifetime.

Oxide and Nitride Absorbers. Metal-oxide OER catalysts have also been used to improve the stability of oxide, nitride, and oxynitride light-absorbing materials under photoanodic conditions and warrant comment here. The general expectation is that nitride-based absorbers are more stable than other nonoxides. However, oxides, nitrates, or oxynitrides are not always stable and require cocatalysts or protection strategies to improve their stability. Domen and co-workers showed that IrO3 and CoO2 particles could be sparsely deposited on TaON by chemical-bath deposition or electrophoretic deposition, respectively, and both types of TaON photoanodes exhibited improved stability, 1–2 h in buffered 0.1 M Na2SO4 electrolyte (pH = 6).99,100 An onset potential of 0.63 V negative of the water oxidation potential was observed from this 2.7 eV band gap semiconductor. By forming a heterojunction, calcium ferrite (p-CaFe2O4) modified TaON or BiVO4 photoanode showed improved performance for water splitting as compared to the same material without a surface coating.101,102 Li et al. reported that a ferrihydride (Fe2(H2O)3Cl2O) layer protected a Ta2N5 photoanode against photocorrosion for >6 h, while the bare Ta2N5 only operated for several minutes under the same conditions. The ferrihydrite was hypothesized to be a hole storage layer, which captured and transmitted the photo-generated holes readily to the electrolyte or to the CoO2 catalyst.103 BTa2O7N treated with preloaded CoO2 particles and postloaded with RhO2 along with a necking treatment that involved impregnating a TaCl5 solution followed by treatment with H2 showed at least 1 h stability for water oxidation in pH = 8 phosphate buffer.104 Barium-doped tantalum nitride nanorod photoanodes exhibited up to 1.5% solar energy-conversion efficiency with a faradic efficiency of unity for 100 min at pH 13, when modified with cobalt phosphate as the catalyst.105 Similarly, Ta2N5 was stabilized in 1 M KOH for 2 h using surface-impregnated CoO2 particles, and the electrode showed an onset of oxygen evolution at 0.6 V vs RHE under visible (λ > 420 nm) illumination.106 n-GaN showed improved stability in 1 M NaOH for up to 100 h using a surface-located NiO cocatalyst.107,108

The relatively narrow band gap metal oxide semiconductor, BiVO4, is only stable anodically at pH = ~7 in contact with electrochemically reversible redox couples. Consistently, BiVO4 only lasts for a few cyclic voltammetric scans in pH > 13 before the material dissolves.109 However, the photoanodic stability of BiVO4 can be improved by deposition of a cocatalyst of Co- and FeOOH.109,111 Lichterman et al.109 showed that ALD-grown CoO can improve the stability of BiVO4 in 0.10 M KOH (pH = 13) to >0.5 h, and Choi and co-workers112 showed that a photoelectrodeposited FeOOH/NiOOH catalyst layer stabilized BiVO4 surfaces in phosphate buffer (pH = 7) for ~50 h. Very recently, Domen113 and co-workers found that further deposition of an ultrathin p-type NiO layer by ALD on the CoO2/BiVO4 photoanode made by the particle transfer method tripled the photocurrent density and rendered the photoanode stable for at least 16 h at pH 7, with a light-limited photocurrent density of 2.5 mA cm−2. The photocurrent onset potential of BiVO4 electrodes was 0.4 V vs RHE, a −0.83 V shift from the formal potential for water oxidation from this 2.3 eV band gap material. In this work, the in situ formed NiOOH together with CoO2 were responsible for the improved water oxidation activity and formed a buried junction between the p-NiO and the n-BiVO4.114

3.2.2.3. Catalytically Inactive, Wide Band Gap Metal Oxide Protective Layers. Catalytically inactive, chemically stable, wide band gap metal oxides have been investigated as barrier layers to stabilize photoanode surfaces, and such barrier layers may obviate the drawback of electrochemically induced porosity. Parsons and co-workers observed that the passivating behavior of TiO2, ZnO, and Al2O3 thin films led to reduced photocorrosion of Si but was accompanied by a significant reduction in hole conduction.114 Often, an insulating or wide band gap protection layer like TiO2 behaves as a barrier to transport of photogenerated holes, due to the valence band offset between TiO2 and nonoxide semiconductors.114 A clear demonstration of the hole barrier introduced by wide band gap oxides was shown by the decline in photocurrent on a TiO2 photoelectrode that accompanied the deposition of an insulating MgO film.116 In this case, the TiO2 was the semiconductor being covered by the MgO. Although the TiO2 did not require protection, the study produced a clear demonstration of inhibited hole conduction. Within oxynitride-based absorbers, a necking treatment consisting of TiCl4 and TaCl5 impregnation, followed by annealing, resulted in the formation of TiO2 and Ta2O5 between light absorber particles and increased the photoelectrode stability and performance.104,117,118

One approach to transport holes through the blocking layer is by tunneling or trap-assisted tunneling. Recently, this strategy has been demonstrated using a 2 nm thick TiO2 film grown by ALD with a thin Ir film overlayer that has stabilized n-Si photoanodes for 8 h in 1.0 M H2SO4 phosphate buffer (pH = 7), or 1 M NaOH.108 Similarly, a ~1 nm ALD-grown TiO2 film was used to stabilize n-ZnO in 0.1 M KOH (pH = 13) for 5 h of water oxidation.121 In these cases, conduction through the crystalline TiO2 layer was attributed to hole tunneling, which limits the film thickness to ~2 nm.119,120

K
Recent studies of ALD-grown TiO₂ protective films on Si have shown effective hole transport even with TiO₂ layers that are too thick to facilitate effective hole tunneling. In support of previous theoretical work suggesting this might be possible, the amorphous TiO₂ coating was grown by ALD using tetakis(dimethylamido) titanium (TDMAT) and was found to stabilize Si, GaAs, GaP, and CdTe in 1.0 M KOH (aq) for >100 h, with islands of NiO₂ as the OER cocatalyst. Although this TiO₂ film is chemically stable, identification of the mechanism of hole conductivity requires further investigation. This amorphous TiO₂ coating has also stabilized structured, high-aspect-ratio light absorbers such as Si microwires for >2200 h of continuous operation under water oxidation conditions in 1.0 M KOH. Such an amorphous TiO₂ coating can also stabilize BiVO₄ but with a thickness of ~1 nm, where tunneling of photogenerated charge carriers is possible. In all of these studies, the TiO₂ was formed by the ALD using TDMAT as a Ti precursor, which may be responsible for the unique, "leaky" electronic behavior, possibly due to nitrogen content from the amido-based precursor and/or Ti₃⁺. Regardless of the chemical origins of such electronic transport, such a scenario was proposed by Campet, and an adapted band diagram is shown in Figure 6 that may explain the behavior of these TiO₂-coated electrodes. An alternative explanation involves transport of electrons through TiO₂ which essentially acts as an ohmic contact between Ti and a Pt catalyst in an np⁻-Ti—TiO₂—Pt stack. The TiO₂ in this study was deposited using sputtering, and it was claimed that it did not possess states that would yield a "leaky" TiO₂ layer. However, this work also utilized a metal (5 nm Ti) intermediate layer between the TiO₂ and Si absorber (rather than a direct TiO₂—Si contact) which functioned like a tunnel junction for recombination of holes in the p⁺ Si and electrons in TiO₂. The Ti layer was said to have formed a high barrier height (yet ohmic) contact to the p⁺ emitter and an ohmic contact to the TiO₂. The authors also specifically studied the transport from the p⁺ Si emitter into a Ti Schottky contact as a function of the emitter doping density.

3.2.3. Nitride, Phosphide, and Boride Protective Layers. Nitride-based compounds (e.g., GaN, TaN₃) have generally shown better stability for PEC water oxidation than is obtained using Si, Ge, or compound arsenide semiconductors, but reports describing the use of nitrides as protective films are not common. Boron phosphide (BP with 1:1 ratio of boron and phosphorus) has been grown on n-Si and n-GaAs to increase the photoanode stability but was initially only examined in contact with electrochemically reversible aqueous couples. An n-type BP layer grown epitaxially by CVD methods using BB₃ and PB₃ as precursors in a stream of dry H₂ as carrier gas yielded improved photoanodic and cathodic stability on n-Si and p-Si, respectively. The BP-protected n-Si photoanode showed a photoanodic current onset of 0.4 V vs SCE, and neither light-limited photocurrent densities nor the extent of stability under operation were reported. In contrast, the BP-protected p-Si photocathode showed more than 1000 h of continuous operation at a photocurrent density of 15 mA cm⁻². No quantitative yield of O₂ and H₂ was reported for either BP-protected n-Si photoanodes or p-Si photocathodes. As is further discussed below, enhanced stability could be due to alloying of the B- or P-based components of the film with the Si.

