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ABSTRACT: Demographic stochasticity can have large effects on the
dynamics of small populations as well as on the persistence of rare
genotypes and lineages. Survival is sensibly modeled as a binomial
process, but annual reproductive success (ARS) is more complex and
general models for demographic stochasticity do not exist. Here we
introduce a stochastic model framework for ARS and illustrate some
of its properties. We model a sequence of stochastic events: nest
completion, the number of eggs or neonates produced, nest preda-
tion, and the survival of individual offspring to independence. We
also allow multiple nesting attempts within a breeding season. Most
of these components can be described by Bernoulli or binomial pro-
cesses; the exception is the distribution of offspring number. Using
clutch and litter size distributions from 53 vertebrate species, we
demonstrate that among-individual variability in offspring number
can usually be described by the generalized Poisson distribution. Our
model framework allows the demographic variance to be calculated
from underlying biological processes and can easily be linked to
models of environmental stochasticity or selection because of its
parametric structure. In addition, it reveals that the distributions of
ARS are often multimodal and skewed, with implications for ex-
tinction risk and evolution in small populations.

Keywords: clutch size distributions, demographic stochasticity, gen-
eralized Poisson distribution, litter size distributions, nesting success,
reproductive success.

Introduction

Stochasticity in population growth rates is inevitable in
real populations and arises from multiple sources includ-
ing demographic stochasticity, environmental stochasticity,
sex-ratio fluctuations, and demographic heterogeneity
(Melbourne and Hastings 2008). This stochasticity often
reduces the long-term population growth rate and in-
creases extinction risk (Bartlett 1955) and may be selected
against (Gillespie 1975, 1977; Lehmann and Balloux 2007;
Shpak 2007). There are exceptions to this general pattern
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(e.g., Doak et al. 2005), and stochasticity can, under ap-
propriate circumstances, promote the coexistence of com-
peting species (e.g., Chesson 2000).

Demographic stochasticity—the uncertainty in an in-
dividual’s demographic fate, given an environment and a
set of phenotypic traits—is particularly important in de-
termining a small population’s extinction risk (Melbourne
and Hastings 2008) and is susceptible to selection under
Gillespie’s (1975, 1977) model. In continuous time, this
form of stochasticity can be modeled as a birth-death pro-
cess (Bartlett 1960; MacArthur and Wilson 1967; Richter-
Dyn and Goel 1972; Goodman 1987), although building
in appropriate correlation structures can be challenging
(Ferson et al. 1989). When considering organisms that
have discrete breeding seasons, in contrast, we need sto-
chastic processes that integrate survival across a year and
that incorporate appropriate variation in annual repro-
ductive success. Such processes should be biologically jus-
tified and parameterized in ways that can be linked to
environmental stochasticity and demographic heteroge-
neity (Melbourne and Hastings 2008) as well as to envi-
ronmental trends such as climate change (Morris et al.
2008).

Survival of an individual over a finite time interval is a
Bernoulli process: the individual either lives or dies. This
leads to a natural choice of the binomial probability dis-
tribution to model demographic stochasticity in survival
at the population level (Renshaw 1990; Akgakaya 1991),
which is well established in population biology. For some
species, notably seabirds and many large mammals, a
breeding pair can produce at most one offspring in a
breeding season, in which case demographic stochasticity
in reproductive success can also be modeled using a bi-
nomial distribution (Conner and White 1999). However,
in general the number of offspring that become indepen-
dent of their parents is the product of a number of sto-
chastic processes, and the resulting probability distribution
of reproductive success may be quite complex.

Demographic stochasticity has received particular at-
tention in population viability analysis (PVA). The two
major PVA software packages take very different ap-
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proaches to this problem. RAMAS (Akgakaya 2002) uses
a Poisson distribution to describe demographic sto-
chasticity in reproductive output (Akgakaya 1991, 2004);
there is no subsequent mortality of offspring. In contrast,
VORTEX (Lacy 1993; Miller and Lacy 2005) requires the
analyst to specify an empirically derived nonparametric
distribution of offspring numbers that is then sampled to
obtain the realized number of offspring; these offspring
then survive according to a binomial distribution. Most
of the independently developed PVA models in the liter-
ature apply one of these approaches (e.g., Walters et al.
2002; Robert et al. 2003; Wiegand et al. 2004).

