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Time-Domain Green’s Function for an Infinite
Sequentially Excited Periodic Planar
Array of Dipoles

Filippo Capoling Member, IEEEand Leopold B. Felserife Fellow, IEEE

Abstract—The present paper is a continuation of previous I. INTRODUCTION
explorations by the authors, aimed at gaining a basic under- . .
standing of the time domain (TD) behavior of large periodic HIS paper represents the third in a series of prototype
phased (i.e., sequentially turned-on) array antenna and related studies [1], [2] of the time-domain (TD) behavior of

configurations. Our systematic investigation of the relevant sequentially excited periodic dipole array configurations,
canonical TD dipole-excited Green'’s functions has so far included motivated by similar investigations in the frequency domain

those for infinite and truncated sequentially pulsedline periodic N : . .
arrays, parameterized in terms of radiating (propagating) and (FD) [3]-[6], which have already been applied effectively and

nonradiating (evanescent)conical TD Floquet waves (FW) and efficiently to finite practical array antennas [7]-[10]. Referring
truncation-induced TD FW-modulated tip diffractions. The to the more detailed introduction in [1] for background, we
present contribution extends these investigations to an infinite proceed in Section Il to the formulation of the problem in
periodic sequentially pulsedplanar array, which generates pulsed tarms of the frequency-domain (FD) and time-domain (TD)

plane propagating and evanescent FW. Starting from the familiar . o . . -
frequency domain (ED) transformation of the linearly phased fields excited by the individual phased dipole radiators. Via

element-by-element summation synthesis into summations of Poisson summation, these discretely spa_ced individual I_:D and
propagating and evanescent FWs, we access the time domain byTD sources are reexpressed collectively in terms of equivalent
Fourier inversion. The inversion integrals are manipulated in a global periodicity-induced continuous distributions which obey
unified fashion into exact closed forms, which ar(e )parameterized the Floquet wave (FW) dispersion relation and span the entire
by the single nondimensional quantityn = ¢/v,7’, wherev® 5.y oiirface. The FD-FW and TD-FW wavefields, i.e., the

and ¢ are the excitation phase speed along a preferred phasing .
direction w, in the array plane and the ambient wave speed, Floquet plane waves, radiated by these FW-modulated aperture

respectively. The present study deals with the practically relevant distributions are developed in Sections Il and 1V, respectively,
rapidly phased propagating casen < 1, reserving the more with emphasis in the TD on the new phenomenologies exhibited

intricate slowly phasedn > 1 regime for a future manuscript.  py the planar array, as well as on similarities with the previously
Numerical reference data generated via element-by-element investigated TD-infinite line dipole array [1]. As previously

summation over the fields radiated by the individual dipoles . - ) -
with ultrawide band-limited excitation are compared with results ,C'ted in [1], the TD-FW fields are found to be expressible

obtained much more efficiently by inclusion of a few TD—Fws. N new exact closed forms which reduce to known results
Physical interpretation of the formal TD-FW solutions is ob- for special choices of the problem parameters. Numerical
tained by recourse to asymptotics, instantaneous frequencies andresults in Section V furnish reference data which are used for
wavenumbers, and related constructs. Of special interest is the comparison with considerably more efficient FW-generated

demonstration that the TD—-FWs emerge along “equal-delay” fields. Conclusi ted in Section VI
ellipses from the array plane; this furnishes a novel and phys- Ields. Lonclusions are presented in section V.

ically appealing interpretation of the planar array TD-FW

phenomenology. [l. STATEMENT OF THE PROBLEM
Index Terms—Antenna arrays, arrays, floquet waves, Green's

function, periodic structures, time-domain (TD) analysis, transient

analysis. The geometry of the planar array of dipoles oriented along
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B. Collective Formulation

To convert the individual element contributions in (2) into
equivalent collective smooth aperture distributions, we use the
Poisson sum formula in its most elementary form given by
Yoo JO(w—mnd)=d? Z;i—oo exp(—j2mrqz/d) [11, pp.
117] . When applied sequentially to the double infinite series
of phasedmn, n-indexed FD and TD elements in (2), Poisson
summation yields

oo e—Inkuy Xmn )
E § (t Ny Xmn ) 0 (X - an)
oo !

c

Fig. 1. Planar periodic array of dipoles. Physical configuration and

coordinates.d,, d,: interelement spacing along, and ., respectively; The vector wavenumber

wy., = kn: phase gradient of the excitation (i.e., the wavefront) along the

directioni, ; v., = n/c: “slowness” (normalized wavenumber) alofyg ; _ . . .

1:5}1) = c/771: 1}7u1; phase speed along, . kt:Pq (w) _k$17f17’11 + k117q1'332 - 77]431,,”1 + oy, (7)

Qpg =01tz + Q2 pla;a, (8)

The phased array FD and TD dipole curreriss) and J(t),

; i which combines the two Floquet-type dispersion relations
respectively, are given by

2mq
J(w) Z Z S x ke1,q(w) =nkcos¢y +a1,4, Q14 = e 9)
J(t) mn) ) 27p
m=—00n=—o00 kngp(w) :ﬁk' sin qSu + agp, Q25 = d— (10)
e Jnk'l.ul Xmn 2
X915 (t _ ’ﬂ%) @ With p,q = 0,4+1,+2,..., has previously been employed in
i) =i, + Tasin, 3) the FD studies of planar dipole arrays [3]-[5]. The subscript

“t” on k; », denotes the vector component transversg &nd
a,, represents the-independent part of the vector dispersion
('~ %) = b(a} ~ mdy (s — ). k = /o denotes the 'S1aton In (7). Thus, in the frequency domain, Poisson sum-
ambient wavenumber, anddenotes the ambient wave spee nation converts the efiect ot the Infinite periodic arrayrali-

: vidual phasedn, n-indexedlipoleradiators collectively into an
Moreover,wr,1 /c andwmn,s /¢, with oo " : .