3.3. Protection of Photoanodes for Halide Splitting. Table 2 presents reports of thin-layer protection for photoanodes performing the oxidation of halides. These reactions generally proceed more readily than oxygen evolution due to more facile interfacial kinetics for the oxidative half-reactions of the halides relative to water oxidation. In the early 1980s, Bard and co-workers used noble metals to stabilize Si photoanodes for halide oxidation. A Pt-modified n-Si photoanode showed a photovoltage of 0.40 V, which is consistent with a Schottky barrier formed between Pt and n-Si. The light-limited photocurrent density was 14 mA cm⁻² under 65 mW cm⁻² of simulated solar illumination. Nakato et al. attempted a similar strategy using buried junction np⁻ Si photoanodes and obtained a photovoltage of 550 mV and a photocurrent density of 12 mA cm⁻². Islands of Pt particles were shown to protect n-Si photoanodes in a 4.8 M HBr/0.03 M Br₂ electrolyte.

In addition to metals and silicides, conductive oxide coatings such as ITO, SnO₂, Sb-doped SnO₂, TiO₂, Fe₂O₃, and WO₃ have been shown to exhibit stable photoelectrochemical behavior in conjunction with n-Si photoanodes under halide oxidation conditions. Both ion-beam sputtered ITO on n-Si with a RuO₂ photocathode and CVD-grown SnO₂ on n-Si with a Pt photocathode have shown 20 h of stability in either a Cl₂/H₂ electrolyte or a Cl⁻/Cl₂ electrolyte (pH = 6.6) or in a I⁻/I₂ electrolyte (pH = 1.5). Yano et al. reported that thin layers of electron-beam evaporated TiO₂, Fe₂O₃, or WO₃ stabilized np⁻ Si junctions for iodide oxidation, and a TiO₂-stabilized buried junction np⁻ Si photoanode exhibited Voc = 580 mV and 330 h of stability for the oxidation of fuming HI.

Boron-alloyed Si surfaces also have shown stability for halide oxidation. In one case, an np⁻ Si junction with a heavily B-enriched surface was formed by drop casting a saturated methanol solution of boron trioxide (B₂O₃) onto Si surfaces, followed by annealing at 1000 °C for 2 h in air. During oxidation of 57% fuming HI, such a boron-alloyed Si surface showed a photoanodic stability at 15 mA cm⁻² with a Voc > 980 mV. With a Pd catalyst overlayer, the PEC performance improved to yield Voc = 650 mV while providing 7 h of stability at 32 mA cm⁻² of photoanodic current density. In this case, as well as in the BP case described previously for OER and HER, the well-known "etch-stop" mechanism could be responsible for the stability of these layers. Boron-alloyed layers are commonly exploited to produce etch stop layers during micromachining.

![Figure 6](image-url)
Table 2. Photoelectrosynthetic Systems for Halide Oxidation

<table>
<thead>
<tr>
<th>year</th>
<th>base SC coating (thickness, nm) (a)</th>
<th>deposition method</th>
<th>electrolyte</th>
<th>pH</th>
<th>stability, time (at J, mA cm⁻²)</th>
<th>E_{onset} vs ref (V)</th>
<th>V_{oc} (mV)</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>n-Si CuPc (150) coating, passivated electrode</td>
<td>0.2 M NaI/0.004 M I₂/0.5 M Na₂SO₄</td>
<td>--</td>
<td>30 s (0.2)</td>
<td>--</td>
<td>Leempoel 147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>n-Si CuPc (80) coating, passivated electrode</td>
<td>1 M NaI/0.004 M I₂</td>
<td>--</td>
<td>500 s (9)</td>
<td>--0.1 V vs SCE</td>
<td>--</td>
<td>Leempoel 147</td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>Surface doped n-Si drop-cast followed by diffusion</td>
<td>57% HI</td>
<td>--</td>
<td>7 h (15)</td>
<td>--0.25 V vs SCE</td>
<td>300</td>
<td>Nakato 135</td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>Surface doped n-Si drop-cast followed by diffusion</td>
<td>57% HI</td>
<td>--</td>
<td>7 h (32)</td>
<td>--0.6 V vs SCE</td>
<td>650</td>
<td>Nakato 135</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>n-Si Pt silicide (~4) flash evaporation</td>
<td>1 M NaI, 0.1 M I₂</td>
<td>--</td>
<td>--</td>
<td>--0.1 V vs SCE</td>
<td>--400</td>
<td>Fan 128</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>n-Si Pt silicide (~4) flash evaporation</td>
<td>0.5 M Na₂SO₄, 1 M NaBr</td>
<td>--</td>
<td>8 h (4)</td>
<td>+0.4 V vs SCE</td>
<td>--</td>
<td>Fan 128</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>n-Si n-Si(Ir) (~4) drop-cast followed by diffusion</td>
<td>57% HI</td>
<td>--</td>
<td>7 h (7)</td>
<td>+0.7 V vs SCE</td>
<td>--</td>
<td>Fan 128</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>n-Si Ru₃-modified n-Si(Ir) (~4) flash evaporation</td>
<td>11 M LiCl</td>
<td>5</td>
<td>7 h (9)</td>
<td>+0.6–0.7 V vs SCE (estimated)</td>
<td>--</td>
<td>Fan 128</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>n-Si ITO (~40) ion beam sputtering</td>
<td>15 M LiCl/0.05 M Cl₂</td>
<td>~6.6</td>
<td>20 h (14.3) in 5 M NaCl</td>
<td>+0.7 V vs SCE</td>
<td>160</td>
<td>Hodes, Thompson 76,111</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>n-Si SnO₂/Ru (80) spray/CVD</td>
<td>3 M NaCl/sat. Cl₂ system</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>340</td>
<td>Decker 125</td>
</tr>
<tr>
<td>1983</td>
<td>n-Si SnO₂ (80) spray/CVD</td>
<td>3 M NaCl/sat. Cl₂ system</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>470</td>
<td>Decker 125</td>
</tr>
<tr>
<td>1983</td>
<td>n-Si SnO₂/Sb (80) spray/CVD</td>
<td>3 M LiCl</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>460</td>
<td>Decker 125</td>
</tr>
<tr>
<td>1984</td>
<td>n-Si Polycarbonate (~4) polymerization</td>
<td>0.5 M Lii, 10 mM I₂ in 11 M LiCl</td>
<td>--</td>
<td>23 h (2.2)</td>
<td>--0.2 V vs SCE</td>
<td>400</td>
<td>Simon 137</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>np⁺-Si Pt silicide (<5) E-beam evaporation followed by annealing and HF etching before PEC</td>
<td>7.6 M HCl/0.05 M I₂</td>
<td>--</td>
<td>4500 h (12)</td>
<td>--0.55 V vs I₃⁻/I⁻</td>
<td>550</td>
<td>Nakato 126</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>np⁺-Si TiO₂ (3–20) E-beam evaporation</td>
<td>7.6 M HCl/0.03–0.05 M I₂</td>
<td>--</td>
<td>330 h (16)</td>
<td>--0.57 V vs SCE</td>
<td>580</td>
<td>Tsuobomura 134</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>np⁺-Si Fe₂O₃ (3–20) E-beam evaporation</td>
<td>7.6 M HCl/0.03 M I₂</td>
<td>--</td>
<td>--</td>
<td>--0.53 V vs SCE</td>
<td>540</td>
<td>Tsuobomura 134</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>np⁺-Si WO₃ (3–20) E-beam evaporation</td>
<td>7.6 M HCl/0.03 M I₂</td>
<td>--</td>
<td>--</td>
<td>--0.53 V vs SCE</td>
<td>540</td>
<td>Tsuobomura 134</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>n-Si SnO₂ (40–50) CVD</td>
<td>0.4 M KI/0.00075 M I₂, 0.5 M NaSO₄</td>
<td>1.5</td>
<td>20 h (19 to 17)</td>
<td>--</td>
<td>549</td>
<td>Belanger 133</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>n-Si Pt islands/SiO₂ (~4) vacuum deposition followed by alkali-etching</td>
<td>4.8 M HBr/0.03 M Br₂</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>660–680</td>
<td>Nakato 130</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>n-Si nanodot Pt (~4) electrodeposition</td>
<td>8.6 M HBr + 0.05 M Br₂</td>
<td>--</td>
<td>--</td>
<td>--0.68 V vs I₃⁻/I⁻</td>
<td>680</td>
<td>Takabayashi 39</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>n-Si methyl-n-Si + Pt (~4) methylation and electrodeposition</td>
<td>8.6 M HBr + 0.05 M Br₂</td>
<td>--</td>
<td>3 h (24)</td>
<td>--</td>
<td>--</td>
<td>Takabayashi 39</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>n-Si methyl-n-Si + Pt (~4) methylation and electrodeposition</td>
<td>7.6 M H⁺/0.05 M I₂</td>
<td>--</td>
<td>24 h implied by XPS data</td>
<td>--0.55 V vs I₃⁻/I⁻</td>
<td>550</td>
<td>Takabayashi 39</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>n-Si PEDOT:PSS (20) spin coat</td>
<td>8.4 M HBr</td>
<td><0</td>
<td>7 (10)</td>
<td>+0.3 V vs Pt (in 8.4 M HBr)</td>
<td>380</td>
<td>Mubeen 138</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>n-Si PEDOT:PSS (20) spin coat</td>
<td>HI</td>
<td>~2</td>
<td>6 (7)</td>
<td>--0.3 V vs Pt (in pH2 HI)</td>
<td>380</td>
<td>Mubeen 138</td>
<td></td>
</tr>
</tbody>
</table>

(--) data not specified or parameter not reported.
Figure 7. State-of-the-art performance of thin-layer protected Si photoanodes. The light absorber/protective coating/catalyst compositions are (a) n-Si/2 nm TiO$_2$/Ir. Reprinted by permission from Macmillan Publishers Ltd.: Nature Materials (ref 119), Copyright 2011. (b) n-Si or np$^+$-Si/4−143 nm TiO$_2$/Ni islands. Reproduced with permission from The American Association for the Advancement of Science, 2014 (ref 49). (c) np$^+$-Si/Fe-treated 50 nm NiO. Reproduced with permission from the American Chemical Society (Ref 95). (d) np$^+$-Si wires/94 nm TiO$_2$/NiCrO$_x$. Reproduced from ref 122 with permission from The Royal Society of Chemistry.

