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GPS-INS Outlier Detection & Elimination using a Sliding Window Filter

Paul F. Roysdon† Jay A. Farrell‡

Abstract— Many applications require reliable, high precision
navigation (sub-meter accuracy) while using low-cost inertial
and global navigation satellite systems (GNSS). Success requires
optimal state estimate while mitigating measurement outliers.
Common implementations use an Extended Kalman Filter
(EKF) combined with the Receiver Autonomous Integrity Mon-
itoring (RAIM) on a single epoch. However, if the linearization
point of the EKF is incorrect or if the number of residuals is too
low, outlier detection decisions may be incorrect. False alarms
result in good information not being incorporated. Missed
detections result in incorrect information being incorporated.
Either case can cause subsequent incorrect decisions in the
future, possibly causing divergence, due to the state and
covariance now being incorrect.

This article formulates a sliding window estimator that
solves the full-nonlinear Maximum A Posteriori estimate in
real-time. By leveraging the resulting window of residuals, an
improved fault detection and removal strategy is implemented.
Sensor data is used to demonstrate the interval RAIM (iRAIM)
performance improvement.

I. INTRODUCTION

The past decade has seen the rapid rise and adoption
of navigation systems on automobiles, unmanned vehicles,
and personal mobile devices such as smartphones. These
systems can exhibit very good accuracy (e.g. sub-meter
error). However, further improvements in the reliability and
continuity of this accuracy are required to fully support
autonomous vehicle operations, especially in urban environ-
ments, where variations in the operating conditions and direct
signal path can have critical effects. To design a reliable,
high-performance system, it is critical to detect and remove
outlier measurements before they degrade performance. In
GNSS applications such outlier measurements can be caused
by multi-path, non-line of sight signals, or overhead foliage.

RAIM is a set of techniques to cope with GNSS receiver
outlier measurements, based on measurement residual gener-
ation techniques equivalent to least-squares [1], [2]. Integrity
is a measure of the trust that can be placed in the correctness
of the information supplied by the total system. Often, RAIM
is designed assuming only one outlier occurs and that there
is enough measurement redundancy to detect and identify
the source [1]. The principle of multiple outlier detection
has also been well developed over several decades [3], [4].
The authors of [5] included an inertial measurement unit
and a Kalman filter to “extend” the RAIM capabilities, a
method called eRAIM. However, both RAIM and eRAIM are
based on measurements from a single epoch, limiting data
redundancy. Furthermore, the residual generation algorithm
in RAIM and eRAIM assumes a linear system.

†Ph.D. student, ‡Professor at the Dept. of Electrical & Computer Engi-
neering, UC Riverside. {proysdon, farrell}@ece.ucr.edu.

Data redundancy is critical to successful outlier detection
and removal and can be enhanced by considering all GNSS
and inertial measurement unit (IMU) data within a sliding
temporal window. The resulting full nonlinear Maximum A
Posteriori (MAP) estimator, without outlier detection and re-
moval, is presented in [6]. This article extends that approach
with methods to detect and remove outlier measurements
within the temporal interval and is therefore referred to
as interval RAIM (iRAIM). Because this approach allows
real-time analysis of numerous fault scenarios, with real-
time error correction, outlier detection and removal can be
improved. This estimator is demonstrated in using real-world
data involving urban canyons and overhead foliage.

II. BACKGROUND AND NOTATION

This section introduces Global Positioning System (GPS)
aided inertial navigation system (INS) background [7].

A. Aided Inertial Navigation

Let x ∈ Rns denote the rover state vector, where

x(t) = [pᵀ(t),vᵀ(t),qᵀ(t),bᵀ
a(t),b

ᵀ
g(t)]

ᵀ ∈ Rns ,

where p, v, ba, bg each in R3 represent the position, ve-
locity, accelerometer bias and gyro bias vectors, respectively,
q ∈ R4 represents the attitude quaternion (ns = 16).

The kinematic equations for the rover state are

ẋ(t) = f(x(t),u(t)), (1)

where f : Rns × R6 7→ Rns represents the kinematics, and
u ∈ R6 is the vector of specific forces and angular rates.
The function f is accurately known (see eqn. 11.31-11.33 in
[7], and [8]). Nature integrates eqn. (1) to produce x(t).