infinite superposition of linearlgmoothly phased, ¢-indexed

equivalenplanardistributions that furnish the initial conditions
for propagating (i.e., radiating) PFW and evanescent (i.e., non-
radiating) EFW Floquet-type waves. In the TD, the n-in-
dexed sequentially pulsed dipoles are converted collectively into
h%noothly phasedp, ¢-indexed impulsive source distributions

wherex,,,,, = mdii,, + ndai., iS themnth dipole location,

Nel = 1COS Puy s Te2 = 18I0 Py, (4)

are the interelement phase gradients alep@nd s, respec-
tively. Heren is chosen to match the form= ¢y of the impor-
tant nondimensional parameter introduced previously [1]. T

yields o (t — niy, -x'/c), which travel with phase speedn in the
i, direction, which is the direction of the wavefront shown in
c Fig. 1.
N=CYu = 3 %)
o)

UI lIl. FLOQUET WAVES: FREQUENCY DOMAIN
with 7, = n/c = 1/v) now denoting the normalized (with 1o optain for the potential fieldsl,, (r, w) radiated by the
respect taw) phase gradient, a = ¢/n the corresponding |inearly phased dipole array element currents,af, an equiva-
impressed phase speed, along the array iri theiirection (see |ent sum of FW potentialst® WV (r,w) radiated by the smoothly
Fig. 1). The FD phasing unit vectay;, is rotated through the phased FW-modulated aperture distributions, we multiply the

angle¢, with respect ther; axis; this corresponds in the TDFD portion of (6) by the FD element Green'’s function
to sequentially pulsed dipole elements, with the elemext-at

Xmn turned on at time,,,,, = 74, - Xmn/c. Choosing the nor- , e IRR(x") , —
malized form fory alongi,,, as in (5) systematizes subsequentA(r?X W) = UrR(x) R(x') = Vix x| +22 (11)
notation and interpretation.

The respective regimes< 1 andn > 1 characterize two dis- and perform the integratioff°OO dx},fori =1and2,to generate
tinct TD wave phenomenologies with phase spegdsalongu; A, = A(r,Xmn,w) exp(—jni., - Xmn/c) On the left-hand
larger or smaller than the ambient wave speddnly the practi- side (LHS) of (6). Herer = x+ zi., denotes the position vector.
cally more important) < 1 regime is examined in this paper. On the right-hand side (RHS) of (6), this yields the collective
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FW-phased plane waves (itis the inverse of the transform showith A4,,(r,w) given in (12). Thek.,,(w) wavenumber is

in [12, p. 481)) rewritten as
) 1 oo oo ,—jkR(x') \/ w2 w .
FW _ — _ —_mn2) -9 . — 2
qu (I‘,LU) —m/_oo /_oo W(X’) kzP(I(w) (C) (1 n ) 207]2“1 Qpq apq
X ekt 4yt i o gz L), 17)
S ¢
:W. (12) in which we used the frequency shift
Zpq
! _ A
Here kv =k ,,,+Fk.,,Z denotes the totdf W, propagation YT T Y (18)
vector, and and the definitions
o mc .
Bepg(@) = \ B2 = 2, — K2y = 2 = [kepl? (13) g =gt G (19)
is the wavenumber along. The square root function in (13) &2 =2 + c? ol . (20)
is defined so thaBmk.,, < 0 on the top Riemann sheet, R
consistent with the radiation condition at = oc. Further- Thus, (15) becomes
more, Rek.,, > 0 or < 0 for w > 0 or <0, respectively, H(@pqT— 0ty )
in order to satisfy the radiation condition for positive and neg&FW(r. t) = “+
. i . Pq ’ 47rj dids
ative real frequencies. In (12), Floquet waves with transverse _
propagation constants ,,, < k or k; ,, > k, wherek; ,, = 0 gmIV Wi2=w )=zl
|kt pq| = (k2 ,+k2,,)"/?, characterize PFW or EFW, respec- X / — > e’ Tdw' (21)
tively, alongz. Note that by phase matching along, z», each - \/(“’ — Wi ) (L= 7?)

PFW contributes at _the_observatio_q Paint (r1,22,2) AraYy T integrand has branch points.at= +@,,, with [from (20)]
asymptotic field originating at a poist,, = x — (2/k- pq) Kt pq

q AT N c .

on the(xl./_azg)—plane. T.he ray emanating from the_pmq;l lie Opg = ﬁ\/af)q — 2 (g -, )? (22)
on a ray with angular displacemedy,, from thez-axis, and az- n

imuthal displacemeng,, from thexz; axis (see Fig. 1), as shown in Fig. 2. Cuts are determined by imposing/(w'? —

i Koo @2,)(1—n%)/c]'/? < 0 on the topv'-plane Riemann sheet, and
O,, = cos™! (%) , ®py =tan™! (lﬂr—p> (14) Re[(w? —@2,)(1 = n?)/c]'/?* > 00r<0forw > 0 orw < 0,
olq respectively, in accord with the definition &£, in (13). In
for positive or negative frequencies. kot 0 org # 0,w > 0 the w’-plane, the vertical dashed line@at = —wp,(w = 0)
andw < 0 give rise to two different"W,,, propagation an- separates positive and negativérequencies (onlyo,, > 0 is

gles. Whenk, ,,, = /kZ, , + k2, , approacheg;, the polar shown in the figure).

angle®,, tends torr/2. Beyond that limit, wherk; ,, > k, Defining

the polar angle becomes complex and the field becomes evanes- 52
cent alongz, with k; ,, = k, i.e., k., = 0, defining thepgth To=V1-7 c
FW cutoff condition. Owing to the exponential attenuation
EFW,, alongz, the EFW portion o> _ A7’V converges '
rapidly away from the array plane and a few terms may suﬁi%FW B ced (Ppa™—0lpg X)
for an adequate approximation of the total radiated field. pa (T:1)

B 47Tjd1d2\/ 1- 7’]2

(23)

0 . . .
Ir:'quatlon (21) is rewritten as

IV. FLOQUET WAVES: TIME DOMAIN ejw’rdw/ (24)

Three distinct approaches are analyzed, each describing dif-

ferent aspects of TD-FWs. The first two lead to exact expres- o PR P
sions for TD—FWs, while the third leads to an asymptotic dd¢ith S /w’? —wi, < 0 andite, /w? —wi, > 0 or < 0 for

scription of the same phenomena. w > 0 orw < 0, respectively, in accord with the definitions for
k.pq In (13). The positive—negative transition atw’ = —a,,
A. Fourier Inversion From the FD occurs between the two branch points. The indentation of the

The TD Floguet Wave is obtained through Fourier inversigfitegration path in (24) is chosen in accord with the radiation
from the frequency domain condition atoo (causality) for anyw; therefore, the integration

path from —oco to +co is shifted below the branch cuts (see

A,E:;V(nt) _ L /<>o A]I‘:;V(nw)ejwtdw Fig. 2), whereRe (w2 — &2)1/2 >0or<0forw>00rw<0
21 ) o in accord with the radiation condition specified in the text after
_e—jam"‘ 0 g=ikzpe(w)z jor g 15 (13) (see also [12, p. 35] where, to ensure the existence of the
TAnjdids |_oo kapg(w) e Tdw  (15)  Eourier pair in (1), they’ variable and therefore the contour of
Moy, - X integration in (24) is shifted slightly below the real axis into

(16)  Imw’ < 0).