Figure 8. State-of-the-art stability of the corresponding thin-layer protected Si photoanodes in Figure 7. The corresponding photoanode structures are: (a) n-Si/2 nm TiO$_2$/Ir. Reprinted by permission from Macmillan Publishers Ltd.: Nature Materials (ref 119), Copyright 2011. (b) n-Si or np$^+$-Si/4−143 nm TiO$_2$/Ni islands. Reproduced with permission from The American Association for the Advancement of Science, 2014 (ref 49). (c) np$^+$-Si/Fe-treated 50 nm NiO. Reproduced with permission from the American Chemical Society (ref 95). (d) np$^+$-Si wires/94 nm TiO$_2$/NiCrO$_x$. Reproduced from ref 122 with permission from The Royal Society of Chemistry. The black curve in (b) indicates the monitored illumination intensity as a function of time.
and the high conductivity of these layers may also allow for favorable electron-transfer properties and photoactive barrier formation in water-splitting devices. Various organic films also show promise for protection against corrosion and catalysis for halide oxidation. Wrighton and co-workers showed that polyacetylene-coated n-Si (n-Si/CH)x stably oxidized I3-/I- for 23 h at a photocurrent density of 2.2 mA cm^-2. Similarly, McFarland and co-workers have shown that a PEDOT:PSS-coated n-Si photoanode can oxidize HBr and HI for 7 and 6 h, respectively.

The photovoltage of such polymer/Si junctions was 380–400 mV. However, the measured light-limited photocurrent density from PEDOT:PSS-coated n-Si photodetectors was 7–10 mA cm^-2 because PEDOT:PSS coatings strongly absorb incident illumination. A methylated n-Si(111) surface with electro-deposited Pt islands showed a photovoltage of 550 mV in contact with I3-/I- redox and showed a photoanodic stability of 3 h at 24 mA cm^-2 in contact with the Br2/Br- redox couple. In contrast, Pt-electrodeposited and hydrogen-terminated n-Si and bare hydrogen-terminated n-Si showed an immediate photocurrent drop within <1 h.

3.4. Summary and Perspectives of Photoanode Protection. Figure 7 and Figure 8 display cyclic voltammetric and chronoamperometric data, respectively, for some of the best-performing demonstrations of protection via tunnel-oxide conduction, “leaky” defect-state conduction, and doped TCO conduction. Each of these strategies yields excellent performance in terms of photocurrent and photovoltage, as well as continued OER activity for periods of many hours. To date, various oxide coatings have resulted in both high performance and >10^h stability for protected photoanodes. The ALD-grown amorphous TiO2 strategy has exhibited the best protection to date for a variety of materials for the longest time periods at relevant current densities (~2200 h, ~5 mA cm^-2), but it may not be the only or best choice as a protective coating. NiO protective coatings have shown >1000 h stability consistently for self-passivating materials (e.g., Si and CdTe) with planar configuration. Therefore, one future direction in photoanode stabilization would focus on catalytically active oxides (NiO, CoO2, and mixed NiFeO2), inactive metal oxides (ZnO, ZrO2, HfO2, and Bi2O3), nitrides (GaN, TaN), and carbides (TaC, TiC, and ZrC) that may be doped or engineered with defect states within the band gap so that they allow hole transport in a analogous fashion to amorphous ALD TiO2. The successful implementation of this approach in general will benefit from a systematic understanding of the origin and energetics of defect states and conduction mechanisms in these stable materials.

Second, the combination of catalytically active oxides and catalytically inactive barrier layers provides an approach to separate the functions of protection/conductivity (e.g., TiO2) and catalysis (e.g., NiO(OH)) and represents an immediate engineering approach to obtaining additional improvements in the lifetime of stabilized photoanodes. This strategy may avoid issues related to electrochemically induced porosity in the protective film. A few remaining gaps still exist for photoanode stabilization. n-Si has been stabilized for >1000 h in either alkaline or acidic electrolytes, but stability with high photovoltage and photocurrent without using a buried junction has not been reported. n-Si/TiO2/Ir configurations have shown 560 mV photovoltages, whereas other combinations of n-Si and protective coatings produce photovoltages <450 mV. For GaAs, no strategies other than ALD-grown amorphous TiO2 have demonstrated stability, and the photovoltages of such systems need to be improved by interfacial engineering. For n-InP and n-CdTe, catalytically active coating strategies have been demonstrated, but interfacial engineering would be beneficial to improve the energy-conversion performance of such devices. For Ta2N5 stability has been improved to a few hours, but long-term stability requires further coating development.

4. PROTECTION OF PHOTOCATHODES

4.1. Overview. Although early experiments in the field of solar-driven water splitting emphasized the use of wide band gap, n-type oxide absorbers, p-type semiconducting materials can also facilitate solar-assisted hydrogen evolution, provided that the absorbers are coupled to suitable HER electrocatalysts. The early demonstrations of PEC-based hydrogen evolution did not include explicit efforts to protect the semiconductor surface from corrosion because many photocathodes are relatively stable under such conditions. Some materials are in fact cathodically protected under illumination because they operate in the immunity region of the Pourbaix diagram, while others have extremely slow kinetics for reduction of the surface species and undergo minimal bulk reduction processes. Nevertheless, the use of thin-layer protective coatings can enhance the stability of such materials; these coatings often eliminate the direct contact between the semiconductor surface and the aqueous electrolyte and therefore increase the complexity of the device structure and fabrication.

Although the introduction of a protection layer generally forms a buried junction, which can lead to Fermi level pinning that is not present at the unprotected photocathode/liquid interface of concern, suitable application of surface layers can also beneficially increase the photovoltage as well as the long-term stability of some photocathode materials. Most of the well-established TCO materials that are used ubiquitously as top contacts in conventional photovoltaic cells and many refractory metal oxides (e.g., TiO2) are n-type semiconductors, making them suitable to form highly rectifying and photoactive contacts with p-type absorbers (e.g., p-InP or p-Si). Many of these metal oxides are also stable under reducing conditions (e.g., TiO2; vide supra). Thus, several obvious and natural choices often exist for use as surface layers to protect a semiconductor photocathode of interest, when such protection is needed to obtain stable photoreduction behavior.

In certain cases, p-type semiconductors in contact with aqueous electrolytes may spontaneously form protective surface layers. Alternatively, protective layers may form spontaneously when a p-type semiconductor is transiently exposed to oxidizing conditions. Depending on the semiconductor, these surface layers may be insulating, as with Si (SiO2), or may be n-type conducting, as in the case of InP (In2O3). Moreover, the physical and electronic properties (crystallinity, defect density, conductivity, work function, etc.) are likely a function of the semiconductor surface from corrosion because many photo-cathodes are relatively stable under such conditions. Some materials are in fact cathodically protected under illumination because they operate in the immunity region of the Pourbaix diagram, while others have extremely slow kinetics for reduction of the surface species and undergo minimal bulk reduction processes. Nevertheless, the use of thin-layer protective coatings can enhance the stability of such materials; these coatings often eliminate the direct contact between the semiconductor surface and the aqueous electrolyte and therefore increase the complexity of the device structure and fabrication.

Although the introduction of a protection layer generally forms a buried junction, which can lead to Fermi level pinning that is not present at the unprotected photocathode/liquid interface of concern, suitable application of surface layers can also beneficially increase the photovoltage as well as the long-term stability of some photocathode materials. Most of the well-established TCO materials that are used ubiquitously as top contacts in conventional photovoltaic cells and many refractory metal oxides (e.g., TiO2) are n-type semiconductors, making them suitable to form highly rectifying and photoactive contacts with p-type absorbers (e.g., p-InP or p-Si). Many of these metal oxides are also stable under reducing conditions (e.g., TiO2; vide supra). Thus, several obvious and natural choices often exist for use as surface layers to protect a semiconductor photocathode of interest, when such protection is needed to obtain stable photoreduction behavior.

