Title
Seismic response of retaining walls with cohesive backfill: Centrifuge model studies

Permalink
https://escholarship.org/uc/item/3970f9t1

Journal
Soil Dynamics and Earthquake Engineering, 90

ISSN
0267-7261

Authors
Candia, G
Mikola, RG
Sitar, N

Publication Date
2016-11-01

DOI
10.1016/j.soildyn.2016.09.013

Peer reviewed
Seismic response of retaining walls with cohesive backfill: Centrifuge model studies

Gabriel Candia a,b,⁎, Roozbeh Gerali Mikolac, Nicholas Sitard

a Facultad de Ingeniería at Universidad del Desarrollo, Chile
b National Research Center for Integrated Natural Disaster Management CONICYT/FONDAP/15110017, Chile
c McMillan Jacobs Associates, San Francisco, CA, USA
d Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, USA

A R T I C L E I N F O

Article history:
Received 11 March 2015
Received in revised form 27 January 2016
Accepted 10 September 2016

Keywords:
Centrifuge tests
Retaining walls
Seismic earth pressures
Mononobe–Okabe

A B S T R A C T

Observations from recent earthquakes show that retaining structures with non-liquefiable backfills perform extremely well; in fact, damage or failures related to seismic earth pressures are rare. The seismic response of a 6-m-high braced basement and a 6-m free-standing cantilever wall retaining a compacted low plasticity clay was studied in a series of centrifuge tests. The models were built at a 1/36 scale and instrumented with accelerometers, strain gages and pressure sensors to monitor their response. The experimental data show that the seismic earth pressure on walls increases linearly with the free-field PGA and that the earth pressures increase approximately linearly with depth, where the resultant acts near 0.33 H above the footing as opposed to 0.5–0.6 H, which is suggested by most current design methods. The current data suggest that traditional limit equilibrium methods yield overly conservative earth pressures in areas with ground accelerations up to 0.4 g.

1. Introduction

Despite being a broad simplification of what, in reality, is an extremely complex soil-structure interaction problem, the most commonly used approach to seismic analysis and design of retaining structures is the Mononobe-Okabe method (M-O). This method was developed by Okabe [1] and Mononobe and Matsuo [2] following the great Kanto earthquake of 1923 that devastated many retaining structures, particularly the quay walls in Yokohama Harbor. Their method, i.e., a Coulomb wedge limit equilibrium (LE) analysis, drew on the results of pioneering shaking-table experiments conducted by Mononobe and Matsuo [2]. Their model was a rigid box filled with dry loose sand subjected to harmonic motions. The total seismic load was measured using pressure gauges and resulted in excellent agreement with Okabe’s general theory of earth pressure [1].

Since then, much research has been conducted on the seismic response of retaining walls, and generally, these studies suggest that the M-O theory is appropriate for low levels of ground accelerations. Other LE methods, e.g., [3–8], improved on Okabe’s general theory to account features such as surface cracks, wall-to-soil adhesion, the backfill flexibility, inertial body forces, and log-spiral failure surfaces among others. Most of these solutions, however, lack of experimental data at large accelerations and the evaluation of the critical failure surface typically requires a numerical solution. Likewise, kinematic solutions [9] and methods based on the theory of elasticity have been developed [10–14], but their applicability is limited since a small wall deflection can induce a failure state in the soil. Finite elements or finite differences can in-

⁎ Corresponding author.
E-mail address: gcandia@udd.cl (G. Candia).

http://dx.doi.org/10.1016/j.soildyn.2016.09.013
0267-7261/© 2016 Elsevier Ltd. All rights reserved.
suggested that the earth pressure resultant acts at a point higher than H/3. As a result, the line of action of the dynamic force was typically chosen to be between 0.6 and 0.67 H [e.g., 33]. However, an important limitation of scaled 1-g shaking-table experiments is that even with the most careful scaling, the soil response cannot be easily scaled to prototype dimensions because the strength and stiffness of the soil, which control the soil behavior, are nonlinear functions of the confining stress. In addition, shaking table models built in rigid boxes on a rigid base do not reproduce the boundary conditions encountered in field settings, and the models are typically limited to short walls, i.e., typically less than 2 m in height, founded on stiff rock and retaining a medium loose soil.