T =t —
c



CAPOLINO AND FELSEN: TD GREEN'S FUNCTION 163

p . AIm(@’) n<l function in (26) vaDilshes. Sincé (0) = 1, we haveA§)V =
,°° """""""""""" - c (Zdldm/l - 772) U(r — 79) which agrees exactly with the
< p - cT) B P real field radiated by an impulsively excited smooth infinite
W—W‘I mp Pl . Re() plane source with phasing specified hjc.
. P B. Spatial Synthesis of TD—FWs Via Poisson Summation
..y fo0 -
[nr TR SRR ud Since the FDmin series in (6), when applied td,,,,,, has

summandsi, ., (r,w) = A(r, Xmn, w) exp(—jwniy, - Xmn/c)

Fig. 2. Topology of the complex’-plane. Branch points are located.st= composed of two w-dependent functions (see text
+&,,. The vertical dotted line ab’ = —&,, (w = 0) separates positive A i ;
andp%egatlve) frequencies (herey,, > 0 fo?qsmpllcny) The dashed region af;erh (11))|d thengDﬁm"& t> | mvt:llves a C(.)fl"lVé)lutI%n
denotes the side of the cuts whee(w’? — &2,)1/2 > 0, according to the Which yields (29). Alternatively, first, one finds that
choice of the root fok.. ., in (13). For Fourier inversion (see (1)), thelntegratlonA(r x',t) = 6(t — R(x')/c)/(4rR(x’)). When this function
path is moved to the real axis and indented accordingly with respect to t&etlme convolved with the TD portlon on the left-hand side of
singularities.

o (6), €., [°°_ dt' A(x, X', t = ')8(t' = miu, - Xmn /), followed

Since forr < 7, the integrand in (24) decays exponentlallyy = f—°° dydy, one obtains the field

in Smw’ < 0, the integration contour can be closed by addition s (t _ Mhuy Xen R(xm))
(r,1) -

of the noncontributing portio’_.; because no singularities Amn
are located within the contour, the integral vanishes by Cauchy’s 4 R(Xmn)
theorem. Forr > g, the integration contour can be closed bgxcited by the impulsivennth dipole current in (2) which rep-
the noncontributing portiorP,,, and is therefore deformableresents a spherical impulsive wavefront radiated by the dipole
into P, + P,. Using the relation (demonstrated in Appendix Aptx = x,,,,, at the delayed time,,,, = 7., - Xmn/c. The same
operations applied to the right-hand side of (6), or direct FD in-

c

(29)

I _/ du' 63 e IV, version of (12), yields the TD-FW
w? —of, APV (p ¢ / / e %X x'
pq ’ 47Td1 d2

drydzl. (30)

=njH{" [wpq\/ﬂ—fg}, i=1,2 (25) i X R(X,)
b 0= - EE)
C

in which H{" and H{? are the zeroth-order Hankel functions ¢

of the first and second kind, respectively, and combinin
Jo(z) =1/2 [Hél)(a:) + HéZ) (a:)], leads directly to the closed
form exact expression

he argument of the delta function in (30) identifies the two-di-
ensional (2-D)integral as a Radon slant-stack projection trans-
form [13] (normalized to the unit cell ared,). The integrand

in (30) contributes only for those re@t!, = )-values which sat-

P cej(alpq"'_apq'x) ISfy
AIIDN (I‘,t) = —2 . o~ R(x'
2d1d2\/1—7’] T+n"’u1 '(X X) _ (X) =0
C &
x.Jo {wpq\/'rZ - 702] U(t—1) (26) ey Ny - x (31)
. . c
with U(7) = 1 or 0 forr > 0 or 7 < 0, respectively. To understand the implications of this condition, we change co-

Although obtained by conventional Fourier inversion fromy,ginates to
the frequency domain, the result in (26) is complex foor , ) . )
q # 0 sincea,, # 0 and, from (19)@,, # 0 in this case. (X' =)ty = w1, (X = X) = U2 (32)
The phenomenology is directly analogous to that observ@gth i,, = —sin¢,i,, + cosdui,, (See Fig. 1), which ori-
previously for the line dipole array [1], and is addressed as éhts theu, coordinate along the direction of propagation of the

[1] by (+p,+q), (—=p, —q) pairing to obtain the “physically traveling impulse excitation (see Figs. 3 and 4). Therefore, the
observablereal TD-FW field. Noting from (8) and (19) that jntegral in (30) becomes

Ap—q = —pgandw_, _, = —w,,, it follows that the o0 x
“physically observableteal TD—FW field is given by APV (r,t) = P / / e~ (Buy Qpg)us
o PO a1 a2
Ay g + AT =2Re AT 27) ¢ ibuy Opga nuy R(u,ug)
~EW _ccos(ayg - X — WpyT) '7]%(“ w) T T . duidus  (33)
Red,," (r,t) = - 1, U2
2d1da\/1 =1 and (31) is written as
x Jo {&pq 72— 7'02] L, R(u1,us) -0
c
x U(r —19). 28
(T TO) ( ) R(’U,17’U,2) — /)2(u2) + U%
For thep = ¢ = 0 mode, one hasy,, = |ap| = 0,

with @,, = 0 and@,, = 0; i.e., the argument of the Bessel plu) =\/2% + u3. (34)
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z P_(X Z) /,MZ on the parametens, = andry. We now explore the behavior of
the solutions for the FW for varioys ¢-parameter ranges.
Equation (35) describes an ellipse with fo€i,us

