Title
Spatial Resolution Studies for a Prototype Proton CT Scanner

Permalink
https://escholarship.org/uc/item/3b97917z

Authors
Plautz, TE
Bashkirov, V
Hurley, RF
et al.

Publication Date
2014

Peer reviewed
Spatial Resolution Studies for a Prototype Proton CT Scanner

Tia E. Plautz, Member, IEEE, V. Bashkirov, R. F. Hurley, V. Giacometti, R. P. Johnson, Member, IEEE, H. F.-W. Sadrozinski, Senior Member, IEEE, R. W. Schulte, Member, IEEE, A. Zatserklyanyi

Abstract—A GEANT4 simulation of the phase II proton CT (pCT) scanner built by the pCT collaboration was used in order to study the spatial resolution of the imaging system. A digital edge phantom composed of water-equivalent polymer with 6 body-equivalent material inserts was created. A modified version of the oversampling method was used in order to construct edge spread functions and modulation transfer functions for materials of varying relative stopping power located at several radial displacements from the center of the phantom. It was determined that for a binning size of 1 mm \times 2.5 mm and image pixel size of 1 mm2, the limiting resolution observed was 50-75% of the Nyquist frequency. This result could be improved to 60-85% of the Nyquist frequency by reducing the binning size for the filtered back projection to 0.5 mm \times 2.5 mm.

Index Terms—proton imaging, tomographic reconstruction of material properties, spatial resolution, modulation transfer function, oversampling method

I. INTRODUCTION

Increasing use of proton radiation therapy for cancer patients has inspired research into new imaging methods that can improve the accuracy of proton range estimates in radiation therapy planning. X-ray computed tomography (CT) has been shown to give insufficiently accurate maps of relative stopping power (RSP), mostly due to uncertainty in converting CT Hounsfield values to RSP. Since stopping of proton beams near organs at risk (e.g. the spinal cord) requires precise knowledge of proton stopping power, this research has become a high priority for the further development of image-guided proton therapy.

In the phase II pCT scanner, a low-intensity cone beam of 200 MeV protons traverses the patient. Entry and exit positions and vectors and the residual energy are measured for each proton. The residual energy is transformed into water equivalent path length (WEPL) using a calibration method [1]. Based on the WEPL of many protons traversing the object from many directions, one can reconstruct a 3-dimensional map of RSP. Minimal proton loss and high detection efficiency make pCT a potentially low-dose (m-Gy) imaging modality [2].

Proton CT differs from x-ray CT in several key aspects. In distinction to the absorption of x-rays, where the attenuation factor can vary by a factor of 10 between bone and soft tissue, proton imaging has low contrast, since the RSP differs by only 50% between bone and soft tissue. Furthermore, unlike x-rays which travel in straight lines through the patient or phantom, charged protons are deflected by multiple Coulomb scattering (MCS) events. MCS limits spatial resolution since the proton path deviates from the estimated most-likely path (MLP) by up to several millimeters in anatomical objects encountered in medical proton imaging. Thus, pCT is not intended to produce images of high visual contrast, but rather to create an accurate map of the quantity required for proton radiation therapy treatment planning.

The purpose of this research is to study the spatial resolution of the phase II pCT scanner, and to develop tools that can be used to study the effects of various components of the system on image resolution. At the time of the study the physical phantom was unavailable and so a GEANT4 model of the phase II pCT system was used.

II. MATERIALS AND METHODS

A. Phase II pCT Scanner

The second generation prototype pCT scanner (Fig. 1) consists of two principal components: the silicon tracking system and the energy/range detector. The silicon tracker tracks individual protons. Each of the two trackers consists of 16 silicon tiles arranged into 4 planes, each 400 μm thick, with a total sensitive area of 8.6 \times 34.9 cm2. The upstream and downstream particle telescopes measure the entry and exit vectors of each proton. The tracking planes interface through custom readout ICs [3] and a high-speed data acquisition system based on field-programmable gate arrays (FPGAs) [4]. The multistage scintillator measures the residual energy and range of each proton. It is composed of 5 stages of scintillating plastic (UPS-923A, polystyrene), each 36 \times 10 \times 5.1 cm2. Integrated light guides interface through photomultiplier tubes (PMTs). PMT signals are digitized by fast pipelined analog-digital converters and interfaced to the data acquisition by FPGAs.