While not completely devoid of scaling problems, centrifuge tests allow for correct scaling of stresses and strains in the soil [34]. The earliest centrifuge model of the seismic response of retaining structures was reported by Ortiz et al. [35], who studied the response of flexible cantilever walls in medium-dense sand. The container was subjected to earthquake-like motions, which resulted in seismic pressures consistent with M-O theory, and a seismic resultant located at 1/3 H. Bolton and Steedman [36,37] studied the centrifuge response of micro concrete cantilever walls that retained a dry cohesionless backfill. The walls were fixed to the loading frame and were subjected to harmonic accelerations up to 0.22g. The results suggested that the wall inertial forces must be taken into account in addition to M-O earth pressures.

Later, Dewoolkar [38] modeled the centrifuge response of liquefiable backfills on fixed-base cantilever walls under harmonic accelerations and showed that excess pore pressure and inertial effects contributed significantly to the total seismic lateral pressure. Nakamura [39] modeled the centrifuge response of free-standing gravity walls retaining dense Toyura sand (Dr=88%). The author showed that a ‘soil wedge’ forms in the backfill and slides down plastically during the earthquake, i.e., plastic strain accumulate in the slip plane when the soil is loaded in both (active and passive) directions. In contrast, the response implied by M-O theory suggests that the soil wedge that follows the retaining structure moves down when loaded in the active direction and moves up when loaded in the passive direction. Additionally and contrary to M-O theory, the author observed that the earth pressure distribution is nonlinear, changes over time, and is a function of the type of ground motion used. Nakamura observed complex interaction patterns between the backfill and wall, and concluded that even in controlled environments, the underlying assumptions of M-O theory are generally not met.

More recently, Al Atik and Sitar [20] and Sitar et al. [21] modeled the seismic behavior of fixed-base U-shaped walls, basement walls and free-standing cantilever walls supported in medium-dense sand. The experiments used a flexible shear beam container that deforms horizontally with the soil. The authors concluded that the M-O method was conservative, particularly when PGA > 0.4g, providing further support to the Seed and Whitman’s [33] observation that properly designed retaining walls should be capable of withstanding 0.3g. The authors also observed that seismic earth pressure increased approximately linearly with depth and that the Seed and Whitman [33] method with the resultant applied at 0.33 H is a reasonable upper bound to the total seismic load. However, while the past experimental work has been devoted almost exclusively to cohesionless backfills, many backfills are made of compacted soil or natural soil deposits that have a certain degree of cohesion that may significantly reduce the loading demands on the system [6,40,41]. Thus, this study was motivated by the lack of experimental data on the seismic response of retaining structures with cohesive backfills. The experimental program was conducted at the NEES Center for Geotechnical Modeling (CGM) and consisted of scaled centrifuge models of free-standing cantilever walls and basements walls with a level backfill. The numerical simulation of these centrifuge tests was performed in FLAC-2D and will be the subject of another article.

2. Centrifuge model

The primary advantage of centrifuge experiments over 1-g shaking-table experiments is the correct scaling of the stress-strain behavior in the soil, which enables the model to reproduce the behavior of full-scale prototypes. A thorough discussion of the centrifuge scaling principles can be found elsewhere [34]. Nevertheless, centrifuge models are not problem free: the gravitational field increases with depth; highly sensitive instruments are required to capture the frequency content of centrifuge earthquakes; and there are no stationary reference points because undesired vibrations develop in the loading frame as a result of the dynamic interaction with the soil model. The latter becomes an issue when there is mass asymmetry within the soil. The large centrifuge at CGM has a 9-m radius with a payload of 4.5 t at 75g’s of gravity (Fig. 1a). A 1-D shaking table mounted on the centrifuge arm reproduces earthquake-like ground motions and delivers a PGA between 20g and 30g, which is equivalent to 0.4g and 0.6g if a scaling factor of N=50 is used, respectively. In the present study, the models were built in a flexible shear beam (FSB) container (Fig. 1b), which deforms horizontally with the soil and helps simulate free-field conditions during earthquakes. Multiple sensors were used in the experiment; data were collected at a rate of 4096 Hz using a high-speed Data Acquisition system.