Let τi denote the time instants at which IMU measure-
ments are valid. Assume there is a prior for the initial state:
x(t0) ∼ N (x0,P0). Given the initial condition x0 and the
IMU measurements ũ(τi) = u(τi)+b(τi)+ωu(τi) of u(τi),
with additive stochastic errors ωu(τi) ∼ N (0,Qd) and
b = [bᵀ

a,b
ᵀ
g ]

ᵀ, a navigation system propagates an estimate
of the vehicle state as the solution of

˙̂x(t) = f(x̂(t), ũ(t)), (2)

where x̂(t) denotes the real-time estimate of x(t).
The solution of (2) over the interval t ∈ [τi−1, τi] from

the initial condition xi−1 is represented as the operator:

φ(xi−1,ui−1) = xi−1 +

∫ τi

τi−1

f(x(τ),u(τ))dτ (3)
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where x̂i+1 = φ(x̂i−1, ûi−1), with ûi−1 = ũi−1−b̂i−1. De-
fine Uk−1 = {ũ(τi) for τi ∈ [tk−1, tk]}. The integral opera-
tor in (3) can be iterated for all IMU measurements in Uk to
propagate the state from tk−1 to tk: x̂k = Φ(x̂k−1,Uk−1).
It is shown in [8] that x̂k −Φ(x̂k−1,Uk−1) = wk can be
modeled with covariance QDk.

B. GPS Model

For notational simplicity, it is assumed that the double
difference approach removes all common-mode errors (e.g.,
ionosphere, troposphere, satellite clock and ephemeris er-
rors), as well as the receiver clock biases. Let tk = kT
denote the time instants at which GPS measurements are
valid, and xk denote the state at x(kT ). It is typically the
case that T � [τi − τi−1]. Therefore, there are numerous
IMU measurements available between GPS epochs.

The double-differenced code (pseudorange) and Doppler
measurement vector at tk is modeled as

yk = hk(xk) + ηyk,

with yk, ηyk = [ηρk,ηdk] ∈ R2mk . In the theoretical
portions of this article, we assume that mk = m, where
m is the number of satellites. For j ∈ 1, . . . ,m, the
jth component of the vector function hk is the geometric
distance ‖p(tk)− pj(tk)‖2 between the rover position p ∈
R3 and the known position of the jth satellite pj ∈ R3.
For j ∈ m + 1, . . . , 2m, the jth component of the vector
function hk is the projection of the rover velocity onto the
satellite line-of-sight vector. The symbol ηρk ∼ N (0, σ2

ρI)
represents the pseudorange measurement noise with σρ =
0.1 ∼ 3m, and ηmdk ∼ N (0, σ2

dI) represents the Doppler
measurement noise with σd = 0.1 ∼ 0.5m/s. Depending on
receiver design, environmental factors and the performance
of multipath mitigation techniques. The noise level σρ and
σd can vary for each available satellite. The symbol R will
represent the block diagonal matrix of σρI and σdI. Using
the state estimate, the GPS pseudorange at tk are predicted
to be ŷk = hk(x̂k). The GPS measurement residual vector
is computed as δyk = yk − ŷk, with variance R.

III. ESTIMATION THEORY

For a known linear system with white, normally dis-
tributed, and mutually uncorrelated process and measurement
noise vectors with known covariance, the Kalman filter (KF)
is the optimal estimator. When the time propagation or
measurement models are nonlinear, a variety of methods
(e.g., the extended Kalman filter [9]) are available to solve
the sensor fusion problem over a single GPS epoch.

This section reviews the Maximum A Posteriori estimator
[10] solved over a sliding temporal window in real-time. This
approach has been developed extensively in the Simultaneous
Localization and Mapping (SLAM) research community
[11], [12]. The approach developed for GNSS and IMU
integration in [6] is referred to as a Contemplative Real
Time (CRT) method due to its enhanced ability to detect and
remove outliers. That ability has not yet been demonstrated,
but is developed and demonstrated herein.