= (uii(T),O),Withufi =—cn/(1 — n?)(7+(=1)"/)12 — Ty

L>6L>10>1

andi = 1,2,centefus,us) = (—enr/(1 — n?),0))and
u, axisratiocn/(1 — n?), as shown in Fig. 4. At the turn on time
> T = 7o,thefocicoincide and the ellipse reduces to a point at
—— - , x'(ty) = —enro(1 — n?)~Y?%,, . Atlatertime instants, the
;}}’:::;;3 2 fafofeed 7 ellipse becomes larger, with the foeuS, moving along the-u;
WSS XT directionandthe focus’” ; moving towardthe origin, = 0.For

the nonphased cage = 0, the ellipse degeneratesinto acircle
with centerfixed atu;, uz) = (0,0). When approaching cutoff
(n — 1),theaxisratiotendstoinfinity, and the two focias well
Fig. 3-t tzhénom)enxtlooglssé Trgacsf}g?mca?%rgi{;ateivzﬁgfﬂ(isg;), rgitr?ttg?nvmz asthelaunch point’ (¢¢) moveto—oo. (Forn > 1,whichcorre-
Eieirsepc?i%niu:lfzcc;s Outy, + sin¢,i,, Of theg propagating;1 vt?avefront. The sponds to evanesceifiiV in the FD_’ the equal O,'e'ay contours
first signal arrival at the observation poifx, =) originates at the earlier point becomehyperbolas(see(35)), ofwhichonlytheright-handbranch
x'(ty) = z’l(_éo)z_'m + %(to)ixﬁ Ebzn(l - 77:)*1/2%'1- SUCCG_SSive'%’, for is relevant. Whether TD radiation is now possible under special
Itoc>u;°i'sZogit;'ﬁ#é'to“gzs;rl"éigy eelli(:)ssee(r;f?;‘é%"‘i?;s‘gfom points whose phase-matched conditionsremainstobe explored further.)
The u;-integral in (33) is exactly like that in [1] for &ne

Au array of dipoles. Forr > 0, the uy-dependent;; -values that

>4 satisfy (35) are [1, Eq. (13)]

—C

N uri(t) =7 e (Tn +(=1)%/72 - rg(uz)) . i=1,2,

U —
1 \_/ﬂ “ Tp(u2>:7\/1_772p(u2) (37)

C

with p(uz) = +/z%2+u3. The two real solutions of (37)

(@) (b) for - > 7,(u2) coincide at timer = 7,(u2) which, at the
” observer, corresponds to the causal (wavefront) arrival time

L>6>1>1 x'(t,) (A tp(uz) = miy, - x/c + /1 —n2p(uz)/c of a signal due

0 to a smoothly phased infinite line curremiong u, located

AN
- at uo = const., with launch point in thez = 0 plane at
¢ — ur = u1,1(to) = u1,2(to). In the moving coordinate system
M U along the excitation wavefront;,(uz) represents the signal
arrival delay that the moving observer encounters with respect
to the exciting current impulse locatedat = ct/n (Fig. 3).
Forr > 7,(u2), these solutions separate according to (37) and
© move towardu; 1(t) — +oo andwu;2(t) — —oo (Fig. 4).
Fig. 4. Various equal delay ellipse configurations, represented ifxtheu- ) Forr <_ T”(UZ)’ th.e two S.Oluuons are conjugate complex and
plane at three time instants > ¢, > t, all greater than the turn-on time dO not lie on the integration path; thus the-integral in (33)
fo. The iig?]al_nag]i\e/ing at t?eIgsze{:ffggtsdg;nﬁratﬁd eaZrl)igrl /a2t gheg)lintvanishes forr < 7,(u2) (causality). The twaausalcontribu-
)lio(ftz)lv(]I?éllzpses(ételégﬁergte to circles. (b) FoFg(gen@Z’ic 0 < l),. the UONS corresponding te, ;(t) anduy »(t) are determined by
equal delay ellipses have axis ratio equal f§1 — 7), and foci atu”, = USING the formulas[f(u1)] = 6(uy — Ul,i)|df/dul|;11,i when
—en(1 — y2)-1 (T-i—(—l)zm),i = 1,2 thattend toet’, — 0 f(u1;) = 0, asin[1, Sec. V-A]. Substituting foR(u1,;(t))
andu’, — —oo, whenr — co. (c) Wheny approaches the cutoff condition from (34) and (37) and simplifying, one obtains what we shall

(n = 1) the axis ratio tends to infinity, and the foci as well as the launch poitefer to as the causablutionfor the (pq. i)-indexed TD_FW
x'(t,) approachu; = —oc. /

AFW eI %X EpqT
Squaring and rearranging (34) leads to Apgi(r:t) = 4drcdyds ¢
[(1 = n?)us + ent]? + (1 — n*)uf =c* (7 — 1), (35) X/”eﬁmmngw

o= V172 =t - T2 (36) oo

with Re /1 — 72 > 0 andSm+/1 —n2 < 0 in accord with y eXp [-7'(_1)11—0712 Guy * pg [ T% = 73(“2)]
Smk.,, < 0in (13) (sincek.oo = +/k2(1 —n?); see (7) T2 — (7, (u2))?

and (13)). In thgluy, us)-plane, (35) defineg, ¢-independent
“equal delay” curves in theu, u, plane, whose shape depends X U(T — 75(u2))dus (38)
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inwhicha,, is defined in (19), and whet&(7) = 1 orOforr > range arise from the stationary (saddle) poinys of 1/1 ), de-
0orr < 0, respectively. Théffunction delimits theintegration fined by(dr/;/dw)|w =0.(Forp = ¢ =0, dy/dw |s w-in-
domain tous points withr > 7,(us) = /72 + Ju3/c?, dependent and therefore not amenable to saddle point approxi-
i.e., betweeny, = tc\/72 — 72 /+/1 — 02 Therefore the in- mation.) Forg # 0, or p # 0, the real solutions yield thiecal
tegral is nonvanishing only in the case ©of> 79. Changing instantaneous frequenciésee Appendix B)