In certain cases, p-type semiconductors in contact with aqueous electrolytes may spontaneously form protective surface layers. Alternatively, protective layers may form spontaneously when a p-type semiconductor is transiently exposed to oxidizing conditions. Depending on the semiconductor, these surface layers may be insulating, as with Si (SiO2), or may be n-type conducting, as in the case of InP (In2O3). Moreover, the physical and electronic properties (crystallinity, defect density, conductivity, work function, etc.) are likely a function of the conditions under which the layer is formed. Hence, the implementation of a passivation/protection scheme for photocathodes is highly material-specific, and certain materials (particularly Si and InP) have been highly favored for the inherently desirable qualities of their “native” surface coatings under photocathodic conditions. Table 3 summarizes many of the results for hydrogen-evolving photocathode materials that employ surface layers for stabilization and/or improved energy-conversion efficiencies. The content of Table 3 parallels that of
<table>
<thead>
<tr>
<th>Year</th>
<th>Photocathode</th>
<th>Protective Film Composition (Thickness, nm)</th>
<th>Deposition Method</th>
<th>Cocatalyst (nm)</th>
<th>Electrolyte</th>
<th>Solution pH</th>
<th>Illumination</th>
<th>Reported Stability Time</th>
<th>Stability (mA cm$^{-2}$)</th>
<th>E(onset) vs RHE (V)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>p-Si</td>
<td>TiO$_2$ (not stated)</td>
<td>CVD</td>
<td>none</td>
<td>0.5 M Na$_2$SO$_4$</td>
<td>~7</td>
<td>450 W Xe lamp</td>
<td>‘several hours’</td>
<td><1</td>
<td>~0.14</td>
<td>Kohl[140]</td>
</tr>
<tr>
<td>1981</td>
<td>p-InP</td>
<td>“thin surface oxide”</td>
<td>acid etching</td>
<td>Ru, Rh, Pt</td>
<td>1 M HCl with 2 M KCl</td>
<td>0</td>
<td>Sunlight 85 mW cm$^{-2}$</td>
<td>1 week</td>
<td>0.5</td>
<td>0.8</td>
<td>Heller and Vadmisky[150]</td>
</tr>
<tr>
<td>1982</td>
<td>p-InP</td>
<td>“thin surface oxide”</td>
<td>acid etching</td>
<td>Ru, Rh, Pt</td>
<td>4 M HClO$_4$</td>
<td>0</td>
<td>100 W QTH, 2–3 suns</td>
<td>24 h</td>
<td>60</td>
<td>0.8</td>
<td>Heller[151]</td>
</tr>
<tr>
<td>1988</td>
<td>two-junction n i n p a-Si</td>
<td>Pt (1.5 nm)</td>
<td>E-beam evaporation</td>
<td>Pt (1.5)</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>0</td>
<td>AM1, 100 mW cm$^{-2}$</td>
<td>–</td>
<td>–</td>
<td>1.6</td>
<td>Saka[152]</td>
</tr>
<tr>
<td>1988</td>
<td>triple-junction a-Si/ crystalline-Si</td>
<td>Pt (1.5 nm)</td>
<td>E-beam evaporation</td>
<td>Pt (1.5)</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>0</td>
<td>AM1, 100 mW cm$^{-2}$</td>
<td>–</td>
<td>–</td>
<td>2.0</td>
<td>Saka[152]</td>
</tr>
<tr>
<td>1996</td>
<td>p-Si</td>
<td>(none)</td>
<td></td>
<td>Pt</td>
<td>1 M HCl</td>
<td>0</td>
<td>W halogen</td>
<td>33 mW cm$^{-2}$</td>
<td>60 d</td>
<td>~4 0.3</td>
<td>Mai[153]</td>
</tr>
<tr>
<td>1999</td>
<td>p-GaInP$_2$</td>
<td>(none)</td>
<td></td>
<td>Pt</td>
<td>2 M HBr, 2 M NaClO$_4$</td>
<td>~0</td>
<td>W halogen</td>
<td>10 h</td>
<td>35</td>
<td>–</td>
<td>Khasale[154]</td>
</tr>
<tr>
<td>2003</td>
<td>p-Cu$_2$O</td>
<td>TiO$_2$ (100)</td>
<td>sputtering</td>
<td>(none)</td>
<td>0.1 M sodium acetate</td>
<td>varied</td>
<td>Xe lamp 70 mW cm$^{-2}$</td>
<td>–</td>
<td>0.7</td>
<td>0.46</td>
<td>Sirti[155]</td>
</tr>
<tr>
<td>2008</td>
<td>p-CuGaSe$_2$</td>
<td>(none)</td>
<td></td>
<td>Pt</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>0</td>
<td>natural sunlight</td>
<td>4 h</td>
<td>10</td>
<td>0.1</td>
<td>Marsen[156]</td>
</tr>
<tr>
<td>2010</td>
<td>p-Cu(In,Ga)Se$_2$</td>
<td>n-CdS</td>
<td>chemical bath</td>
<td>Pt</td>
<td>0.1 M Na$_2$SO$_4$</td>
<td>varied</td>
<td>AM1.5G, >635 nm</td>
<td>1 h</td>
<td>9</td>
<td>0.1</td>
<td>Yokoyama[157]</td>
</tr>
<tr>
<td>2011</td>
<td>p-Si nanopillars</td>
<td>MoS$_2$</td>
<td>drop cast</td>
<td>MoS$_2$</td>
<td>1 M HClO$_4$</td>
<td>0</td>
<td>AM1.5G, >635 nm</td>
<td>1 h</td>
<td>9</td>
<td>0.1</td>
<td>Hou[158]</td>
</tr>
<tr>
<td>2012</td>
<td>p-Cu$_2$O nanowires</td>
<td>NiO$_x$ (10)</td>
<td>spin coating</td>
<td>NiO$_x$</td>
<td>0.1 M Na$_2$SO$_4$</td>
<td>6</td>
<td>LED, 425–660 nm, 26 mW cm$^{-2}$</td>
<td>20 min</td>
<td>0.2</td>
<td>~ 0.5</td>
<td>Lin[159]</td>
</tr>
<tr>
<td>2012</td>
<td>p-Cu$_2$O</td>
<td>AZO/TiO$_2$ (20/10)</td>
<td>ALD</td>
<td>Pt</td>
<td>0.5 M Na$_2$SO$_4$</td>
<td>5</td>
<td>AM1.5G</td>
<td>10 h</td>
<td>1.5</td>
<td>0.4</td>
<td>Paracchino[160]</td>
</tr>
<tr>
<td>2012</td>
<td>p-InP, nanotextured</td>
<td>TiO$_2$ (2–5)</td>
<td>ALD</td>
<td>Ru</td>
<td>1 M HClO$_4$</td>
<td>0</td>
<td>AM1.5</td>
<td>4 h</td>
<td>35</td>
<td>0.73</td>
<td>Lee[161]</td>
</tr>
<tr>
<td>2012</td>
<td>n’-p-Si</td>
<td>Ti (9)</td>
<td>sputtering</td>
<td>MoS$_2$</td>
<td>1 M HClO$_4$</td>
<td>0</td>
<td>AM1.5 >635 nm</td>
<td>1 h</td>
<td>12</td>
<td>0.33</td>
<td>Seger[162]</td>
</tr>
<tr>
<td>2012</td>
<td>p-Si</td>
<td>ZnO nanowires</td>
<td>solution growth</td>
<td>Pt</td>
<td>0.25 M Na$_2$SO$_4$</td>
<td>7.2</td>
<td>AM1.5</td>
<td>1 h, damage observed</td>
<td>NR</td>
<td>0.2</td>
<td>Sun[163]</td>
</tr>
<tr>
<td>2012</td>
<td>n’-p-Si</td>
<td>(none)</td>
<td>Ni–Mo</td>
<td>KHP</td>
<td>4.5</td>
<td>W-halogen 100 mW cm$^{-2}$</td>
<td>1 h</td>
<td>9.5</td>
<td>0.45</td>
<td>Warren[51]</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Cu$_2$O</td>
<td>AZO (20)/TiO$_2$ (20)</td>
<td>ALD</td>
<td>Pt</td>
<td>1 M acetate</td>
<td>5</td>
<td>AM1.5</td>
<td>10 h</td>
<td>~ 0.3</td>
<td></td>
<td>Paracchino[164]</td>
</tr>
<tr>
<td>2013</td>
<td>p-CZTS</td>
<td>AZO/TiO$_2$</td>
<td>ALD</td>
<td>Pt</td>
<td>0.5 M KIP$_4$</td>
<td>7.0</td>
<td>AM1.5</td>
<td>15 min</td>
<td>0.2</td>
<td>0.3</td>
<td>Rovelli[165]</td>
</tr>
<tr>
<td>2013</td>
<td>n’-p-Si</td>
<td>Mo/MoS$_2$</td>
<td>sputtering/sulfidation</td>
<td>MoS$_2$</td>
<td>1 M HClO$_4$</td>
<td>0</td>
<td>AM1.5 >635 nm</td>
<td>5 d</td>
<td>10</td>
<td>0.33</td>
<td>Laursen[166]</td>
</tr>
<tr>
<td>2013</td>
<td>p-Si</td>
<td>CdS</td>
<td>chemical bath deposition</td>
<td>Pt</td>
<td>0.1 M NaP$_i$</td>
<td>7</td>
<td>150 W Xe lamp</td>
<td>12 d</td>
<td>3.5</td>
<td>0.6 (pH 9)</td>
<td>Moriya[167]</td>
</tr>
<tr>
<td>2013</td>
<td>CuInS$_2$</td>
<td>C$_x$N$_y$</td>
<td>thermal polycondensation</td>
<td>(none)</td>
<td>0.1 M H$_2$SO$_4$</td>
<td>1</td>
<td>Tungsten iodine >400 nm</td>
<td>22 h</td>
<td>0.07</td>
<td>0.36</td>
<td>Yang[168]</td>
</tr>
<tr>
<td>2013</td>
<td>n’-p-Si</td>
<td>Ti/TiO$_2$ (5/100)</td>
<td>sputtering</td>
<td>Pt</td>
<td>1 M HClO$_4$</td>
<td>0</td>
<td>AM1.5 >635 nm</td>
<td>72 h</td>
<td>20</td>
<td>0.51</td>
<td>Seger[169]</td>
</tr>
<tr>
<td>2013</td>
<td>nip a-Si</td>
<td>TiO$_2$ (80)</td>
<td>sputtering</td>
<td>Pt</td>
<td>0.5 M KHP</td>
<td>4</td>
<td>AM1.5G</td>
<td>12 h</td>
<td>11</td>
<td>0.93</td>
<td>Lin[170]</td>
</tr>
<tr>
<td>2013</td>
<td>p-Cu$_2$O</td>
<td>carbon (20)</td>
<td>decomposition of glucose</td>
<td>(none)</td>
<td>1 M Na$_2$SO$_4$</td>
<td>~7</td>
<td>AM1.5G</td>
<td>1 h</td>
<td>3</td>
<td>0.6</td>
<td>Zhang[71]</td>
</tr>
<tr>
<td>2013</td>
<td>P3HT/PCBM</td>
<td></td>
<td></td>
<td>MoS$_2$</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>~0</td>
<td>Xe lamp >400 nm</td>
<td>45 min</td>
<td>0.05</td>
<td>~ 0.5</td>
<td>Bourgeteau[172]</td>
</tr>
<tr>
<td>2013</td>
<td>p-Si MIS</td>
<td>SiO$_2$ (2)</td>
<td>thermal oxidation</td>
<td>Ti/Pt</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>~0</td>
<td>AM1.5</td>
<td>2.5 h</td>
<td>8.13</td>
<td>0.49</td>
<td>Esposito[173]</td>
</tr>
<tr>
<td>2014</td>
<td>p-CuO</td>
<td>AZO (20)/TiO$_2$ (100)</td>
<td>ALD</td>
<td>MoS$_{2n+}$</td>
<td>0.1 M H$_2$SO$_4$</td>
<td>1</td>
<td>AM1.5</td>
<td>2.5 h</td>
<td>8</td>
<td>0.6</td>
<td>Morales-Guzo[74]</td>
</tr>
</tbody>
</table>
4.2. Protection of p-Si Photocathodes. According to early Pourbaix diagrams, p-Si is not thermodynamically stable under aqueous conditions. However, a recently revised Si Pourbaix diagram shows a region of stability under cathodic potentials. In alkaline media, Si rapidly oxidizes and dissolves via chemical etching, and the dissolution cannot be entirely arrested by electrochemical means. However, under neutral to acidic conditions, Si forms a passivating oxide that is stable toward dissolution, although the oxide can present a barrier to electron transfer. Thus, surface coatings can stabilize the HER performance of p-Si photocathodes by facilitating interfacial electron transfer and/or by preventing the formation of insulating Si oxides. Under negative applied potentials in acid, Si cannot be further reduced or corroded, but a layer of silicon oxide may be formed in the dark under resting conditions. In the following, we describe some examples of protection strategies developed for p-Si photocathodes.