A. Theoretical Solution

Let X denote the vehicle trajectory over a sliding time
window X = [x(tk−L)

ᵀ, . . . , x(tk)
ᵀ]

ᵀ
, where L is the

length of the window, and contains L GPS measurement
epochs, [yk−L+1, . . . ,yk]. We assume that the window will
slide one epoch upon arrival of each new GPS measurement.
For presentation purposes only, we assume that each GPS
epoch aligns with an IMU measurement time. The results in
the experimental section relax this assumption.

Estimation of the vehicle trajectory X can be formulated
as a MAP problem (see Ch. 11.5 of [10]):

X̂ = argmax
X
{p(X,U,Y)} , (4)

where within the time window U = {Ui | i ∈ [k−L, k−1]},
and Y = {yj | j ∈ [k − L + 1, k]} is the set of GPS
measurements over the time window for satellites 1, ...,m.
The joint probability for the GPS-INS problem, p(X,U,Y),
can be decomposed as

p(X,U,Y) (5)

= p(xk−L)

k−1∏
l=k−L

p(xl+1|xl,Ul)

k∏
j=k−L+1

p(yj |xj),

where p(xk−L) is the distribution of the initial condition for
the time window, p(xl+1|xl,Ul+1) is the distribution of the
IMU measurement noise, p(yj |xj) is the distribution of the
pseudorange measurement noise ηρk.

B. Numerical Solution

Assume that x(t0), ωu, and ηy have Gaussian distribu-
tions with positive definite covariance matrices P(k−L), QD,
and R, respectively. Let W = blkdiag(P(k−L),QD,R).
Then ‖v‖2W = vᵀW−1v represents the squared Maha-
lanobis norm.

Finding X that maximizes eqn. (5) is identical to mini-
mizing the negative of its natural logarithm. This yields the
equivalent nonlinear cost function:

‖v(X)‖2W = ‖x̂k−L − x(tk−L)‖2P(k−L)

+

k−1∑
l=k−L

‖Φ
(
x(tl),Ul

)
− x(tl+1)‖2QD

+

k∑
j=k−L+1

‖y(tj)− hj
(
x(tj)

)
‖2R. (6)

The cost function can be normalized using Cholesky De-
composition. For the positive definite matrix W, defining
ΣW, such that W−1 = Σᵀ

WΣW. Then, for r , ΣWv,
‖v‖W = ‖r‖2. The minimization problem of eqn. (6)
reduces to the standard nonlinear least squares optimization

min
X∈Rns(L+1)

‖r(X)‖22

which will be solved iteratively.
Consider the lth iteration of the optimization, where l is

a positive integer. Given an estimate of the solution

X̂l =
[
x̂l(tk−L)

ᵀ, . . . , x̂l(tk)
ᵀ
]ᵀ
,
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which is treated as a vector in Rns(L+1). The optimization
algorithm computes an error vector δXl ∈ Rne(L+1), which
corrects X̂l to yield an improved solution X̂l+1 to eqn. (6).
The dimension of the error state vector is ne. The error state
vector is δx = [δpᵀ, δvᵀ, δθᵀ, δba

ᵀ, δbg
ᵀ]ᵀ ∈ R15,

where δp, δv, δθ, δba, and δbg each in R3 are the position,
velocity, attitude, accelerometer bias and gyro bias error
vectors, respectively. The dynamics and stochastic properties
of this estimation error vector are well understood, and can
be found in Section 11.4 of [7]. The fact that ns = 16 and
ne = 15 is discussed in [8]. The optimization approach is
formulated in the following section.

C. Optimization: Iterated Solution

In the l-th iteration, the residual r linearized around the
current estimate X̂l is

r(X) = J(X̂l)δXl + ηr, (7)

where J(X̂l) is the Jacobian of r(X) evaluated at X̂l, and
ηr ∼ N (0, I). In the following, without loss of generality,
we consider one iteration of the optimization method and
drop the iteration counter ‘l’.

With eqn. (7), a convex optimization problem can be
formulated by a quadratic approximation L(δX) to the cost
function C (X) , ‖r(X̂)‖22 :

L(δX) =
1

2
‖r(X̂)− J(X̂)δX‖22. (8)

By minimizing L(δX), a candidate step for the estimation
error δX is obtained. A line search in the direction of δX is
used to update the state estimate.