variables tov = us4/1—n2/ (¢\/72 — 72 ), and adding the o i T

i = 1tothe; =2 contributiong gives ) Wpq,i(T 1) =Wpq + (—1)'wpg 2 2

— 7
i:172, T > To (43)
AFW Z AFW . ' . : .
Payi with 7 and, defined in (16) and (23), respectively. Positive
and negative frequencies are denoted by 2 andi = 1, re-
_ TN mper spectively. Thi i ith that obtained via the op-
= T % pectively. This expression agreeswr at obtained via the op
2rdydy/1 — n? erationw,,.;(t) = (d/dt) [wpqr + (=1)'@pg\ /T2 — TEL per-
1 T2 =1 ] formed directly on the time-dependent phase in (26), after re-
X '/71 P _jﬁ(apq s )V placing the Bessel function by its large argument asymptotic
approximation.
cos [ﬁ(am Sy )/ T2 = TV — ”2} The two instantaneous frequencies of He-FW,,, in (43)
X N dv.  ata given point and a given instant (= in the moving refer-
(39) ence system; see (31)) are real in the causal domairn, =
Niy, - X/c+ 70 (T > 70), INCrease with mode indexgsq but
After expressingexp(jav) = cos(av) + jsin(av) and decrease with time and approach their observer-independent
noting that the the odd part of the mtegrand does not cooutoff frequency whemn — oo, (defined by|k, ,,| = |k|) (see
tribute, we recall the formula(2/~) f dvcos(av)(1 — Fig. 7)

v?) "2 cos [b(1 —v?) V2] = Jo [(a® +b?) 1/2] with J, de-

. _,cutoff
noting the Bessel function of zeroth order [14, p. 28]; observing Wpq.i(t — 00) =w

Pg,t

that (aq - 4u,)* + (e "’:uz)z pqv we obtain =Wpq + (_1)ia’pqv =12 (44)
N co—i0pgx The instantaneous saddle point frequeneigs (¢) characterize
AIF);N (r,t) = ———F—=¢""r"7 corresponding instantaneous wavenumbers pertaining to the ob-
2d1day/1 — n? . o )
182 server located at at timet. For specifiedr, one obtains
X Jo |@pgr /T2 — 72| U(T — 40 At

0 |:w17(1 T T0:| (T TO) ( ) kpqL(f) :wpqc( )7 (45)
in which @, is defined in (22). This result, obtained by ap- K o= wpqi(f)_ 46
plying the Poisson summation formula directly to the TD ele- tpai(t) =1 ur T @pg (46)
ment-by-element field representation, is coincident with that in \/k ()]
(26) obtained from the direct Fourier inversion of the FD-FW. Fepail pail K b
The remarks after (26), concerning the “physically observable” —(~1)z (1 - 772)wpq (47)
TD-FW, apply here as well. 2\/12 — 73

where the wavenumbét. ,, ;(¢) is calculated using (68). From
(14), the corresponding local FW propagation angles denoted

; AFW
1) Local Frequencies and Wavenumbefgne A,,"(rt)  for specifiedr by ©,,.1(1) and®,, (%), respectively, become
behavior of the high-frequency asymptotic evaluatlon of the ’

C. Asymptotic Inversion From the FD

FD inversion integral in (1) 030, :(1) _ kepg.i(t)
00 b () kpqri(t)
AFW(p 1) = / F(w)e 7Y@y (41) o). /1= 2
po (0= [ F) - () il . i=1,2(48)
, . I . : 1+ (—1)i e 1_(m)2
provides additional insight and parameterizes the TD—FW dis- @pg p=
persion process. The manipulations here are 2-D generalizations kzo p.i(t)

tan Bp.i(t) = i=1,2. (49)

of those carried out in [1] for the line dipole array, and the prin-
cipal steps are given below. Referring to the last expression
AV (r,w)in (12), F(w) = 1/(47jd1dsk-p,) accounts for the
slowly varying amplitude terms in the integrand. The phase iS
given by

kat,q,i(t)’
E’\galuation of thejth TD—FW integral in (41) via the standard
asymptotrc formula [12, p. 382]

2
) AWV (r Z AEW (50)
P(w) = Ki pg - X+ kaopgz — wit (42) i=1 )
. V2 e_jw(wpq.r(t))
with k; ,, and k.,,(w) defined in (7) and (13), respectively. AT F (wpg,0) S U(r —70) (51)

The dominant contributions to the integral in the high-frequency J (%) ’l/3|wpq,i
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yields P (X 2)
y®

. Y pqz(t)

AFW( t) N Ce—Japq'xe_J(_l) /4 // { x2
pg,i\Ts 5
2d1d2 2’/T(1—’I7 ) Y
o (@paTH(-1)"Gpey/T2—73)
X U(r — 52 >
V/@pq (T2 = 78) M4 (r=m) 62 < Uy
Xpq,i(1) (1) >
~ q,1

where we have used (43), (47) at} /dw?)i)|.,, . =—2(1 — P pql X

2)2.—472 3 _ i.2(.2 3/2 ~
n k =—(=1)c 1—n7)z"w
Th)e unit é%;?ﬁactloﬁg(T ) - )(arlses b)eca{J[s(e real S)addlpeq]pomtlg 5. All TD-FWSs propagatesimultaneouslytoward the observer with
0 group veIOC|tyqu)1(t g) :(t)| = c. The emergence poit,, ;(t) of each
frequenciesy,,, ; are restricted to- > o (t > o). Combining
1 = 1 with ¢ = 2 yields

TD-FW,, is located on the dependent “equal delay” ellipse defined in (31).

—j(Qpg-Xx—&pqT) N
AFW(r 1)~ £ G(t 0, G(®
pa (x,¢) dyday/2m(1 — n?) 1 () — _ M )
cos ((:}pq\/T2 - -7

X )U(T—TO). (53)

Vo = T

The FD-inverted asymptotic TD—FW in (53) is the asymp
totic version of theexact TD-FW in (26) obtained through °
Poisson summation directly in the time domain, as can be se_g.25
from the asymptotic approximation of the Bessel function osl L Y M
Jo(z) ~ /2/(mx)cos(x — w/4). Thus, all interpretations -75-5-25 0 25 5 75 10 0 1 2 3
relating to (26) apply. The fact thall TD—FW propagate Time (t®y) Radian freq. (w/wy,)
simultaneously toward the observer is in accord with the

instantaneous Wavenumbb,,rpq,i(t) in (47), that is real when 6. Normalized Rayleigh pulse and its FD spectrum.