There are shortcomings to both approaches. In general,
there is neither biological nor theoretical justification for
the use of the Poisson distribution, and survival (of either
the offspring or their parents, depending on how the
model is formulated) is a key component of the repro-
ductive term in discrete-time population models (Morris
and Doak 2002). In contrast, nonparametric distributions
are adequate to the population at hand, but the lack of
biological parameters makes it difficult to evaluate the ef-
fects of environmental stochasticity, management, or evo-
lutionary change. In this article we consider the biological
processes that underlie demographic stochasticity in ani-
mal annual reproductive success and use these to develop
and analyze a general parametric model of this
phenomenon.

The General Model

First, a comment on terminology. Very different vocabu-
laries have developed to describe reproduction in ovipa-
rous and viviparous species. For simplicity, we primarily
use oviparous terms and phrases such as “laying eggs,”
“clutch size,” and “nest.” However, the models apply
equally to mammals and other viviparous species; simply
substitute appropriate terms such as “giving birth,” “litter
size,” and “den.”

The Outcome of a Single Breeding Attempt

Consider a single breeding attempt. The number of in-
dependent offspring depends on (1) whether nest building
and mating is completed; (2) the number of eggs laid or
neonates birthed; (3) whether the nest is depredated, de-
stroyed, or abandoned; and (4) the probability that each
offspring survives from egg laying to independence (con-
tingent on nest success).

The first step (egg laying), being binary, can be modeled
as a Bernoulli process. The second step (clutch size) is
quite a bit more challenging, as there is no conventionally
accepted model for the probability distribution for the
number of eggs or neonates produced in a breeding at-

tempt. We propose that the generalized Poisson distri-
bution (Consul 1989) will often be appropriate; see
“Clutch Size Distributions” for theoretical arguments and
empirical evidence. The third stage (nest failure) can also
be represented as a Bernoulli process (although from the
point of view of the offspring, it represents correlated mor-
tality). There are a number of options for the last item
(offspring survival). Each individual’s survival might be
independent of that of its broodmates; if the survival prob-
abilities are equal, then the number of survivors follows
a binomial distribution. However, if fates are not inde-
pendent, the distribution might be different. For example,
if the instantaneous survival probability is a declining
function of the number of currently living broodmates
(because of competition for parental provisions), then the
number of deaths might be described by a generalized
Poisson distribution (Consul 1989).

For the rest of the examples in this article we will assume
that each offspring has an identical and independent sur-
vival probability. Given that, then the probability that a
breeder has i> 0 independent offspring from a breeding
attempt is

¢@) = Pr(f=1)
= bsE_g(n) (’Z)pi(l -p" M

n=i

where b is the probability that the breeder actually lays
eggs, s is the probability of nest survival, g(n) is the prob-
ability of laying n eggs (contingent on egg laying), and p
is the probability that an individual offspring survives to
independence. The probability that the breeder produces
no independent offspring is the sum of the probabilities
that no eggs are laid, that eggs are laid but the nest is
destroyed, and that the nest survives but none of the off-
spring do:

®(0) = Pr(f=0)

(1—b)+ bl —5) + sZ gma—p'| @

1 — bs+ bs >, g(m)(1 — p)". 3)

An example of this probability distribution with clutch
size being Poisson distributed is shown in figure 1. The
distribution is bimodal, with one mode at 0 representing
breeding failure and the other representing the most likely
number of independent offspring from a successful breed-
ing attempt.
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Figure 1: Probability distribution of reproductive outcomes from a
single breeding attempt. Parameter values: nesting probability b =
0.95, nest survival probability s = 0.5, clutch size distribution g(n) ~
Poisson(4.5), and nestling survival probability p = 0.8.