Since Si does not corrode appreciably under acidic conditions many groups have focused on the development of Si photocathodes with metallic cocatalysts to facilitate hydrogen evolution. Precious metal catalysts are widely used for improving the energy-conversion efficiency of Si photocathodes. These catalysts can reduce activation barriers for the HER and also directly mediate electron transfer from the Si absorber to the electrolyte, which mitigates the effects of the passivating oxide that can form under aqueous conditions on the bare Si surface. Work in the early 1980s on Si photocathodes showed that silicon coated with electro-deposited layers of noble metals could facilitate electrochemical hydrogen evolution in an energy-producing fashion. Around the same time, Heller and co-workers studied the performance of Pt coated p-Si photocathodes. They elaborated on these results through careful control of catalyst deposition conditions and thicknesses and explored the activity and stability of such systems under a variety of conditions. An optimal thickness of Pt deposited electrochemically produced a buried Schottky junction to p-Si via silicide formation, facilitating charge separation. Onset potentials in the range of 300–500 mV vs RHE were observed, with larger photovoltages observed at higher pH (Figure 9), and the photocathodes were stable for 60 days of continuous operation under illumination in 1 M HCl(aq).

"Black silicon," formed by metal-catalyzed electroless etching, has been reported to provide improved optical absorption compared to planar Si control samples. However, without a catalyst, the onset potential for cathodic photocurrent is still >100 mV negative of 0 V vs RHE. Use of a Pt cocatalyst shifts the onset to 400 mV vs RHE but leads to a reduction in photocurrent density to 18 mA cm⁻² consistent with parasitic light absorption by the Pt. Direct Pt deposition via ALD has been performed on p-Si microwires, but the onset potentials are smaller than those observed for Pt deposited onto radial p-n Si.
1228 et al. reported the use of planar and nanostructured n-ZnO hydrogen was not evolved in an energy-producing fashion. Sun and co-workers used ALD-grown Al₂O₃ to coat p-Si.¹⁷⁷ Other oxides have been explored as coatings on p-type Si.

Work shows that TiO₂ can facilitate transfer of electrons and stability were obtained using ALD-deposited TiO₂.¹⁹⁰ This was consistent with the use of a buried n⁺-p Si homojunction.

Continuous operation for the HER in 1 M HClO₄(aq).¹⁶⁹ A photovoltaic buried junction device for several weeks of operation. A thin CoP electrocatalysts into n⁺-p Si microwire arrays, yielding an onset potential of 0.45 V vs RHE and 12 h of stability under simulated 100 mW cm⁻² illumination.⁵²

MoS₂ has been used as an integrated HER catalyst on Si microwires, and on planar n⁺-electrodes.¹⁶⁶,¹⁷⁵ MoS₂ is a particularly interesting catalyst because it is anticipated to be less costly than noble-metal catalysts, and it is very stable under acidic conditions. Multiday stability has been reported for p-Si coated with MoS₂, but the onset potential of 200 mV vs RHE and light-limited current densities of 10 mA cm⁻² are both less than the values typically observed with p-n⁺ Si device structures in conjunction with precious metal HER catalysts.

In 1977, Bard and co-workers coated p-Si (and p-GaAs, see below) with TiO₂ grown by CVD. However, only small cathodic photocurrents were observed, and the behavior was attributed to adverse band bending at the oxide/semiconductor interface forming a barrier for electrons to cross the solid/solid interface. Recently, conducting oxides have been used on p-Si photocathodes. One common strategy is to use a photocatalytic n⁺-junction that contains a TCO overlayer. Seger et al. used this approach and found that a 5 nm metallic Ti followed by a thick (>100 nm) layer of TiO₂ and a Pt cocatalyst on top of a Si n⁺-homojunction allowed operation of the electrically isolated photocatalytic buried junction device for several weeks of continuous operation for the HER in 1 M HClO₄(aq).¹⁶⁹ A 520 mV onset potential vs RHE was observed, which is consistent with the use of a buried n⁺-p Si homojunction. Similar results in terms of onset potential (510 mV vs RHE) and stability were obtained using ALD-deposited TiO₂.¹⁹⁰ This work shows that TiO₂ can facilitate transfer of electrons through conduction-band states. Hupp and co-workers also observed that TiO₂ allows for facile electron conduction that is largely independent of the thickness of protective coatings.¹⁹¹ Other oxides have been explored as coatings on p-type Si. Choi and co-workers used ALD-grown Al₂O₃ to coat p-Si.¹⁷⁷ The onset potential was negative of 0 V vs RHE, meaning hydrogen was not evolved in an energy-producing fashion. Sun et al. reported the use of planar and nanostructured n-ZnO overlayers on p-Si photocathodes.¹⁶₅ Photocathodic currents were observed with onset potentials near 0 V vs RHE, although significant degradation in performance was observed after 1 h of operation. A thin film of SrTiO₃ was recently epitaxially grown directly on Si(001) by molecular-beam epitaxy and then patterned with islands of metal HER catalysts. A maximum photocurrent density of 35 mA cm⁻², an open-circuit voltage of 450 mV, and stable performance for 35 h was observed in 0.5 M H₂SO₄.¹⁸² Spray-pyrolysis-deposited F:SnO₂/TiO₂ overlayers have been integrated into p-n⁺ Si-based photocathodcs, with ideal regenerative cell efficiencies of up to 10.9% albeit with substantial degradation in performance after 80 h of operation in 1 M KOH(aq).¹⁷⁸