![Fig. 1. (a) CGM’s centrifuge at rest, and (b) centrifuge model in the arm.](image-url)
3. Experiment design

An embedded one-story basement wall and a free-standing cantilever wall were modeled in the centrifuge with a scaling length factor of 1/36 and tested at 36g of centrifuge acceleration. The full-scale prototypes were 6-m-high reinforced concrete (RC) structures underlain by 13 m of clay and spaced 25 m from each other to minimize interaction effects. The model width was 28 m and the ground motions were applied in the direction perpendicular to the walls. The retained soil consisted of a 6-m-deep compacted clay, as shown in Fig. 2(a). The basement consisted of a 6-m-deep compacted clay, as shown in Fig. 2(a). The basement consisted of two walls built with 12.7-mm-thick aluminum plates and a bottom slab built with 25.4 mm-thick aluminum plates. In order to measure the static and seismic lateral earth pressures, the opposing walls were connected through six cross bracings instrumented with load cells. Although the basement configuration produced a laterally stiff structure, it did not entirely eliminate racking. The prototype cantilever wall was a standard AASTHO-LRFD retaining wall per Caltrans specifications, which has a wide footing and a shear key to prevent rigid body sliding. To match the effective moment of inertia of the prototype RC wall, the model components were built with 9.5-mm-thick aluminum plates.

The soil used in the experiment was a lean clay, Yolo Loam (LL = 30%, PI = 11%, \(\omega_{opt} = 15\%\)). The foundation soil and the retained soil layers were compacted in 25.4 mm lifts at a relative compaction effort equivalent to 90% standard Proctor at a moisture content of 17%, which resulted in a dry unit weight of 16.5kN/m³. Strength parameters \(c = 15.2 \text{kPa} \) and \(\phi = 30^\circ \) were interpreted from a series of triaxial compression tests on un-saturated samples obtained from a depth of 350 mm at the middle span after the centrifuge tests was completed. The samples (with average height 15 cm and average diameter 7.4 cm) were confined isotropically at 50, 100, 150, and 200 kPa, and sheared until failure at a rate of 0.5 mm/min. These confining pressures correspond to depths 4.4 m, 8.8, 13.2, and 17.6 m in prototype scale.

The shear wave velocity at a confining stress of 100 kPa was estimated between 175 ± 25 m/s based on resonant column tests (ASTM D4015) using bender elements within the soil model. The measured shear strain versus shear modulus reduction curves agreed with the published relationships for low-plasticity soils [42,43]. Approximately 80 instruments were used to monitor different physical parameters in the soil and structures, including the following: accelerometers, displacement transducers, pressure cells, load cells in the basement walls, and strain gages on the cantilever wall. All dimensions in mm.

4. Test results

The PGA of the backfill and structures is shown in Fig. 4 as a function of the input intensity. The input acceleration was demobilized at the foundation level as a result of energy dissipation in the soil; likewise, the ground motion at the free surface was reduced for input PGA > 0.3g, which is consistent with typical ground amplification charts for medium-clayey soils [44]. The ground motion at the top of the walls was amplified, which was more significant at the top of basement wall, possibly due to the inertial coupling with the flexible container.