Rebreeding

Many animals can make multiple breeding attempts during
a breeding season; often the probability of rebreeding de-
pends on whether the previous breeding attempt succeeded
or failed. For example, consider the situation where the
breeder is capable of making two breeding attempts during
the season, with rebreeding probabilities 7, and r;, depending
on whether the first breeding attempt was successful. Let
¢,(i) denote the probability of having i independent off-
spring in the first breeding attempt and ¢,(i) be the same
for the second attempt (if it is made). Then the probability
of reproductive failure over the season is

Pr(F = 0) = ¢,(0)1 — 1) + ¢,(0)r:¢,(0). )

The first term represents a single breeding attempt and
the second represents two breeding attempts (both fail-
ures). An outcome of k = 1 independent offspring can
arise two ways (in either the first attempt or the second):

Pr(F=1) = ¢, — 1) + ¢,(1)1.,(0) + ¢,(0)7;,(1).
(5)

For k> 1, the distribution of reproductive success for the
whole season is

+ ¢,(0)r:¢,(k) ©6)

k—1

+§¢@wﬂ—u

Demographic Stochasticity in Fecundity 463

The first term represents all the success coming from the
first attempt, the second term represents all the success
coming from the second attempt, and the third term rep-
resents success in both attempts.

Making the not-unreasonable assumption that the pa-
rameters of ¢, and ¢, are the same allows the equations
to be simplified:

Pr(F=0) = (1~ r)$(0) + r,6(0)’, 7)
Pr(F=1 =1 —-r)o@) + (r. + r)o(0)o(), (8)
Pr(F=k>1) = (1 —r)ok + rp(0)¢(k)

+n§¢@ﬂkﬁl ©)

An example is shown in figure 2; there is a third mode
representing success in both attempts.

When considering species that rebreed multiple times,
a decision must be made about r;: does it apply whenever
the previous breeding attempt fails or only when all prior
breeding attempts have failed? This is a biological question;
in the examples that follow, we choose the second defi-
nition, for simplicity.

Allowing up to two rebreeding attempts, and assuming
that the parameters of all the breeding attempts are equal,
the probability distribution for seasonal reproductive suc-
cess is

0.2

Probability
0.1

0 6 8
Number of offspring
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Figure 2: Probability distribution of reproductive outcomes from two
breeding attempts. Parameter values: nesting probability b = 0.95, nest
survival probability s = 0.7, all clutches are of size 6, and nestling survival
probability p = 0.8. Rebreeding probabilities are r, = 0.6 and r, = 0.8.
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In principle, this can add a fourth mode to the distribution,
but in practice, the effect of three successful attempts will
usually appear as a long tail on the distribution (the ex-
ceptions are if r, is close to 1 or the mean number of
offspring per successful breeding attempt is large). The
extension to four or more breeding attempts is straight-
forward (though tedious); since the additional modes will
not be prominent, the primary reason for doing so is to
obtain expressions for the mean and variance of repro-
ductive success (see below).

Clutch Size Distributions

The Poisson distribution is strongly favored by ecologists
when they want a multivalued, discrete, unimodal distri-
bution. This probably stems from a combination of an-
alytical tractability and the fact that it is a sensible model
for measurement error in count data. Does it make sense
for the among-individual distribution of clutch sizes? The
underlying stochastic process is that an “event” (in this
case, the laying of one egg) has a constant instantaneous
probability of occurrence; the number of events over a
given time interval is Poisson distributed. While this may
be a good model for parasitoids searching for hosts in
which to lay their eggs, it is not at all obvious that this is
a good description of the physiological and energetic pro-
cesses that underlie reproduction in other animals, espe-
cially terrestrial vertebrates. Furthermore, the Poisson dis-
tribution is strongly constrained, with the variance exactly

equaling the mean, a feature that is violated by many
empirical clutch size distributions.

One modification of the Poisson process that might
capture some of the energetic constraints and physiological
feedbacks that animals face would be to have the instan-
taneous probability of the next egg be a declining function
of the number of eggs already laid. A stochastic process
very much like this is described by the “generalized Poisson
distribution” (Consul and Jain 1973; Consul 1989).

The probability mass function for the generalized Pois-
son distribution is

00 + x\)* e 0N

RO, N) = S

(14)

This distribution has two parameters, and in contrast to
the Poisson distribution, the mean and variance need not
be equal. If A <1, then the mean is 6/(1 — \), and the
variance is 6/(1 — \)’. Notice that when A = 0, this is
simply a Poisson distribution with mean 6. Unfortunately,
the name has also been applied to a variety of other dis-
tributions, including a “corrupted” Poisson distribution
in which some ones are incorrectly recorded as zeros
(Johnson and Kotz 1969).