T > 19 forall p,q = 0,+1,+2,.... Indeed, the asymptotic
frequenciesw,, ;(t) are such thatk; ,,i(t)] < |kpg,:i(t)]
whence, after turn-or > ), k.,q.:(t) in (47) is real (con-
dition for propagation). At the turn-on time = 7o(t = to)
we havelk, pq.i(to)| = oo and|k.pq.(to)| = oo. Fort —

0.75

0.5

0.25

3) Group Velocity: The group velocity, which specifies the
direction and propagation speed of #ergy fluxof the AL Y
wave field, is defined as

. _ (‘utoff
we havew,,(t — o0) = w;i?" (see (44)); thus, the o0 _ (@ @) @)
wavenumbersk; ,,.i(t — o0)| = |kpg.i(t — o0)], with Upg,i = \Val,pg,ir Vo2,pq,ir V2 pg,i
|k2pq.i(t — 00)| = 0, as in the text after (14). 0
2) The Nondimensional Estimatoin order to assess the ac- Vatpa;i = (00(ka1, Koz, 2)/ O )lpa.s
curacy of the asymptotics in (50), we use tiendimensional gg;q ; = (Ow(ky, ke2, k2)/0k2)|pg.i
estimatordefined as [15]
with
F)’ 'r2 - 78
Es = = kz %2 e )
‘ F” Wpq,i | e | Tg w (ka:h kz2> kz) - C(ki]_ + k + k )1/2
2
() -1 Thus 0w /Oks1 = chat [k, 0w [Okys = chyo [k aNdw /D, =
=WpeTo—— 5 (54) ck./k. Inserting the instantaneous wavenumbers from (46) and
3 (:—0) -1 (47) and using the instantaneous propagation a@gle (¢) in
(48), yields

which combines the various critical problem parame-

ters and variables. We have noted here thé{w,,;) = 1(51)1 = [#z1 810 O ;(t) cOs Dy (1)

(1= 1?) 2@, (37% = 13) / [K2 pq.:¢* (7% = 73)]. The range of Figo 8 @, () sin B, (1)

validity of the asymptotic solution is expressed thereby through i, cos O, (D] i = 1,2 (55)
the conditionE; > 1, with the limits given byE; ~ O(1). : pare o
As a function ofr, this eliminates the near-wavefront regime
T = 19 and the late-time regime — oo, for both of which

E, — 0. However, the validity of the asymptotic result is exobserver with group spe dff;),i = c as shown in Fig. 5.

tended tar ~ 1) when the dipoles are excited by a band-limited 4) Instantaneous LocalizationTo complete the connection
waveform (see Section V-B). between the exact and asymptotic results, we show that at the

Thus, all instantaneou$t " (r, ¢) fields propagate toward the
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Fig. 7. Local instantaneous radian frequency of oscillatign ; (¢) of the TD—FWSs, evaluated &i .z, z) = (0, 0, 15d, ), versus normalized timg/ T", with
T = d,/c. Only those withp|, |¢| < 2 are shown. Parameter$; = d»; n = 0.2,4,, = i,,. Atturn-ont = to, |w,, :(t)| — oo for all p, ¢. At the RHS,
pulse-excitation spectra are shown for the two cases analyzed in kig, 8= wc¢/di; Ay = 2dy) and in Fig. 10wy = 47c/di; X = di/2). In each case,
only those TD—FWs with local instantaneous frequency lying within the excitation spectrum are excited.

observation pointx, z), localization through local instanta-planar array. The pulse excitation function is represented as
neous frequencies and wavenumbkys; () andk; ,,.;(t) in  G(t) with spectrumG(w). Accordingly, the factor multiplying
(45) and (46), respectively, define localized “emergence” pointgx’ — x;,,,) in (2) becomes:(w) exp(—jnkiy, - Xmn) for the
, P FD dipole currents an@(t — 1y, - Xmn/c) for the TD dipole
Xpgi(t) =% — kt,pq,i(t)m (56)  currents.
o The total BL responsd°-BL(r, ¢) of the planar array is then

on the array plane; these points all lie on thiastantaneous optained by convolving the total TD impulse response in (58)
“equal delay” ellipse defined in (31), as shown in Fig. 5. We firsith the BL signal@(t), yielding

recall the definition ofR(x’) in (11), and thusk [x,_ ,;(t)] =

1/2
[22 + 22K pg,i(1)* /K2 pailt )] = 2| kipq,i(t)/ k= pq,i (1)l Atot, BL( Z AFW BL
(see Fig. 5) which, when inserted together with (56) into (31), oo
leads to oo
etk o ilt . Re AFWBL (59)
%() + Miu, - Kepgi(t) + kpg.i(t) = 0. (57) pq;oo "
This identity is verified from (45)—(47) and (43), and it rep- Ag;"sBL(mt) :/ G‘(t’)AE;”(nt —t)dt',  (60)
resents the equation of the “equal delay” ellipse in terms of —oo

instantaneous wavenumbers. In summary, at each tjraé W BL
»,q TD—FWSs propagate toward the observer alomtgpendent 1€ BL Floguet-modulated signal ;" due to the planar
cones, from direction®,, :(t), ®,,.(t), with the same group array can be calculated either by convolution with the exact
’ Pg,t v £ pg,e ’ . . .
velocity c. These TD-FW emerge earlier from points, (t) TD-FW or by inversion of FD asymptotics.
located on the “equal delay” ellipse at time .
A. Convolution With the Exact FW

D. The Total Physically Observable Radiated Field Here, the exact FW field in (26) or (40) is used in (60). Again,

The total “physically observable” field radiated by the arrajhe (+p, +q), (—p, —q) pairing defines * physisically observ-
is expressed as a sum(©fp, +¢), (—p, —q) paired TD-FWs, able” BL-TD-FW, yielding the real fieldi;,V:Pl-+ ATV-PL =
2§ReAF“ BL that also demonstrates (59) for BL excitation.

oo

At )= > AFV(r,t) Z Re AW (r, 1)

pP,q=—00 p,q=—00
) (58)  Avoiding the convolution in (60), thepgth BL field
where thepgth TD-FW APV is given by (26) or (40). The terms 4jrW.BL can pe calculated as the inverse Fourier transform

in the series on the RHS of 58) can also be rearranged so a
(58) g Siﬁi’} (w)AF )V (r,w). Therefore, forp or ¢ # 0, using the

include only positive (and zerg) ¢ indexes. high-frequency asymptotics in Section IV-@F VB can be
evaluated approximately by including the pulse spectfi(m)
in the inversion integral (41). For these short pulgggy) can