The Gauss-Newton step is the solution of the normal
equation,

JᵀJδX = Jᵀb, (9)

where b , r(X̂) and J = J(X̂l) as defned in (7). Eqn. (9)
can be compactly expressed as

ΛδX = ξ, (10)

where Λ = JᵀJ is the information matrix, ξ = Jᵀb is the
information vector. As shown in [11], J is a sparse, block
diagonal, matrix. Eqn. (10) can be solved efficiently by many
methods, e.g. Cholesky, or QR. Further computational gains
can be achieved by employing a sparse matrix library as
discussed in [11] and [12]. The computational complexity of
the algorithm is discussed in [8].

IV. FAULTY MEASUREMENT REMOVAL

This section examines the Residual Space method for
faulty measurement detection and removal. The discussion
in this section uses the standard notation in the literature.
For application to the window based smoother, y = r(X)
and H = J. See eqn. (7).

After the final optimization process iteration, consider the
following hypotheses related to the linearized residual r(X):
• Null Hypothesis, H0:

y = Hx+ η, (11)

• Alternative Hypothesis, Hi:

y = Hx+ η + µiei. (12)

In both hypotheses, y ∈ Rm×1 is the measurement vector,
H ∈ Rm×n, m > n, rank(H) = n is the measure-
ment matrix, x ∈ Rn×1 is the vector to be estimated,
and the measurement noise η ∼ N (0,C) ∈ Rm, where
C = σ2

yI. For the alternative hypothesis, the error vector is
ei = [0, . . . , 0, 1, 0, . . . , 0]ᵀ ∈ Rm×1, such that only the ith

element is 1. The magnitude of the error is µi ∈ R1×1. To
simplify notation in the following equations, let

εi , µiei.

In the case of the ith alternate-hypothesis, when the quantity
µi is nonzero, the ith measurement is called an outlier. The
magnitude µi will affect the ability to detect such outliers.
The null-hypothesis assumes no outliers, i.e., µi = 0.

A. Null-hypothesis, H0

From eqn. (11), the minimum-variance unbiased estimator
(MVUE) for x is [10]

x̂ = (HᵀH)−1Hᵀy. (13)

To analyze the effect of η, substitute eqn. (11) into eqn. (13)

x̂ = ((HᵀH)−1Hᵀ)(Hx+ η) = Ix+ H∗η,

where H∗ , (HᵀH)−1Hᵀ. The state error δx = x− x̂ due
to noise is δx = H∗η. From the zero mean Gaussian noise
assumption, the expected value of the state error is

E 〈δx〉 = 0.

Consider the residual r, where ŷ = Hx̂. Then

r , y − ŷ = (I−P)η, (14)

where P , H(HᵀH)−1Hᵀ ∈ Rm×m is the projection
matrix onto the range-space of H, i.e. C(H). The matrix
P is symmetric, idempotent, and rank(P) = n.

Similarly, the matrix Q , (I−P) ∈ Rm×m is a real, sym-
metric, and idempotent matrix. The matrix Q is a projection
matrix onto the left null-space of H, i.e. LN(H) = N(Hᵀ).
It has eigenvalues equal to 0 or 1, and its trace is equal to
the number of non-zero eigenvalues: (m− n).

The mean and covariance of the residual are

E 〈r〉 = E 〈Qη〉 = 0 (15)
Cov 〈r〉 = E 〈(r− E 〈r〉)(r− E 〈r〉)ᵀ〉

= QE 〈ηηᵀ〉Qᵀ = σ2
yQ. (16)

The final step is valid because Q is idempotent, QQᵀ = Q,
and E 〈ηηᵀ〉 = σ2

yI. The mean square error (MSE) [10] is

E
〈
‖r‖2

〉
= E 〈rᵀr〉 = E 〈tr{rrᵀ}〉
= E 〈tr{QηηᵀQᵀ}〉 = tr{Q}σ2

y

= (m− n)σ2
y, (17)

where tr{·} is the trace operator.
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The standard test statistic ΓX̂ for the validty of H0 is
based on eqns. (14) and (17):

ΓX̂ =
‖r(X̂)‖2

E
〈
‖r(X̂)‖2

〉 =
‖r(X̂)‖2

(m− n)σ2
y

. (18)