In an approach that combines aspects of oxide passivation and HER catalyst integration, Esposito et al. formed a p-Si/SiO₂/bilayer metal (metal–insulator–semiconductor, MIS) with a tunneling oxide. An underlayer of Ti was used to induce a rectifying barrier to the p-Si, and an overlay of Pt was used as the HER catalyst. An onset potential of 490 mV vs RHE was observed, although the observed fill factors were low.¹⁴₈ The photocathodes were stable for at least 2.5 h under galvanostatic conditions at 8 mA cm⁻². Feng et al. also used a Ti underlayer to obtain a rectifying junction to p-Si photocathodes. Upon deposition of a thin (5 nm) overlayer of Ni, these researchers observed onset potentials ranging from 250 to 300 mV in pH 9.5 potassium borate (KBI) buffer and 1 M KOH(aq), respectively. 12 h stability tests suggested that the Ti underlayer did not protect the underlying Si in the strongly alkaline electrolyte, but greater stability was observed in the mildly alkaline borate buffer solution.¹⁸⁰

Amorphous silicon has been investigated extensively as a light-absorbing component in solar-driven water splitting. A number of demonstrations of overall solar water splitting have used triple-junction amorphous Si solar cell stacks in combination with HER and OER catalysts. Often in these designs the a-Si surface is isolated from the electrolyte by a thick TCO layer or by a metal. Toor et al. showed that micropixelation of a-Si photocathodes into 100 μm square areas, isolated with SiNₓ, could double the lifetime under HER conditions in buffered pH 10 aqueous media. Lin et al. demonstrated 12 h stability of an a-Si p-i-n structure via a 100 nm sputtered TiO₂ layer and either Pt or Ni–Mo catalysts. Notably, onset potentials up to 930 mV vs RHE were observed for these amorphous Si-based, single junction photocathodes under 1 Sun illumination. Sakai et al. reported that a 1.5 nm Pt layer can enable tandem-junction amorphous Si or triple-junction amorphous Si/crystalline Si tandem PV-biased PEC photocathodes to operate in 0.5 M H₂SO₄(aq).¹⁵² The reported photocurrent densities were 2.5–3 mA cm⁻², partly due to the opacity of Pt overlayers. Yamada et al. also reported a two-junction n-i-p amorphous Si PV electrolysis cell that was fabricated in an inverted supercell setup (dark cathode) with the back sides protected by stainless sheets coated with a CoMoHER catalyst; in this configuration, 18 h of operation were reported at pH 13.¹⁸⁷

The Texas Instruments (TI) Corporation performed extensive work to protect Si light absorbers as part of their development of an HBr electrolysis device based on a serial connection of two Si p-n microspherical junctions.¹⁹⁵–¹⁹⁷ Notably, the TI researchers deposited noble metal catalysts for hydrogen evolution directly on the surface of the Si absorber homojunctions, and a glass matrix protected the uncoated Si surfaces from direct contact. Thus, the only surfaces in direct contact with the electrolyte were the catalyst or the glass. The

Figure 9. CV data from p-Si photocathodes with thin Pt layers. Illumination intensity is approximately 0.3 suns. Adapted from Maier, C.U.; Specht, M.; Bilger, G. Hydrogen evolution on platinum-coated p-silicon photocathodes. Int. J. Hydrogen Energy 1996, 21 (10), 859 with permission from Elsevier.¹⁵³
long-term stability of the associated noble metal catalysts was assessed in detail, and the greatest source of corrosion was residual instability of the photocathode catalyst material under nonoperating (i.e., dark) conditions rather than the underlying semiconductor absorber layer.196

4.3. Protection of III–V Photocathodes. Like Si, most III–V materials (e.g., GaAs, GaP, InP) oxidize readily under aqueous conditions. However, the stability and electronic properties of the resulting oxides vary greatly with the composition of the semiconductor. In addition, at negative potentials, group III elements can be further reduced to their metallic form.129 For example, metallic Ga or In can be formed from GaAs, GaP, or InP.

Heller et al. investigated p-InP photocathodes for the HER in the early 1980s.151,202,205 Onset potentials of >600 mV vs RHE and current densities of 25 mA cm⁻² under 80 mW cm⁻² of simulated illumination were measured. The InP needed to be operated intermittently under anodic conditions to regrow a thin oxide layer that was assumed to be critical to the observed performance.206 Work by Lewerenz and co-workers has clarified this picture202 and has also delineated the types of surface oxides that are produced in situ in contact with different electrolytes.103 Lee et al. found that high surface area InP structures formed by reactive ion etching (RIE) with 2–5 nm of ALD-deposited TiO₂ performed very well for hydrogen evolution. Photocurrent onset potentials of >600 mV vs RHE, current densities of 37 mA cm⁻² under 100 mW cm⁻² of simulated solar illumination, and ideal regenerative cell conversion efficiencies of over 13% were observed.161 The favorable onset potential was attributed to the formation of a p-InP/n-InO₂ heterojunction, which was further stabilized by the ALD-grown TiO₂. The structured InP photoelectrodes showed negligible degradation over 4 h of operation, which the authors attributed to the TiO₂ coating as well as favorable bubble-release properties of the structured surface. Lin et al. subsequently increased the onset potential for InP/TiO₂ photocathodes to over 800 mV vs RHE by manipulation of the chemistry at the semiconductor–oxide interface.179

Other III–V semiconductor photocathodes have not exhibited performance or stability comparable to that observed for p-InP-based HER systems. Early work by Bard and co-workers attempted to protect p-GaAs with TiO₂ grown by CVD. As in their parallel efforts with silicon, only small cathodic photocurrents were observed, which was attributed to unfavorable interfacial energetics.110 In the case of GaP photocathodes, neither the growth of GaO₂ layers nor the integration of a Pt HER catalyst yielded improvements in the hydrogen production behavior, and the onset potentials were <0.4 V vs RHE.199 H₂ and O₂ have been produced from water without an external bias using a multijunction photovoltaic absorber that used a p-GaInP top layer in direct contact with an aqueous electrolyte.204 H₂ was directly evolved at the photocathode, and O₂ was evolved at the dark anode of the cell which contained 1 M H₂SO₄ as the electrolyte. The lifetime of this cell was limited by photocorrosion of the GaInP layer exposed to the acidic electrolyte.205,206 A long-term passivation strategy for this material has not yet been demonstrated, although nitridation by ion bombardment was found to markedly improve the stability of GaP-based absorbers.207

Similar to the Texas Instruments work on HBr electrolysis using Si absorbers, Khaseliev and Turner reported the net electrolysis of HI and HBr using a multijunction photovoltaic electrocatalysing of a GaAs photovoltaic connected to a p-GaInP overlayer through a tunnel junction. Using noble metal cocatalysts, the electrode assembly facilitated efficient unassisted hydrogen halide splitting for 8–10 h even under optical concentration.154

4.4. Protection of Other Photocathodes. The chemical stability of several photocathodes other than Si and III–V materials has also been investigated. Cu₂O is an interesting candidate for protection strategies because Cu₂O is thermodynamically unstable under HER conditions and forms metallic Cu at the surface under illumination. Sríparála et al. reported that a Cu₂O/TiO₂ heterojunction structure, with the Cu₂O grown electrochemically and the TiO₂ grown by electron-beam evaporation and without explicit addition of a HER cocatalyst, was active and stable as a photocathode.155 This system has also been investigated recently by Grätzel and co-workers. A bilayer AZO (Al-doped ZnO)/TiO₂ surface coating grown by ALD produced an onset potential of 0.4 V vs RHE. The use of Pt as a catalyst yielded photocurrent densities of ~8 mA cm⁻² at 0 V vs RHE.160 The degradation over time was stated to be due to the Pt catalyst as opposed to corrosion of the Cu₂O.160 RuO₂ appears to have a longer lifetime as an HER catalyst in this photocathode configuration, and subsequent work has reported half cell efficiencies of up to 6% with 96 h of continuous operation using a p-Cu₂O/AZO/TiO₂/RuO₂ structure.176

Cu₂O nanowires have also been protected during operation for the HER. Lin et al. reported that Cu₂O nanowires grown by a chemical-bath method could be stabilized by deposition of spin-coated NiO.159 Onset potentials >0.4 V vs RHE were reported but with relatively low light-limited current densities (~1 mA cm⁻²) and a Faradaic efficiency of 33%. p-CuO/ZnO nanowire heterostructures have also been used to generate H₂, although at lower efficiency than has been obtained using Cu₂O-based structures.208

P-type absorbers that are used in thin-film solar cells are also being investigated as photocathodes for solar-driven water splitting. Marsen et al. reported that p-CuGaSe₂ photocathodes produced photocurrent densities of up to 10 mA cm⁻² under 1 sun illumination with no cocatalyst at pH 0.3, with 4 h of stability.156 Domen and co-workers have employed a heterojunction approach using an n-Cds emitter, similar to the solar cell configuration for a p-CuGaSe₂ and p-Cu(In,Ga)Se₂ (CIGS) absorbers.157,167 With a Pt cocatalyst, stable photocurrents were observed for up to 10 days, with an onset potential of 0.7 V vs RHE. Modification of porous p-type CuInS₂ films with thin layers of Pt/TiO₂/CdS significantly increased the cathodic photocurrent and onset potential through the formation of a p–n junction on the surface, whereas when the electrode was instead only modified with Pt/1404 Cds, the photoelectrode decayed rapidly due to the photocorrosion of CdS.209 The use of Pt/InS₃ produced a similar enhancement effect on CuInS₂.215 The effective protection by sulfide for these type of materials indicates the importance of interfacial structure and band alignment. Jacobsson et al. investigated CIGS/Cds/ZnO/Pt heterostructures and observed modest photocurrents. Onset potentials positive of 0.7 V vs RHE. Modification of porous p-type CuInS₂ films with thin layers of Pt/TiO₂/CdS significantly increased the cathodic photocurrent and onset potential through the formation of a p–n junction on the surface, whereas when the electrode was instead only modified with Pt/1404 CdS, the photoelectrode decayed rapidly due to the photocorrosion of CdS.209
reported to act as a protective layer on CuInS$_2$. C$_6$N$_4$ is a polymeric semiconductor with a bandgap of about 2.7 eV, which has shown to be photocatalytically active for H$_2$ evolution.212 The C$_6$N$_4$/CuInS$_2$ composite photocathode material generated a cathodic photocurrent at potentials up to $+0.36$ V vs RHE in 0.1 M H$_2$SO$_4$(aq), which corresponds to a 150 mV more positive onset potential of cathodic photocurrent than was observed for unmodified CuInS$_2$ semiconducting thin-film photocathodes. However, the photocurrent was diminished compared to CuInS$_2$ without the C$_6$N$_4$.168