This model approximates the biological intuition given
above if A < 0. Under this condition, the variance is always
less then the mean. In addition, the probability distribu-
tion has an upper bound: nonzero probability is possible
only for values of x that satisfy 0 < x < —0/\. This upper
bound is a desirable feature for species, such as most birds
and mammals, that have a physiological or morphological
upper limit to clutch or litter size. Furthermore, as N gets
more negative, the mode of the distribution approaches
the maximum value (Consul 1989), a feature often seen
in clutch size distributions with small maximum clutch
sizes.

Thus, we hypothesize that the generalized Poisson dis-
tribution will provide a good statistical description of
clutch size distributions in many animals. To test this, we
compiled data on clutch (or litter) size distributions from
a wide variety of birds, mammals, and reptiles and at-
tempted to fit them with the generalized Poisson distri-
bution as well as a variety of other discrete probability
distributions.

Data Sources

We searched the literature for data on clutch or litter size
distributions, restricting ourselves to unmanipulated pop-
ulations and surveys that were either exhaustive or random
and that reported data reflecting a single breeding attempt
for each breeder. We sought information recorded in a
single year at a given site, which we designated a “pop-



ulation.” We discarded data consisting of fewer than 20
records. In some cases, reported data were combinations
of multiple years or sites; we used these only if the 20-
record minimum applied to all site-year combinations and
the authors reported a statistical test that failed to reject
the null hypothesis that all the populations followed the
same distributions. We also corresponded with authors
who published summaries, but not distributions, of clutch
size distributions; several of these generously shared the
original data for us to analyze.

Records were used for a total of 182 populations of
birds, mammals, and reptiles for which annual reproduc-
tive success data could be extracted from published and
unpublished literature and data sets. There are 28 unique
bird species represented by 123 populations, 14 mammal
species represented by 17 populations, and 11 reptile spe-
cies represented by 42 populations. These are listed in
tables tables A1-A3 in the online edition of the American
Naturalist. Only three studies counted clutches with zero
eggs or litters with zero newborns, and such counts might
be biased (e.g., nests without incubating parents might be
more difficult to find; the pair might rebreed before the
nest is found), so we discarded these zero counts.

Discrete Probability Distributions

We fitted various discrete probability distributions to the
clutch size data for each population to identify parametric
distributions that have empirical support. In addition to
the generalized Poisson distribution, we fitted the Poisson,
binomial, negative binomial, and hypergeometric distri-
butions to the data. Three compound distributions (see
“Compound Distributions” in the online edition of the
American Naturalist) were also tested: Neyman’s type A
(Poisson-Poisson), Poisson-rectangular, and the Poisson-
binomial. Other distributions tested included the Beta-
Pascal, Zipf, Borel, and Poisson-logseries, but these did
not fit any of the data and we do not consider them further
here. Because we did not have data on clutch sizes of zero,
we used “zero-truncated” distributions: the zero event is
removed, and the probability mass of the rest of the dis-
tribution rescaled so that the total probability sums to 1.

Fitting Methods

For each population, maximum likelihood parameter es-
timates (MLEs) were generated for each of the discrete
models described above. Analytic expressions for MLEs do
not exist with zero truncation, so we used numerical fitting
with a multinomial likelihood function. We calculated the
Akaike Information Criterion (AIC) for each model and
evaluated the overall goodness-of-fit of each fitted distri-
bution with a Pearson’s x* test. Distributions with an AIC
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within two units of the best-fitting model and for which
P> .05 in the x’ test were considered plausible models for
the data. Data sets for which all of the distribution had
P < .05 in the x* test were classified as “no fit.”

Results

The generalized Poisson distribution fitted the greatest
number of populations (133 of 152) that were fitted by at
least one of the distributions considered in this study. In
all cases the second parameter was negative, which trun-
cates the distribution. The hypergeometric and binomial
distributions fitted fewer populations than did the gen-
eralized Poisson but performed much better than did the
Poisson and negative binomial functions, which fitted 14
and 3 populations, respectively. Of the compound distri-
butions, the Neyman’s type A provided a good fit for 16
populations, the Poisson-rectangular fitted 5 populations,
and the Poisson-binomial fitted 3. In only 4 populations
(all reptiles) did the compound functions offer a better fit
than any of the five noncompounded functions. Thirty
populations were not fitted well by any of the models
(these had either bimodal distributions, complete or near
invariance in clutch size, or approximately triangular dis-
tributions). “Results of Clutch Size Analysis” in the ap-
pendix details these findings for each species.