Under normal conditions, this test will evaluate to 1.
This is a reduced chi-square statistic [13]. Therefore, to

test the hypothesis (i.e., detect the existence of outliers),
the test statistic calculated by eqn. (18) is evaluated relative
to a threshold computed using the one-tailed Chi-square
distribution with respect to a significance level α, normalized
by the number of degrees-of-freedom (DOF) [13], [14]

ΓX̂ <
χ2
α/2,(m−n)

(m− n)
. (19)

The value for χ2
α/2,(m−n) is determined from a look-up table

for α versus DOF. The significance level α is chosen by
the designer for some probability of success. For example,
α = 0.05 indicates a 95% confidence level.

If the test succeeds, (X̂) is finalized as the optimal esti-
mate. Otherwise, outlier identification executes, as discussed
in the following section.

B. Alternate-hypothesis, Hi
To analyze the effect of the outlier εi on the state error,

substitute eqn. (12) into eqn. (13)

x̂ = ((HᵀH)−1Hᵀ)(Hx+ η + εi)

= Ix+ (HᵀH)−1Hᵀ(η + εi). (20)

Therefore, δx = H∗(η+εi). The expected value of the state
error due to the outlier is E 〈δx〉 = H∗εi.

To analyze the effect of the outlier on the residual,
substitute (12) and (20) into (14):

r = Hx+ η + εi −Hx̂

= Hx+ η + εi −H
(
Ix+ (HᵀH)−1Hᵀ(η + εi)

)
= Q(η + εi).

Note that the residual still lies in the left-null-space of H.
The mean and covariance of r due to the outlier, are

E 〈r〉 = E 〈Q(η + εi)〉 = Qεi (21)

Cov 〈r〉 = E 〈(r−Qεi)(r−Qεi)
ᵀ〉 = σ2

yQ. (22)

Comparing eqn. (16) with eqn. (22), we see that both
cases with and without the outlier have the same covari-
ance. The difference between the two cases is the mean
of the distributions, as shown in eqns. (15) and (21). The
difference in the means is important, because it provides
the basis for identifying outliers. The decision statistic under
the alternate-hypothesis Hi, is based on the distribution of
r ∼ N (Qεi,σ

2
yQ).

Consider the parity vector [1], [2]

p , Uᵀ
2r ∈ R(m−n),

where U2 ∈ Rm×(m−n) may be found by the SVD of H.
Therefore,

p = Uᵀ
2(y −Hx̂) = (Uᵀ

2ei)µi + Uᵀ
2η;

therefore, p ∼ N (µiU
ᵀ
2ei, σ

2
yIm−n).

Then the magnitude of the outlier µi in eqn. (12) can be
estimated as (see Section 5 of [13]),

µ̂i =
(
(Uᵀ

2ei)
ᵀ(σ2

yI)
−1(Uᵀ

2ei)
)−1

(Uᵀ
2ei)

ᵀ(σ2
yI)
−1p

= σ2
y (e

ᵀ
i U2U

ᵀ
2ei)

−1 1

σ2
y

eᵀ
i U2p =

eᵀ
i Q

ᵀr

eᵀ
i Q

ᵀei
,

where U2U
ᵀ
2 = Q = (I−P), and the covariance of µ̂i is

Cov 〈µ̂i〉 = (eᵀ
i Q

ᵀei)
−1.

Outlier identification is executed iteratively for each µiei
from i = 1, ...,m. Each µi is compared against a threshold
γ, such that any µi > γ is considered an outlier.

After completion of the identification process, if an out-
lier is identified, it’s measurement is removed from the
measurement-set and the optimization step in eqn. (9) is
repeated.

C. Comparison of DOF’s

This section theoretically compares the number of degrees
of freedom (m − n) available for outlier detection between
algorithms. In this section, ns is the state dimension; mk is
the number of satellite pseudoranges available at epoch k; n
is the total number of real variables to be estimated; and m
denotes the total number of available constraints.

The EKF at any time step has n = ns variables to estimate
(one state vector) and m = ns +mk constraints (GPS and
prior); therefore, the DOF is mk. The DOF of the Iterated
EKF (IEKF) is the same: the IEKF is the same as the CRT
with L = 1. The advantage of the IEKF is its ability to
perform a nonlinear iterative correction.