We now analyze the effects of physically realizable band-lintbe considered slowly varying with respect to the phase in the
ited (BL) pulsed dipole excitation on the field radiated by thantegrand of (41) [2], [16], and can therefore be approximated

B. Band-Limited Asymptotics

V. BAND-LIMITED PULSE EXCITATION
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by its value at the saddle point frequencigs ;(t), ¢ = 1, 2. 5 T T T
Thus, near the wavefronts KM=2a’1
1k
2 d ::d
TFW, iFW,BL 172
APVBL (e ) =Y AL (n,t) (61) 05k _
i=1 O
. m».
with S 0
<~ \
Ag;jvi,BL(nt) ~ G(wpqyi(t))Ag(X”i(r, t) (62) 0.5 ol. by el. sum, ------- i
and A\pqﬂ- approximated asymptotically as in (52). Again, Ar TD-FW (p,g=0,£1) 7
(+p, +q), (—p, —q) pairing synthesizes the real BL asymptotic
solution 150 20 30 40 50 60
*FW,BL , iFW,BL __ ~FW,BL Time (¢/T
APWBL | AFWBL _ ope ATV (63) (¢/T)
sinceG(—w) = G*(w), w;p7_q71(t) = —wpq.2(t) [see (43)], Fig. 8. Field radiated by an infinite planar array of dipoles observed at

and ATY_, 1 = (AR) . Forp = ¢ = 0, which is N0t 4its 72 1010 Baramaterss, = ot e 025 o b s = 3,
amenable tow-domain saddle point asymptotics (see Seews = 7/T.
tion IV-C), the pulsed responség," """ is calculated by the
convolution in (60). Although the impulsively excited asymprig 7, shows the pulse-excitation frequency spectra for the two
totic Waveflel_ds in Section IV-C are valid (_)nly f@arly times  ases under consideratiani; = wc/di; Ay = 2d; (Fig. 8)
close to (behind) the wavefronts, convolution with awaveforrgnde = 4me/dy ; Ay = di /2 (Fig. 10). In each case, only
having a band-limited spectruri(w) may enlarge the range those TD-FWs with instantaneous frequenaigs; within the
of validity to later observation times behind the wavefront. FQdycitation spectrun®(w) are relevant, as stated in (61),(62).
porq # 0, the relevantlD-FW,, fields are those with,,,; The fields are likewise plotted versus normalized tiff@,
in the G(t) signal bandwidth. with T = dy /c. Fig. 8 shows the field radiated by the array
. with parametersl; = d», andn = 0.2, observed at;; =

C. lllustrative Examples 2> = 0, z = 15d;. The central radian frequency is chosen

To check the accuracy of the TD-FW-based BL Greenigsw,, = wc/d;, with central wavelength ), = 2nc/wy =
function algorithm for the impulse-excited planar phasel/;; this implies from Fig. 7 that the,, ;(¢) for only those
dipole array, we have implemented two numerical exampl&®-FWs with|p|,|¢| < 1 lie in the region wheré(w) is non-
(see Figs. 8 and 10). The TD asymptotic solution (59), withanishing, and therefore furnish the dominant contributions. In-
(61), is compared there with a reference solution obtained \deed, in Fig. 8, excellent agreement with the reference solu-
element-by-element summation over the pulsed radiation fraion has been obtained by retaining only the asymptotic terms

all dipoles, i.e., Ipl, lg| < 1, thereby demonstrating good convergence of the
N i, - Rixonn) TD-FW field representation. Since the median wavelength is
G (t - T ) larger than the interelement spacings,; = 2d; = 2d,),

m,n=0,+1,£2,.... the main feature of the pulse shape in Fig. 8, is contributed by
(64) the integrated excitation waveform of Fig. 6 and represents the

The mn-series has been truncated when contributions frofD-FW g, which is evaluated by the convolution in (60) [see
the far elements are negligible, i.e., when|,|n| < 80. textafter (63)]. The tail after the wavefront is due to the higher
The chosen BL excitation is a normalized Rayleigh pulserder FWs with|p|, |¢| < 1, which oscillate at their distinct
G(t) = Re [j/(j + wnt/4)°] (e, G(0) = 1) [17], with FD local instantaneous frequencies, i(t), i = 1, 2, |p|, || < 1
spectrumG(w) = w(6war) 1 (j4w/war)* exp(—4|w|/warr) and thereby form the noted interference pattern.
and central radian frequenay,, shown in Fig. 6. The quality of the asymptotic results in Fig. 8 upite: 607

To explain the results in Figs. 8 and 10, we shall utilizéand beyond) is assessed by the behavior of the nondimensional
plots of the TD-FW instantaneous frequency dispersiomstimatorst; ,,(¢) in (54), as shown in Fig. 9 fop|, |¢| < 2.
wpq.i(t) shown in Fig. 7. The relevant spectral rangevpf ;(t) The estimator fop = ¢ = 0is notincluded sincEW ; itis not
that contributes significantly to the total radiated field ahmenable to saddle point asymptotics as noted in Section IV-C.
the observer can be assessed from Fig. 7 which shows larthe plotted rangeF ,, > 1 for all ¢ except near turn-on
the left the instantaneous radian frequency trajectories for= t, (r = m) where E, ,,(ty) ~ 0. Nearty, the local
Ipl,l¢g] < 2, evaluated afz;,z2,2) = (0,0,15d;), and instantaneous frequencies tend to infinity, but due to the band-
plotted versus normalized timgT, with T = d; /c; the array limited excitation frequency spectru@(w) in Fig. 6, TD-FWs
parameters ard; = dy, 7 = 0.2 (Og9 = 78° in (14)), and with p or ¢ # 0 are not excited there.
iu, = 1z,. At turn-ont = to, all instantaneous frequencies Fig. 10 shows plots for an infinite planar array under the
lwpq.i(t)] — oo with p or g # 0. Itis also seen that far— oo, same conditions as in Fig. 8, except that the central radian fre-
Wpq,i(t) — w;‘qu,?ﬂ defined in (44). The index = 1, 2 tags quency is nowwy, = 4mwe/d; (A = 2nc/wy = di/2).
negative/positivep, ¢-frequencies, respectively. The RHS ofThis changes the relevant spectral range,nf; (¢) to |p|, |¢| <