Model Analysis

It is straightforward (see “Derivation of Means and Var-
iances” in the appendix) to show that the expected number
of independent offspring from a single breeding attempt
is

f = bspc, (15)
where ¢ is the mean of the clutch size distribution. This
is a pleasantly intuitive result. However, the formula for
the variance in reproductive success from a single attempt
is quite complex:

Var (f) = bsp[(1 — p)c + p(1 — bs)c> + pVar(c)], (16)
where Var (c) is the variance of the clutch size distribution.

The variance in breeding success increases with both
the mean and the variance of clutch size. It depends quad-
ratically on both b and s, with negative second derivatives;
it is maximized at

1 1-—
bs = =1 + —= + CV(¢)?,

2 pc 17)
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where CV is the coefficient of variation. The variance in
breeding success also depends quadratically on p, the off-
spring survival probability, but the sign of the second de-
rivative depends on the other parameter values. It is neg-
ative if

Var (c) < c — (1 — bs)c?, (18)
which is possible only if mean clutch size is small and bs
is close to 1. If this condition holds, then the variance is
maximized when

c
c— (1 —bs)c@—Var(0)]’

p= ol (19)

Inequality (18) also provides the condition for Var (f) <
f, or underdispersion relative to a Poisson distribution.
The CV in breeding success is

1—p 14+ CV()
v bspc bs

(20)

which decreases with b, s, p, and the mean clutch size and
increases with the CV in clutch size.

For the rebreeding model with two attempts, the ex-
pected reproductive success for the breeding season is

F=[+r5+re0)lf (21)
The variance in reproductive success is
Var (F) = [1 + 1, + r,$(0)] Var (f)
—{ln + rdO) + O} (22)

This increases with the variance in success from an in-
dividual breeding attempt but decreases with the expected
outcome of an individual attempt. The coefficient of var-
iation is

LSV = [, + r9(0)] s
CV(F) = \/ 1+ 1+ r.0(0) " 1+ 7+ re(0)*

(23)

Discussion

Existing models of demographic stochasticity in annual
reproductive success often lack biological justification or
do not have parametric forms. Here we have developed a
general model framework describing demographic sto-

chasticity in annual reproductive success, with the param-
eters of the underlying stochastic processes having ready
biological interpretation. Furthermore, we have demon-
strated that the generalized Poisson distribution may often
be a sound model with which to describe variation in
clutch or litter sizes in birds, mammals, and reptiles.

This work represents three important advances. First is
the separation of the variance from the mean, which is
impossible in the Poisson model. This “demographic var-
iance” (Engen et al. 1998) has a large influence on the risk
of extinction due to demographic stochasticity: all else
being equal, a higher variance leads to higher extinction
risk (e.g., Bartlett 1955). Furthermore, in small popula-
tions, natural selection will tend to reduce the demo-
graphic variance if this can be done without reducing the
mean fitness (Gillespie 1975, 1977; although initially de-
veloped for small, unstructured populations, this model
has recently been expanded to spatially structured and age-
structured populations [Lehmann and Balloux 2007;
Shpak 2007]). In both applications it is important to have
a model that does not unnecessarily constrain the rela-
tionship between the variance and the mean of reproduc-
tive success.

Second, parametric distributions (in contrast to purely
empirical distributions) are valuable, especially if the pa-
rameters can be clearly related to the biology of the or-
ganism and its interaction with its environment. These
parameters create the link between potentially heritable
traits and the mean and variance of fitness, allowing the
Gillespie model to be applied with biologically realistic
evolutionary constraints. Furthermore, these parameters
allow environmental stochasticity to be integrated with
demographic stochasticity in population models for PVA
by allowing the parameters to vary from year to year. In
addition, the framework allows explicit analysis of the ef-
fects of demographic heterogeneity in various components
of reproduction. This phenomenon can be explicitly in-
corporated into population dynamic models through sim-
ulation (e.g., Conner and White 1999), and in many cases
it may be possible to find analytic approximations of the
effects of heterogeneity on the demographic variance (Fox
and Kendall 2002; Kendall and Fox 2003).