For the CRT algorithm with window length L, the number
of variables to be estimated is n = (L+ 1)ns. The number
of constraints is m = (L + 1)ns +

∑k
j=(k−L+1)mj . The

DOF is therefore,
∑k
j=(k−L+1)mj .

Both the outlier detection capability and the amount of
required computation are expected to increase with L.

D. Complexity

To evaluate each alternative hypothesis, the rows corre-
sponding to the faulty measurements are removed from both
the residual vector and Jacobian matrix, then the nonlinear
optimization process is repeated and its likelihood computed.
For a large number of alternative hypotheses, this becomes
computationally expensive.

Given (mL) residuals in each CRT window, there are
mL∑
k=1

(
mL
k

)
=

mL∑
k=1

(mL)!

((mL)− k)! k!
,

ways that any number of satellite measurements could fail in
any combination at one epoch (see Section 3 of [4]). For the
EKF or IEKF (with L = 1 and m = 9) this results in 511
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hypotheses, which is too large for full consideration. For the
CRT with L = 20, consideration of all hypothesis is even
more infeasible for real-time implementation. Therefore,
simplified approaches are required. The approach used herein
is to remove all rows with residuals greater than a user
defined threshold and re-optimize, possibly repeating until
all residuals pass the threshold test.

V. ILLUSTRATIVE EXAMPLE

Real-world performance is evaluated using data from a
drive-test around University of California, Riverside using a
consumer-grade GPS antenna (Antcomm ANN-MS-0-005)
mounted on the vehicle roof. During driving, the sensor
data is time-stamped and stored. The sensor data includes
consumer-grade: Quartz-MEMS IMU data (Epson M-G320)
used in eqn. (2) at 250Hz, and L1 Differential GPS data
(Ublox 6T) used in eqn. (6) at 1Hz. This trajectory contains
a variety of real-world automotive conditions that adversely
affect GPS receiver performance, e.g. tall buildings and trees.

To allow direct performance of various algorithms, using
the identical input data, the results of this section are
computed during post-processing. Even though running in
post-processing for this evaluation, each algorithm is written
in C++ to run on the navigation system in a real-time fashion,
using only the data and prior as would be applicable for each
approach. All algorithms in this evaluation are capable of
real-time implementation on standard computers.

The ground truth trajectory is found by solving a nonlinear
optimization problem over the entire (600 second) trajectory,
formulated in the maximum a posteriori perspective. This
smoother uses integer resolved carrier phase DGPS and IMU
measurements, to achieve centimeter level accuracy [15].

Due to limited space, only 3D position performance is
discussed herein. Velocity and attitude results are provided
in [8], and are similar to position performance.

A. Performance After Outlier Removal

For each algorithm, Fig. 1 shows the cumulative distribu-
tion function (CDF) of the position error norm ‖p̂k − pk‖
where the ground truth trajectory is used as pk. The value of
p̂k is the a posteriori result after the optimization of (6) at
the first time when the k-th epoch enters the sliding window.
For outlier removal, the threshold was computed using a
significance level of α = 0.05. The CRT algorithm curves
are included for various window lengths L.

The CDF shows that the percentage of occurrences where
the EKF position error is less than 0.1m, is roughly 18%.
Roughly 90% of the trajectory, as estimated by the EKF,
has errors less than 1.0m. This is as expected for a double-
difference L1 pseudorange-only GPS-INS with an EKF.

Figure 1 indicates that accuracy improves from the EKF
to the IEKF to the CRT. Also, CRT performance (generally)
improves with the window length L. For the CRT with
L > 5, 100% of the position errors are less that 1.0m. CRT
algorithms with L > 20 each achieve 0.6m position accuracy
on 100% of the trajectory. The EKF and IEKF CDF plots
do not reach 100% until the position accuracy is over 3.0m.

B. Sensitivity Analysis

The improved performance demonstrated in Fig. 1 is
attributed to solving the full nonlinear optimization over a
longer window, which enhances the redundancy and allows
reconsideration of fault decisions, as long as the measure-
ment data is within the sliding window. This enhanced ability
to detect and remove outliers to achieve reliable performance
is one of the major motivations of the CRT approach. This
section considers the robustness to outliers in greater detail.