4.5. Summary and Perspective of Photocathode Protection. For most of the photocathode materials discussed above, a structure consisting of a p-type absorbing layer, in conjunction with either a homojunction or heterojunction to provide an electron-selective contact, a conducting oxide layer, and an optically thin HER catalyst, produces good performance in terms of onset potential, current density, and stability.3,121,131,161,164,169,200 In the related field of solar photovoltaics, it is increasingly being recognized that reducing carrier recombination through minority-carrier selective interfaces is critical for obtaining the maximum efficiency from a given absorber material.213 In the case of Si, this has led to development of thin oxide or larger band gap layers that enable minority-carrier conduction but also electronically separate the contact metal from the Si.214,215 This approach can lead to substantial reductions in surface recombination and concomitant increases in open-circuit voltages. Given that many of the entries in Table 3 are for a semiconductor–oxide–metal combination, significant opportunities remain to optimize the oxide not only for corrosion protection but also for reduction of interfacial recombination.177 These strategies can continue to be leveraged to stabilize photocathode materials having band gaps in the 1.1–1.7 eV range and to further improve the energy-conversion efficiency and stability of such materials, particularly using well-established light absorbers such as Si and thin-film chalcogenides. Further improvements in efficiency and stability should also be possible through functional improvements, e.g., lowering catalyst overpotentials or engineering of light-trapping surfaces.

5. OVERALL OUTLOOK AND CONCLUSIONS

Chemical stability and protection are critically important in informing many aspects of solar-fuel systems, including device geometry, semiconductor/liquid junction performance, management of ion transport, and eventually manufacturing and system cost. Protective films can enable the use of technologically important, nonoxide photovoltaic materials in environments containing liquid electrolytes, for not only water splitting but also for photochemical processes such as hydrogen–halide electrolysis and electrochemical reduction of CO$_2$ to make commodity chemicals. This strategy also may enable the use of particle-based light absorbers for fuel production and environmental remediation. Development of protection strategies involving thin surface films has become a highly active research field since ca. 2011, and it is being pursued in tandem with the development of stable oxide semiconductor absorbers that have appropriate electronic properties and that might not require protective layers to exhibit oxidative stability in solar-driven water splitting (e.g., Fe$_2$O$_3$, BiVO$_4$).

As is readily apparent from Tables 1–3, enormous progress in the development of protective films has been made by recent research efforts. Of all of the protective film compositions, titanium oxide has emerged as a promising material for protection of both photocathodes and photoanodes. TiO$_2$ is highly stable and transparent, and appropriate conduction pathways are available for electrons via the conduction band (for photocathodes) and, in some cases, for holes via apparent in-gap defect states (for photoanodes). The development and study of TiO$_2$ and similar oxides for protection will likely involve further study/development of the band and defect transport in these materials, as well as the interfacial electronic properties of TiO$_2$ with the nonoxide semiconductors. In the case of buried PV junctions, the interfacial electronic properties may be less important for functionality than in true PEC junctions, but the use of buried junctions increases the complexity and therefore the cost of the resulting devices. Thus, continued work on protection strategies for both PV and PEC systems is certainly warranted. In the following, we conclude with several recommendations for future directions and outlook for this research area.

5.1. Demonstration Guidelines. Consistent experimental assessment of stability would aid in comparing the relative performance of different protective strategies. Guidelines have been suggested,16,217 but a few key aspects are noted here. Specifically, the current density utilized for long-term stability experiments should be near what would be expected under operation for a potential device (between 10 and 20 mA cm$^{-2}$ and at, or near, the anticipated operating potential or maximum power point). Further, reference to RHE in addition to the employed reference electrode (if not RHE) greatly aids in rapid comparisons between studies. Measurement of the Faradaic efficiency of O$_2$ and H$_2$ gas evolution is also recommended to distinguish fuel formation from electrochemical corrosion.216 Studies that assess decomposition products in the electrolyte solution and/or that determine quantitatively the extent of mass loss of the electrode,93 as opposed to simple monitoring of the photocurrent, can provide important insight into the relative faradaic yields of photoelectrosynthetic reactions vs corrosion of the electrodes. Standards reported by the U.S. Department of Energy indicate goals of stable PEC operation of 5000 h by 2018 and recommend a minimum of 200 h for laboratory demonstrations.219 The long-term stability of the other electrochemical components (frits, reference electrodes) must be carefully considered for long-term experiments especially because many studies involve strongly alkaline electrolytes, which slowly etch glass components. Key figures of merit to be measured are the voltage at maximum power point and the length of time that the photoelectrode can operate at this maximum power point.

5.2. Protected Photoelectrodes vs Buried Junctions with Protection. The use of buried junctions from photovoltaic devices, with subsequent protection, is both conceptually and practically different from the use of photoelectrodes that do not contain a buried PV junction prior to protection. First, the processing to form buried junctions in photovoltaic devices is more complicated than the simple growth of the light absorber itself. For some materials, no processes have been developed to form high figure of merit p–n or heterojunction formation (e.g., Cu$_2$O). Once the buried junction is formed, e.g., in planar np$^+$/Si solar cells, the resulting device can be readily wired to an electrolyzer or to a membrane-electrode assembly device, instead of being protected and used as a "cosmetically integrated" PEC device. In some cases, formation of electrical contacts is very difficult in practice, such as with...
Arrays of Si microwires, even if buried junctions are already formed. In this case, the wire morphology is beneficial for making PEC devices instead of PV devices since the liquid contact is inherently conformal. Further, diffusion doping of polycrystalline materials can be highly detrimental to grain boundaries (e.g., majority carrier shunting) and represents another possible advantage of the PEC-based junction. The option of protecting photoelectrodes without forming buried junctions is thus preferred to making a buried junction, provided high figure-of-merit junctions can be produced. In fact, there have been ample examples for high performance in polycrystalline PEC devices.

5.3. Performance Comparisons. Materials systems such as crystalline-Si, amorphous-Si, III–V (GaAs, GaP, and InP), II–VI (CdTe and CdSe), and CIGS can form high-quality p–n homojunctions or heterojunctions, so high photovoltages can be obtained from protected photoelectrodes. Materials systems like BaTaO2N, BiVO4, and Ta3N5 have not been demonstrated to produce high photovoltages in homojunction, heterojunction, or aqueous liquid-junction systems. We note that low minority-carrier diffusion lengths and other recombination pathways could also be responsible for the low Voc values for the PEC junctions studied. Furthermore, materials like Si can form buried metal–semiconductor (MS) or metal–insulator–semiconductor (MIS) junctions with thin-metal layer protection, and their performance should be characteristic of the solid-state junction that is formed. Hence, the various possible device configurations involved in photoelectrode stabilization should be considered when evaluating the performance of the different types of system. For example, 600 mV Voc is routine for a buried Si homojunction and has been reported repeatedly for various protection strategies with np–Si or pn–Si junctions, whereas 550 mV would be an excellent photovoltage for a protection layer on only a Si absorber. Alternatively, no Si-based MS junctions have been demonstrated to produce such high a photovoltage, but 550 mV photovoltages from an Ir/ TiO2/n-Si MIS structure constitute excellent performance from such systems.

5.4. Performance Enhancement. Enhancement of performance may take the form of increases in the photoelectrosynthetic figures of merit (e.g., photovoltage, photocurrent) as well as increases in longevity/robustness of the electrodes. In the case of PV junctions, the protective film must simply allow for light transmission and electron/hole transmission (i.e., not present a resistive barrier). However, in the PEC case, favorable band bending and carrier selectivity must be present with the protective film to establish the requisite charge-transfer asymmetry. PEC or adaptive39,42 junctions warrant detailed investigation both theoretically and experimentally because the interfacial structure/chemistry and the catalyst properties can largely determine the overall photoelectrosynthetic behavior.