Finally, the model introduced here produces a distri-
bution of reproductive success that is often skewed and
multimodal, including a strong peak at 0. For some pur-
poses this may not matter much. The central limit theorem
tells us that if the population is large enough, then the
demographic variation in the total number of offspring
can be approximated by a normal distribution; numerical
simulations suggest that this works well with as few as 10
breeding pairs. Thus, PVAs that set a quasi-extinction
threshold high enough can use such a distribution in sim-
ulations once the appropriate variance has been deter-



mined (although ensuring that a truncated, discretized
normal distribution actually has the appropriate variance
is not trivial). However, if the population is followed all
the way down to true extinction, then the shape of the
distribution becomes important. For example, if we as-
sume that adult survival is independent of age, then we
can construct a simple branching process model to cal-
culate the probability of extinction due to demographic
stochasticity in the absence of density dependence (Harris
1963). Simulations suggest that when using the skewed
annual reproductive success distributions produced by our
model, a common approximation by Bartlett (1955) based
only on the mean and variance of reproduction and sur-
vival tends to overestimate the extinction risk. For ex-
ample, using the reproductive success distribution from
figure 1 together with an annual survival probability of
0.45, Bartlett’s approximation overestimates the extinction
risk by about 7%. In other words, the positive skew makes
the population less extinction-prone than would be pre-
dicted merely from the mean fitness and demographic
variance. Likewise, strong skewness in lifetime reproduc-
tive success (which is likely if longevity is short and there
is a good chance that any given breeding season results in
failure) may influence the selection against demographic
variance: Gillespie (1975, 1977) used a second-order trun-
cation of a series expansion in his derivation.

In this analysis, we have focused on species in which
the number of eggs or neonates is relatively small (fewer
than 30) and the siblings from a particular breeding at-
tempt experience a shared environment (reflecting both
parental care and threats to the nest). These criteria apply
to most birds, mammals, and reptiles (although there are
notable exceptions, such as nest-parasitic cuckoos). In
contrast, the reproductive success of most fish, inverte-
brates, and plants will not be well described by our model
in its current form. For example, there is no particular
reason to believe that the generalized Poisson distribution
will describe broods with mean egg or larval numbers of
hundreds or thousands, and in marine and aquatic en-
vironments, posthatching survival can be highly variable
among individuals (e.g., Thorson 1950; Olaffson et al.
1994; Graham et al. 2008). Nevertheless, the principle we
have adopted in our model construction—breaking re-
productive success into its constituent components and
asking what sorts of stochastic process best describes each
component—could be applied to these other taxa.

The model has many parameters; can they be estimated
from data? Yes, if we focus on the components of the model
rather than the final distribution. If nests can be easily
observed, then many model components (nest initiation,
clutch size, nest failure, chick survival, rebreeding rates,
etc.) can be quantified directly and transformed into pa-
rameter estimates for that portion of the model. The un-
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certainties associated with each of these estimates would
be largely uncorrelated, making their assembly into a final
parameterized model straightforward. In contrast, trying
to fit the complete model to a final distribution of repro-
ductive success (such as the one shown in fig. 2) would
be challenging at best (in particular, we expect that it
would be very difficult to statistically disentangle the joint
effects of p, ¢, and Var (c), especially with a clutch size
distribution model that is as flexible as the generalized
Poisson). Perhaps having just the detailed information on
the clutch size distribution would be sufficient to constrain
the remaining parameters when fitting the reproductive
success distribution—this would be a topic for further
research. In addition, environmental conditions or paren-
tal phenotypes might be more strongly related to particular
components of reproductive success than to the final out-
come. If so, then analyzing these components in the con-
text of the full model would help reveal the potential im-
pact of environmental variability or selection, especially if
there are counteracting effects at different stages of the
reproductive process.

This stochastic model of reproductive success, both in
the particular form analyzed here and with extensions to
relax our assumptions of independence of fates and iden-
tity of parameters between breeding attempts, provides a
biologically motivated parametric model of demographic
stochasticity in reproductive success. As such, it can be
easily integrated with models of environmental stochas-
ticity and demographic heterogeneity, as has already been
done for survival (e.g., Kendall 1998; Fox et al. 2006),
facilitating the rigorous development of integrated models
(Melbourne and Hastings 2008). The model can also be
integrated with recent advances in life-history dynamics
(Tuljapurkar et al. 2009) to more rigorously evaluate how
patterns of variation in reproductive success affect evo-
lutionary demography.
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