B. Reconstruction Software

The software for the reconstruction of images was developed by Scott Penfold, University of Wollongong [5] in col-
Collaboration with Yair Censor, University of Haifa, and Reinhard Schulte, Loma Linda University, and was modified by Ford Hurley, Loma Linda University. The software was executed on a dual-core workstation equipped with an EVGA GeForce GTX680 GPU. The raw data input into the reconstruction software contained the proton tracker coordinates and the WEPL for each proton.

The radiographic reconstruction made use of the phantom-based coordinate system \((x, y, z)\) and the detector-based coordinate system \((t, u, v)\) which is defined such that \(u\) points in the direction of the beam, and \(v\) points opposite \(z\). Both systems are right-handed and share a common origin.

The reconstruction software uses a simple algorithm for binning protons according to the straight-line approximation of their path through the phantom. Binning is performed at the proton’s projected position at the \(u = 0\) plane. The Feldkamp-Davis-Kress (FDK) algorithm, the cone-beam version of the filtered back projection (FBP), is used both for boundary detection and as a starting point for iterative reconstruction. For the iterative reconstruction, a method based on diagonally relaxed orthogonal projections (DROP) onto convex sets is used. This method requires knowledge of WEPL and MLP of each proton, forming a large linear system of equations, which is then solved for the unknown RSP object vector. The DROP method has been further enhanced by interleaved superiorization of the total variation in the reconstructed RSP map. Details of the DROP-TVS algorithm have been described elsewhere [6].

C. Phantom Design

Inspired by the study by Seco et al. [7], a phantom (Fig. 2) was simulated for the purpose of determining a modulation transfer function (MTF). The phantom is a water-equivalent polymer cylinder measuring 16 cm in diameter and 6 cm in height. Twelve tissue-equivalent, rectangular inserts, each \(15 \times 15 \times 40\) mm³, of varying relative stopping power were inserted in two concentric rings with radii of 35 mm and 60 mm. The inserts were composed of the materials given in Table I.

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (g/cm³)</th>
<th>RSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tooth Enamel</td>
<td>2.04</td>
<td>1.796</td>
</tr>
<tr>
<td>Cortical Bone</td>
<td>1.85</td>
<td>1.586</td>
</tr>
<tr>
<td>Brain</td>
<td>1.07</td>
<td>1.028</td>
</tr>
<tr>
<td>Adult Adipose</td>
<td>0.920</td>
<td>0.963</td>
</tr>
<tr>
<td>Lung</td>
<td>0.205</td>
<td>0.200</td>
</tr>
<tr>
<td>Air</td>
<td>0.0013</td>
<td>0.0011</td>
</tr>
</tbody>
</table>

D. Monte Carlo Simulation

In this study, the GEANT4 version 10.1 [8] toolkit was used to simulate data obtained by the system described above with the edge phantom inserted. Details of the simulation platform were reported by Giacometti et al. [9]. Protons of 200 MeV emerging from the source were scattered by a 1.5 mm-thick lead foil to produce a Gaussian incident beam. Ninety projections in intervals of 4° were simulated, each containing approximately 610k protons which intersected the reconstruction volume. Of the protons that entered the reconstruction volume, about 60% of them passed statistical data reductions (i.e. 3σ cuts) in angle and in WEPL, leaving approximately 390k protons per projection. A bin size of 1 mm in \(t\) and 2.5 mm in \(v\) was used for the statistical cuts and the FDK reconstruction. The proton flux through a plane after statistical cuts was therefore equal to approximately 30 protons \(\cdot mm^{-2} \cdot projection^{-1}\). The image displayed in Fig. 3 contains the center slice (2.5 mm thick) of the reconstruction, with \(180 \times 180\) pixels each 1 mm².

E. Analysis Technique

The MTF was determined from the edge spread function (ESF) using a modified version of the oversampling method.
Fig. 3. Reconstructed phantom using FBP as initial iterate and DROP with TVS. The binning size was 1 mm in t and 2.5 mm in v and the usual cuts were made at 3π in angle and WEPL. The proton flux through a plane was approximately 28 protons·mm$^{-2}$·projection$^{-1}$. The image is 180 x 180 pixels with a pixel size of 1 mm2 which was first described Judy [10] and later by Fujita et al [11]. In addition, modifications and improvements to the method described in papers by Mori and Machida [12] and by Watanabe et al. [13] were also used.