Fig. 1 considered a single detection threshold γ, which
is a decreasing function of the significance level α (see
eqn. (19), where γ =

χ2
α/2,(m−n)

(m−n) , and α = 0.05). Fig. 2
presents a receiver operating characteristic (ROC) curve for
each algorithm. Each ROC curve plots the Probability of
Detection, PD, versus Probability of False Alarm, PFA as a
function of γ.

Since ground truth is available, the correct outlier deci-
sions are known for each satellite at each epoch. To construct
the ROC curve for each algorithm, the procedure of Section
V-A is repeated once for each specified value of γ. The
outlier detection decisions for each algorithm and each value
of γ are compared with the ground truth decisions to compute
PD and PFA. Each run for a single value of γ generates one
point on the ROC curve.

For example, to evaluate the EKF using eRAIM methods,
a significance threshold α is chosen, γ is computed and held
constant, and the EKF is run for the entire trajectory. At the
completion of the trajectory, the probability of detection (of
outliers) is calculated (against ground truth), as well as the
probability of false alarm, and the values are recorded. This
provides one point on the EKF ROC curve. The trajectory
estimation is repeated for a vector of α values, using the
EKF. This set of values provides the EKF ROC curve.

This process is then repeated for each estimator: IEKF,
and CRT with L = {5, 10, 20, 30, 40}. In the case where a
window of data is evaluated, such as the CRT estimator with

Fig. 1. Cumulative distribution of position error for each algorithm.
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L > 1, the outlier detection algorithm evaluates the entire
residual vector after convergence to the optimal trajectory
for the hypothesized set of valid measurements. If outliers
are detected, the corresponding measurements are removed,
and the optimization is repeated for one additional iteration.
Upon sliding the window, the prior outliers are ignored and
the detection procedure searches the entire residual vector.
More advanced processes both for accommodating outliers
or reconsidering past outlier hypotheses will be considered
in future research.

Each curve in Fig. 2 displays the expected PD vs. PFA
trends for α. As γ increases, the next point on each curve will
be below and to the left of the last point, as PD and PFA both
decrease with γ. As Fig. 2 shows, the rates of decrease are
very different for the different algorithms. Curves closer to
the upper left corner show improved ability to detect outliers
with lower probability of injecting false alarms. In particular,
the CRT algorithms with L > 10 each have a PFA below
10% with PD greater than 90%, whereas both EKF and IEKF
have a PFA below 10% only when PD is less than 60%. In
fact, the CRT with L = 40 is shown to have a PFA less than
10% with PD rate greater than 95%.

These results confirm the claim that the ability of the CRT
algorithm to discriminate outliers from valid data is enhanced
with the length of the sliding window, which increases
the redundancy as quantified by the number of degrees of
freedom. The reliability of achieving a specified level of
accuracy increases with the ability to remove outliers.

VI. CONCLUSION

This article presented a method to enhance the level of
redundancy in a GNSS and IMU based navigation system
to facilitate the accommodation of outlier measurements.
Over a multiple epoch sliding window of data the algorithm
performs MAP estimation within a nonlinear optimization
framework, while maintaining a real-time estimate as nec-

Fig. 2. Receiver Operating Characteristic curves for each algorithm with
varying α. The red dotted line is the Line-of-No-Discrimination.

essary for control and planning purposes. Increasing the
duration L of the sliding window enhances redundancy at the
expense of increased computation. Enhancing redundancy
improves the reliability of achieving any given accuracy
specification, by better outlier removal. The MAP frame-
work, through real-time nonlinear optimization, achieves
optimal state estimation without linearization assumptions.
The enhanced performance of these methods is demonstrated
through direct comparisons of both the accuracy and outlier
detection abilities of various algorithms using experimental
data from a challenging environment.

Current research in the fields of machine learning and
robust statistics allow new approaches for multiple outlier
detection and removal, including residual generation per-
formed with non-quadratic cost functions and thresholding
[16], [17]. Our future research will investigate such outlier
accommodation algorithms within the sliding window MAP
framework.
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