The profiles of the relative ground acceleration and relative ground displacement in Fig. 5 show that the model responded primarily in the first and second modes. The influence of higher modes was evaluated using modal composition [45] as follows:

\[
U(z) = \sum_n \psi_n U_n(z)
\]

where \(U_n = \cos(\omega_n t) (2n-1)/2H \) is the n-th vibration mode of a uniform soil deposit, and \(\psi_n \) is the corresponding amplification factor. The analysis shows that on average, over 85% of the total displacement comes from the first mode, 12% from the second mode, and less than 3% from higher modes.

The elastic response spectra with 5% damping are shown in Fig. 6 for the input motion and free-field motion at the ground surface. The plots show that for low levels of shaking, e.g., Kocaeli, the pseudo accelerations at all natural periods were amplified,
whereas in stronger motions, e.g., Loma Prieta and Kobe, the ground response was reduced at short periods ($T < 0.4$ s) and amplified at larger periods.

4.1. Seismic earth pressures

Fig. 7 shows the history of the pressure sensors readings (raw data in volts) without any baseline correction. Likewise, Fig. 8 shows the distributions of static and maximum dynamic earth pressures for three shaking table motions. Although problems were encountered in adjusting the baseline of pressure sensors, the readings increases approximately linearly with depth and no ‘inverted-triangle’ distributions are apparent from the data. Thus, the point of application of the total seismic load and dynamic load increments is considered to act at 0.33 H above the base. The magnitude of earth pressures in the cantilever wall was back-calculated from the strain gages located at the base of the wall. In the case of basement walls the magnitude of earth pressures was determined from the load cells and the inertial forces computed from the accelerometers. The immediate consequence of a linearly increasing earth pressure is that the seismic overturning moments are 50% of those predicted by classic methods of analysis [33]. This result is consistent with the experimental response of retaining structures that are founded on soil [20,22].

4.2. Response of the basement wall

The basement compression P_{tot} was computed by adding the
loads measured by the six load cells. Using D’Alambert’s principle and equilibrium in the horizontal direction, the forces developed at the soil-wall face interfaces are

\[P_{\text{ae}}^\text{south} = P_{\text{tot}}^\text{south} - \Delta P_{\text{in}}^\text{south} \]
\[P_{\text{ae}}^\text{north} = P_{\text{tot}}^\text{north} + \Delta P_{\text{in}}^\text{north} \] (2)

where \(\Delta P_{\text{in}} = - \frac{mH(\dot{u}_{\text{bottom}} + \dot{u}_{\text{top}})}{2} \) is the inertial load derived from accelerometers located on the basement walls. The static component of the load was removed using a high-pass filter, and then, the dynamic load increments in the south and north walls can be described by

\[\Delta P_{\text{ae}}^\text{south} = \Delta P_{\text{tot}} - \Delta P_{\text{in}}^\text{south} \]
\[\Delta P_{\text{ae}}^\text{north} = \Delta P_{\text{tot}} + \Delta P_{\text{in}}^\text{north} \] (3)

This equilibrium analysis shows that the basement compression terms \(P_{\text{tot}} \) and \(\Delta P_{\text{in}} \) are the average of the soil-induced loads on the walls and carry no information with regards to the inertial forces. Fig. 9 shows the history of the load increments on the basement in response to the Loma Prieta ground motion. As shown in Fig. 9(a), the inertial loads act in the direction opposite to the acceleration; thus, a positive acceleration increases the dynamic loads on the south wall and reduces the dynamic loads on the north wall and vice versa. Similarly, the compression release in the basement is preceded by positive peaks of inertial loads, which increases the active loads on the north wall. The phase difference between the basement compression and the inertial loads is approximately 0.12 s, which matches the natural period of the retained soil. The dynamic load increments on the south and north walls are shown in Fig. 9(b). As expected, when the load on the south wall is near a local maximum, the load on the north wall is near a local minimum.