A7 R(Xpmn) ’



CAPOLINO AND FELSEN: TD GREEN'S FUNCTION 169

60 ' ' ' ' T ' ' ' bear strongnotationalresemblance to the FD planar array sector
_ geometry in [5], and stronghenomenologicalesemblance to
Ly S0r p0=2.2) that of the TD infinite line dipole array in [1]. To highlight these
5 analogies, we have used phrasings similar to those in [1] and [2]
S 40+ (».9)=(1,2), (2,1) 1 for similar concepts and methodologies. As in [1], the present
.g prototype problem is sufficiently simple to yield the exact closed
9 30k (r.9)=(0,2), (2,0) form TD solutions in (28) for Floquet-typdispersivevave phe-
© nomena, which are dispersive TD—FW radiatipigne waves
5 20 for n < 1; the nonradiating case > 1 will be presented sep-
g arately. The most interesting and new finding here is the exci-
E 10k tation mechanism (fof, < 1) of the TD—FWs along “equal
2 delay” ellipses in the array plane (see (35) and Figs. 3 and 4),
2 ®.9)= (.1, (1,0) and the appealing physical interpretations that follow from it

10 20 30 40 5 60 70 80 9 100 (see Fig. 5). The next prototype studies will be of the TD—GFs
Time (¢/T) for a semiinfinite planar [18], and thereafter for a plane-sectoral,
Fig. 9. Nondimensional estimatofs, .. (1) in (54), shown fofp|. |q| < 2 phas_ec_i dipole array. This will furnish the tools f(_)r_ analyzing ac-
The quaIity of the asymptotics fortlmtﬁgl'D—FW is assessed by h;)ww_elle'acht_ual f'n_lt_e planar arrays urjder short puls_e_condltlons. The prac-
satisfies the conditio®. ,, > 1, with respect to an arbitrarily set referencetical utility of FW-based dipole GFs for finite planar phased ar-
level. rays has already been demonstrated in the frequency domain
[3]-[10], and application of its TD counterpart will be guided

1 . . , by these FD studies.
M=d, /2
— APPENDIX A
o5 d1=dy .
\18 DETAILS PERTAINING TO (25)
3 : .
g O We perform the change of variable= 1:w’2 — w2, inthe
= integral in (25). Along the pathB; andP; in Fig. 2, the variable
_05F - ¢ assumes real values froaro to 0o, and the inverse is defined
el. by el. sum. ------- asw’ = —(—1)",/¢? + @2, with i = 1, 2 whenw' is on P ,
-1 TD-FW (lf’qzo’ﬂ’i?’i?’ ) , respectively. The integral in (25) is thus rewritten as
10 15 20 25 30 .
: [ ) —(—1)' i/ +a2,
Time (¢/T) L= (_1)1/ d(e‘JCTOe
. . . L . —oo /¢ + w2
Fig. 10. Field radiated by an infinite planar array of dipoles observed at Pa
(z1,22,2) = (0,0,15d,). The fields are plotted versus normalized titiid", .
with T = d, /c. Parameterst, = do; n = 0.2,40, = in,, Aur = di/2, :n.jHé’) {|qu| T2 — 702} (65)
wy = 4x)T.

which has been recognized as a zeroth-order Hankel function of
3, as can be seen from Fig. 7. Accordingly, it is noted th&fe first or second kind wheh=1 or: = 2, respectively [12,
excellent agreement with the reference solution has been 8b493], thereby establishing (25).
tained also in this case by retaining the relevant asymptotic

terms|p|, |¢| < 3, thereby again demonstrating good conver- APPENDIX B
gence of the TD—FW field representation. At these shorter wave-
lengths, features of individual element arrivals become more DETAILS PERTAINING TO (43)

pronounced but are well synthesized byacorrespondinglyIargeheca”ing (42), the saddle point conditidﬁ;/dw —0is
number of TD-FWs. ’
A=)k —nlapg du)z 0, M X

VI. CONCLUSION k.pq c c
(66)

_ _In _this paper we have extended previous studies of periq@pte thatRe(k.,,) > 0 or < 0 for w > 0 or < 0, respectively,
icity-induced impulsive Green’s functions for phased arrays ¢f order to satisfy the radiation condition at= oo for all w.

dipoles from the line dipole array (infinite [1] and truncated [Z]Equaring and rearranging yields, using (13)
to an infinite planar array. From the detailed analyses in [1]

and [2], we have gained substantial insight into relevant tech- 2 4 R ag,r?| 67
niques for quantifying and interpreting TD periodicity-induced WA = 20wpg A = @ To+ 7 2| 0 (67)

global phenomena in terms of TD—FW wavefields. The new fea-
tures introduced by the assembly of an infinite periodic arrayith A = (7> — 7). After recalling thatw,, =
in terms of phased line dipole arrays in Section IV-B therefore,, + O‘?ch2/(1 — n?), (67) has the twoi-indexed solu-



170 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 2, FEBRUARY 2003

tions in (43). To sort out the correct solution for2 1, we  [18] F. Capolino and L. B. Felsen, “Short-pulse radiation by a sequentially
substitute (43) into the original (66) [recalling(13)] to obtain ex;ited semi-infinite peripdic planar array of dipoles,Radio Science-
Invited Paper Ser. Special Issue 2001 URSI Int. Symp. Electromagn.
N 9 Theory, Mar.-Apr. 2003.
WpqTo

2 _ 2
70

(1) =Fkopgiz, i=1,2. (68)

T

Realvalues ofv,, ; in (43) are obtained only fdr| > 7. Since,
(12 — )2 < |7, the sign ofw,,; depends ori through
the sign of the second term inside the parentheses in (43), i
sgn(wpq.i) = (—1)'sgn(@,,7). Sincesgn(Rek.,,) = sgn(w),

we havesgn(Rek.,q.:) = (—1)sgn(@p,7). Thus, both the LHS
and RHS of (68) have the same signfor 7, and opposite sign
forr < —7g, fori = 1, 2. This means that far > 7, bothw,, 1 -
andw,, » are real solutions of (66), while neither is a solutior

for negativer < —g.
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