5.5. New Directions. Several productive activities may advance photoelectrode stability beyond the current state-of-the-art. For example, several classes of prospective protection materials have not been thoroughly explored, such as metal carbides, metal nitrides, and 2-dimensional (2-D) materials. Metal carbides and nitrides are often known for their mechanical hardness, as well as their chemical stability. The explosion of interest in 2-D materials, such as graphene, MoS2, and hexagonal boron nitride (h-BN), may provide a wide variety of compositions to examine for use in conjunction with semiconducting electrodes. Indeed, MoS2 films have already been in a predominantly catalytic role for hydrogen-evolving photocathodes. The study of 2-D materials for stabilization of semiconductor electrodes may yield valuable information about the interaction between these materials, such as how junctions form, based on the electronic and electrochemical properties of the 2-D layers.22 On the basis of these and other new directions, development of novel materials and understanding of the physical processes and corrosion behavior of semiconductor electrodes is needed to enable robust semiconductor-based solar fuel generators.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: nlewis@caltech.edu.

Notes

The authors declare no competing financial interest.

Biographies

Dr. Shu Hu is a senior postdoctoral scholar at Joint Center for Artificial Photosynthesis. He received his B. Eng. (Honors) from Tsinghua University in 2006 and then completed a Ph.D. in Materials Science at Stanford University in 2011. Shu then joined the group of Prof. Nathan S. Lewis in Division of Chemistry and Chemical Engineering at California Institute of Technology, where his work spans experimental and modeling areas in Si and III–V nanocrystal synthesis, nanophotonic phenomena, and solid–electrolyte interfaces for photoelectrochemical solar-fuel production. His main thrust includes the stabilization of technologically important, efficient, yet unstable semiconductors under photoanodic conditions relevant to water oxidation.

Dr. Nathan S. Lewis is the George L. Argyros Professor of Chemistry at the California Institute of Technology and the Scientific Director of the Joint Center for Artificial Photosynthesis, the DOE’s Energy...
Innovation Hub in Fuels from Sunlight. Professor Lewis is Principal Investigator of the Beckman Institute Molecular Materials Resource Center. His research interests include artificial photosynthesis and electronic noses. Nate continues to study ways to harness sunlight and generate chemical fuel by splitting water to generate hydrogen. He is developing the electronic nose, which consists of chemically sensitive conducting polymer film capable of detecting and quantifying a broad variety of analytes. Technical details focus on light-induced electron transfer reactions, both at surfaces and in transition metal complexes, surface chemistry and photochemistry of semiconductor/liquid interfaces, novel uses of conducting organic polymers and polymer/conductor composites, and development of sensor arrays that use pattern recognition algorithms to identify odorants, mimicking the mammalian olfaction process.

Joel W. Ager, III is a Staff Scientist in the Materials Sciences Division of Lawrence Berkeley National Laboratory and an Adjunct Professor in the Materials Science and Engineering Department, UC Berkeley. He is a Project Leader in the Joint Center for Artificial Photosynthesis (JCAP) and a Principal Investigator in the Electronic Materials Program and in the Singapore Berkeley Initiative for Sustainable Energy (SinBeRISE). He graduated from Harvard College in 1982 with an A.B. in Chemistry and from the University of Colorado in 1986 with a Ph.D. in Chemical Physics. After a postdoctoral fellowship at the University of Heidelberg, he joined Lawrence Berkeley National Laboratory in 1989. His research interests include the fundamental electronic and transport characteristics of photovoltaic materials, development of new photoanodes and photocathodes based on abundant elements for solar fuel production, and the development of new oxide and sulfide based transparent conductors.

Dr. Jinhui Yang received her Ph.D. degree from Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS). She is currently postdoctoral researcher at Joint Center for Artificial Photosynthesis (JCAP), Lawrence Berkeley National Laboratory (LBNL). Her research interests include corrosion protection and interface engineering for solar energy conversion.

Dr. James McKone received a BA in Chemistry and Music from Saint Olaf College in 2008 and a Ph.D. in chemistry from the California Institute of Technology in 2013, where he developed materials and methods for solar-driven water splitting with Harry Gray and Nate Lewis. Currently a postdoctoral researcher at Cornell University, James has studied materials for solar energy conversion and large-scale batteries with Héctor Abraú and Francis DiSalvo. His current research continues to focus on fundamental and applied studies of electrochemical energy conversion and storage.

Professor Nicholas Strandwitz completed his B.S. in Engineering Science at The Pennsylvania State University in 2004. He earned his Ph.D. from the Materials Department at University of California Santa Barbara with Professor Galen D. Stucky. After conducting postdoctoral work at California Institute of Technology working with Professor Nathan S. Lewis he joined the Materials Science and Engineering Department at Lehigh University in 2013. Dr. Strandwitz’ current research interests include new methods and chemistries in atomic layer deposition and interfacial electronic properties of semiconductor surfaces and interfaces.

ACKNOWLEDGMENTS

NCS acknowledges start-up funds from Lehigh University. JRM acknowledges a postdoctoral research award from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy through the SunShot Initiative. SH, NSL, JWA, and JY were supported by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993, and NSL was also supported by the National Science Foundation under Award Number CHE-1214152, the Department of Energy, Office of...
Basic Energy Sciences under Award Number DE-FG02-03ER15483, and the Gordon and Betty Moore Foundation under Award Number GBMF1225.

REFERENCES

Review Article

2015 Efficient Oxynitride TaON Photoanode for overall Water Splitting

Review Article

2178 Polyacetylene.

2173 Photoanodes Against Photoanodic Decomposition with Thin Films of
2171 2051

2165 Semiconductor Electrodes Surface-Doped with IIIA-Group Elements.

2159 Oxide Coated P-N Junction Silicon Electrodes for Photoelectrochem-

2155 XI. Behavior of N and P-Type Single Crystal Semiconductors Covered

2149 (139) Takabayashi, S.; Nakamura, R.; Nakato, Y. A Nano-Modified
2147 Si/TiO2 Composite Electrode for Efficient Solar Water Splitting. J.

2143 (140) Kohl, P. A.; Frank, S. N.; Bard, A. J. Semiconductor Electrodes
2141 XI. Behavior of N and P-Type Single Crystal Semiconductors Covered

2135 (141) Tomkiewicz, M.; Woodall, J. M. Photoelectrolysis of Water
2131 1440.

2129 (142) Li, G.; Wang, S. Photoelectrochemical Characteristics of Metal-
2127 Modified Epitaxial N-Si Anodes: Part I. NiO(OH)-Coated N+-P/Si
2125 and N+/N-Si Electrodes for Catalytic Oxygen Evolution. J. Electroan.

2119 (143) Miller, E. L.; Rocheleau, R. E.; Khan, S. A Hybrid
2117 Multijunction Photoelectrode for Hydrogen Production Fabricated
2115 with Amorphous Silicon/Germanium and Iron Oxide Thin Films. Int.

2105 (144) Lichterman, M. F.; Carim, A. I.; McDowell, M. T.; Hu, S.;
2103 Sun, K.; Kuang, Y.; Verlage, E.; Brunschwig, B. S.; Tu, C. W.;
2101 Gray, H. B.; Brunschwig, B. S.; Lewis, N. S. Stabilization of N-
2101 Cadmium Telluride Photoanodes for Water Oxidation to O2(G) in 2002
2100 Aqueous Alkaline Electrolytes using Amorphous TiO2 Films Formed

2097 (145) Li, C.; Wang, T.; Luo, Z.; Zhang, D.; Gong, J. Transparent
2095 ALD-Grown Ta2O5 Protective Layer for Highly Stable ZnO

2089 (146) Sun, K.; Kuang, Y.; Verlage, E.; Brunschwig, B. S.; Tu, C. W.;
2087 Lewis, N. S. Sputtered NiOx Films for Stabilization of P-n-InP
2083 DOI: 10.1002/aenm.201570059.

2079 (147) Leempoel, P.; Castro-Acuna, M.; Fan, F. F.; Bard, A. J.
2077 Semiconductor Electrodes. 43. The Effect of Light Intensity and Iodine
2075 Doping on the Stabilization of N-Silicon by Phthalocyanine Films. J.

2057 (149) Peter, L. M.; Li, J.; Peat, R. Surface Recombination at 2119
2055 Semiconductor Electrodes: Part I. Transient and Steady-State
2051 165, 29–40.

2047 (150) Heller, A.; Vadiisky, R. G. Efficient Solar to Chemical
2045 Conversion: 12% Efficient Photoassisted Electrolysis in the p-Type
2041 1156.

2035 (151) Heller, A.; Aharon-Shalom, E.; Bonner, W. A.; Miller, B.
2033 Hydrogen-Evolving Semiconductor Photocathodes: Nature of the 2022
2031 2282 Junction and Function of the Platinum Group Metal Catalyst. J. Am.

2023 (152) Škakai, Y.; Sugahara, S.; Matsumura, M.; Nakato, Y.; 2021
2021 Tsubomura, H. Photoelectrochemical Water Splitting by Tandem
2019 Type and Heterojunction Amorphous Silicon Electrodes. Chem. J.

2007 (154) Khaselev, O.; Turner, J. A. Photoelectrolysis of HBr and HI
2005 using a Monolithic Combined Photoelectrochemical/Photovoltaic 2039

2002 (156) Marsen, B.; Cole, B.; Miller, L. E. Photoelectrolysis of Water

2006 (157) Simon, R. A.; Wrighton, M. S. Stabilization of N-type Silicon
2004 Photoanodes Against Photoanodic Decomposition with Thin Films of 2002