A similar behavior was observed for all the ground motions simulated in the centrifuge. Based on a triangular lateral earth pressure distribution, the maximum dynamic load, i.e. \(\Delta P_{\text{ae}} = \max (|\Delta P_{\text{ae}}^\text{north}|,|\Delta P_{\text{ae}}^\text{south}|) \), was normalized by \(0.5\gamma H^2 \) and it was found to increases approximately linearly with the free-surface PGA in free field, denoted here on as PGAff. Thus, a simple equation is proposed to relate the coefficient of dynamic earth pressure \(\Delta K_{\text{ae}} = 2\Delta P_{\text{ae}}/\gamma H^2 \) and the ground acceleration.

![Fig. 5. (a) Maximum acceleration and (b) maximum displacement relative to the model base. Depth z normalized to model depth H=19.5 m.](image1)

![Fig. 6. Acceleration response spectra (\(\xi = 5\% \)) recorded in the soil.](image2)
In Eq. (4), the term ±0.08 represents the 95% confidence bounds. Note that the equation for the upper-confidence bound can be approximated as \(\Delta K_{ae} \approx 0.67 \frac{PGA_f}{g} \), which is equivalent to the Seed and Whitman method \[33\] with \(k_b \) taken as 90% of the design ground acceleration and the resultant applied at 0.33 H.

4.3. Response of cantilever wall

The shear force at the base of the stem on the cantilever wall \(Q_b \) was back-calculated using a cubic interpolation of the strain measurements with depth, as described in Eq. (5).

\[
Q_b = \frac{3ES}{H} \epsilon(0,t)
\]

where \(\epsilon(0,t) \) is the bending strain extrapolated at the base of the stem, \(S=th^2b/6 \) is the wall section modulus, and \(E \) is Young’s modulus of aluminum. Based on the horizontal equilibrium of the stem and after removing the static components of \(Q_b \), the dynamic load increment on the wall-soil interface is

\[
\Delta P_{ae} = \Delta Q_b - \Delta P_{in}
\]

where \(\Delta P_{in} = -m(H(2\dot{u}_{bottom} + \dot{u}_{top}))/3 \) is the wall inertial based on the quadratic distribution of the acceleration. The history of dynamic loads in response to the Loma Prieta motion is presented in Fig. 10, with time shown in prototype scale. A close examination of the load histories, showed that peaks in the inertial load occur in average 0.07 s before peaks in the dynamic load increment \(\Delta P_{ae} \) because the vertically propagating shear waves travel faster through the stem than through the retained soil. These observations were common to all the ground motions considered in the experiment.

The coefficient of dynamic earth pressure \(\Delta K_{ae} = 2\Delta P_{ae}/\gamma H^2 \) was computed for all ground motions and was found to increase monotonically with the surface acceleration at free field. Based on a linear regression of the data, the mean \(\Delta K_{ae} \) values and their confidence bounds are given in Eq. (7) as a function of \(PGA_f \). Because the cantilever experienced residual rigid-body

\[
\Delta K_{ae} = 0.67 \left(\frac{PGA_f}{g} - 0.10 \right) \pm 0.08
\]
displacements, the average dynamic earth pressure was 60% smaller than that for the basement walls, which only exhibited transient racking deformations. Although no active wedges were observed in the backfill, the retained soil followed the cantilever wall and deformed plastically. Also note that the upper-confidence bound to the experimental data approaches the Seed and Whitman [33] solution if 55% of the design acceleration is used.

\[
\Delta P_{ae} = 0.42 \left(\frac{PGA_y}{g} - 0.10 \right) \pm 0.05
\]

(7)

From Fig. 10 it was also observed that the peaks of shear force increments \(\Delta Q_b \) are in average 25% higher than the peaks of dynamic load \(\Delta P_{ae} \), thus, for design purposes the maximum bending moment at the base of the stem can be evaluated simply by increasing in 25% the coefficient of lateral earth pressure from Eq. (7). Overall, these dynamic load increments are significantly smaller than the solutions by Okabe [1] or M-O [2] with a design acceleration of 100% PGA. The apparent conservatism of current design methods have led practicing engineers to use an effective ground acceleration equal to 50% PGA.