The two materials were juxtaposed to produce a sharp edge with a slight angle, α, with respect to the principal axes (x, y). In general $\tan \alpha$ should not be equal to an integer, or to the ratio of two small integers, in order to insure that all possible regions of the pixel can be sampled as the oversampling method requires. A 2-dimensional bilinear interpolation was applied to the reconstructed image to allow for subpixel-spaced sampling. Approximately 30 samples were selected, orthogonal to the edge, and the 50% values of each resulting ESF were overlaid to yield an oversampled ESF. For noise suppression, the oversampled ESF was rebinned using a bin size equal to the sampling pitch. A smoothing cubic spline was applied to the oversampled and rebinned ESF in order to optimize the χ^2 per degree of freedom value of the spline to the data. A line spread function (LSF) was obtained by differentiating the splined ESF. The MTF was obtained by Fourier-transforming the LSF.

III. Results and Discussion

Fig. 4 illustrates the MTFs for each of the high contrast inserts, tooth enamel, cortical bone, lung (inhale) and air for each of 4 radial displacements (i.e. radial distance from the center of the phantom) $R = 27.5$ mm, 42.5 mm, 52.5 mm and 67.5 mm. The low contrast inserts were not included in this study because they could not be resolved from the background due to low statistics. The intersections of the MTF with the magenta horizontal lines show the values of the MTF$^{10\%}$, the limiting resolution of the system. The observed MTF$^{10\%}$ values are between 0.25 and 0.35 lp/mm. The plots show that the limiting resolution tends to increase for increasing radial angles α. The intersections of the MTF with the magenta horizontal line shows the value of the MTF$^{10\%}$ which illustrates the limiting resolution of the system.
When binning size in the limiting resolution of the system was found to increase by 10-30%, for a pixel size of 1 mm².

The brain insert was not able to be resolved for all radial displacements.

Fig. 5 shows the interplay between RSP and radial displacement in more detail. As radial displacement increases, resolution of high RSP inserts increases significantly, but for low RSP inserts the resolution does not change significantly. The brain insert was not able to be resolved for all radial displacements.

It is important to note that for a digital image reconstruction, the maximum expected resolution is the Nyquist frequency which is 0.5 lp/mm for a pixel of 1 mm². Therefore, the spatial resolution we observed in this study accounts for 50 - 75% of the Nyquist frequency. The improvement achieved by reducing the binning size in \(t \) improves the resolution to 60 - 85% of the Nyquist frequency. This result suggests that the bin size in the FDK reconstruction is one of the limiting factors of image resolution in our system. By improving the initial image processing and reconstruction, we expect to achieve higher resolution in pCT.

IV. Conclusions and Future Investigation

We have showed that for high contrast inserts, the resolution of our system, given a binning size of 1 mm \(\times \) 2.5 mm, and a pixel size of 1 mm² is about 50 - 75% of the Nyquist frequency. There is also evidence to suggest that by changing the binning size for the FDK we can further improve this result. We have also found that the MTF of inserts with high RSPs were more affected by radial displacement effects than inserts with small RSPs. Inserts with small RSPs display the effects of a competing process due to low-density inhomogeneity. Future investigations will focus on improving the MLP model and updating it after each iteration of the reconstruction to further improve spatial resolution in pCT.

The tools developed for this investigation can further be used to study the effects of various aspects of the system on image resolution, including the effects of MCS, non-ideal detectors, binning size and reconstruction algorithms. One of the next steps will be to apply this procedure to experimental data obtained from the phase II pCT scanner.

Acknowledgment

We acknowledge contributions from Y. Censor (The University of Haifa (Israel)), S. Penfold (University of Wollongong (Australia)), and R. Davidi (Stanford University). This research in proton CT is supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB), and the National Science Foundation (NSF), award Number R01EB013118, the U.S. Department of Defense Prostate Cancer Research Program, award No. W81XWH-12-1-0122, and the United States - Israel Binational Science Foundation (BSF). The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of NIBIB, NIH, NSF and DOD.

References