The interpreted coefficients of dynamic load increment are shown in Fig. 11 and compared with traditional methods developed for walls that are founded directly on rock. The current experimental data show that the flexibility of the supporting soil helps reduce the seismic loads developed on the structures. Additionally, these results show that the dynamic loads on the studied basement are not significantly larger than those on the cantilever wall; therefore, in basement walls that may exhibit some degree of racking the use of Wood’s [12] solution is considered overly conservative. Instead, the semi-empirical relation by Seed and Whitman [33] with the resultant applied at 0.33 \(H \) is a
4.4. Dynamic displacements and deflections

A summary of the rigid-body displacements, basement racking and stem deflections are shown in Fig. 12. The maximum dynamic displacements measured in the free field are also shown for reference. The structure deformations and the shear strain profiles in the soil indicate that the full active conditions were mobilized. No evidence of gapping was observed in the structures except for cantilever wall during Kobe. In both structures, the Kobe ground motions control the response at large accelerations, and thus, the total dynamic displacements increase non-linearly with PGAff. However, the basement racking and the stem deflection in the cantilever wall increase linearly with PGAff and account for 30% of the absolute displacement. Residual rigid-body translation in the basement wall was negligible, whereas the cantilever wall exhibited small residual displacements on the order of 3 mm per earthquake (in prototype scale).

5. Concluding remarks

The seismic response of a 6-m embedded basement and a 6-m standard cantilever wall with a horizontal cohesive backfill was modeled in a geotechnical centrifuge. The models were built on a 1/36 scale and tested at a centrifuge acceleration of 36g. Several instruments were used to measure the seismic interaction between the structures and soil. From the experimental results, the following general conclusions can be drawn:

- The natural soil cohesion and compaction-induced stresses greatly reduce the initial contact stresses between the wall and soil, and in general, there is no amenable way to estimate them accurately. As a result, the total seismic load (static plus dynamic components) is reduced. The dynamic loads, however, are not significantly affected by cohesion or compaction. Similar magnitudes of the dynamic load increments have been observed in recent centrifuge experiments conducted in dry pluviated sand [22].
- Important differences between the measured and expected seismic earth pressures were observed. As stated earlier, the standard design practice is to assume that the dynamic earth pressures increase towards the surface. This assumption is a direct consequence of the scaling limitations and the experimental setup of typical 1-g shaking tables, where the structures are fixed to a rigid base. However, in the present centrifuge experiments, the basement and cantilever walls were founded on soil rather than a rigid boundary, and the dynamic earth pressures increase approximately linearly with depth.
- The present basement model relied on bracing elements with load cells to capture the average dynamic earth pressure coming from both sides. Although this model was sufficiently rigid against pure horizontal compression, racking deformations were not completely avoided. Thus, strictly speaking, the present results apply to braced excavations or closed culverts that may undergo some degree of racking. The seismic earth pressures on rigid basements with transverse shear walls require further analysis.
- Similar to the basement walls, the seismic load increments measured on the cantilever wall increased linearly with the free-field acceleration and can be approximated as \(\Delta K_{se}=0.42 \left(\frac{\text{PGA}_{ff}}{g} \right) -0.10 \) and the resultant applied at 0.33 H.

The results presented in this study are applicable to 6 m tall cantilever walls and braced basement walls founded on compacted silty clay, with the ground motion applied perpendicular to the wall. While these results capture the essential features of seismic wall-soil interaction, more experimental data or field data is required to extend the current results to different boundary conditions and wall configurations.

Acknowledgements

Financial support for this study was provided by NSF-NEES under grant CMMI-0936376 and the State of California Department of Transportation under grant No. 65N2170. Additional funding was provided by Facultad de Ingeniería de Universidad del Desarrollo, and the National Research Center for Integrated Natural Disaster Management CONICYT/FONDAP/15110017. Their support is gratefully acknowledged.
References