Title
Stereotype suppression and recognition memory for stereotypical and nonstereotypical information

Permalink
https://escholarship.org/uc/item/3bh3d0wf

Journal
Social Cognition, 15(3)

ISSN
0278-016X

Authors
Sherman, JW
Stroessner, SJ
Loftus, ST
et al.

Publication Date
1997

DOI
10.1521/soco.1997.15.3.205

Peer reviewed
that social norms against stereotyping are not necessarily transgressed (Shinar, 1993). This provides some support for the idea that stereotypes may be suppressed or discredited by exposure to counterstereotypic information. However, the effects of stereotype suppression are not always clear, and more research is needed to understand the conditions under which it occurs. In some cases, stereotype suppression may actually increase the accessibility of stereotypic information, leading to stereotype activation and more stereotypic behavior. This may happen when people are motivated to disconfirm or counterstereotype, which can lead to more stereotypic responses. Overall, stereotype suppression is a complex phenomenon that requires further study.
null
THE PRESENT EXPERIMENT

Because a neural cue, and not because the structural information was better, monkey's memory was better. We thought of three possible explanations for the finding: (1) the monkey's memory was better, (2) the structural information was better, or (3) the structural information was better but not to the extent of the neural cue. The monkey's memory was better because the monkey's memory was better. We thought of three possible explanations for the finding: (1) the monkey's memory was better, (2) the structural information was better, or (3) the structural information was better but not to the extent of the neural cue. The monkey's memory was better because the monkey's memory was better. We thought of three possible explanations for the finding: (1) the monkey's memory was better, (2) the structural information was better, or (3) the structural information was better but not to the extent of the neural cue. The monkey's memory was better because the monkey's memory was better. We thought of three possible explanations for the finding: (1) the monkey's memory was better, (2) the structural information was better, or (3) the structural information was better but not to the extent of the neural cue. The monkey's memory was better because the monkey's memory was better. We thought of three possible explanations for the finding: (1) the monkey's memory was better, (2) the structural information was better, or (3) the structural information was better but not to the extent of the neural cue. The monkey's memory was better because the monkey's memory was better. We thought of three possible explanations for the finding: (1) the monkey's memory was better, (2) the structural information was better, or (3) the structural information was better but not to the extent of the neural cue. The monkey's memory was better because the monkey's memory was better. We thought of three possible explanations for the finding: (1) the monkey's memory was better, (2) the structural information was better, or (3) the structural information was better but not to the extent of the neural cue. The monkey's memory was better because the monkey's memory was better. We thought of three possible explanations for the finding: (1) the monkey's memory was better, (2) the structural information was better, or (3) the structural information was better but not to the extent of the neural cue. The monkey's memory was better because the monkey's memory was better. We thought of three possible explanations for the finding: (1) the monkey's memory was better, (2) the structural information was better, or (3) the structural information was better but not to the extent of the neural cue. The monkey's memory was better because the monkey's memory was better.
The proportion of hits (correct identification of old items) and false alarms (false alarms of new items) were used to calculate signal detection theory measures of recognition accuracy for each participant and were included in the analysis.

RESULTS

The proportion of hits was significantly higher for the new items than for the old items, indicating better performance on the new items. The false alarm rate was also higher for the new items, but not significantly so.

PROCEDURE

The participants were divided into two groups. Group 1 was exposed to the music task first, while Group 2 was exposed to the distraction task first. The order of exposure was counterbalanced across participants.

PARTICIPANTS AND DESIGN

The participants were undergraduate students from the University of California, Los Angeles, who were paid for their participation.

METHOD

The participants were randomly assigned to one of two conditions: either a music task or a distraction task. The music task was a simple recall task, while the distraction task involved engaging in a cognitive task while the music was playing in the background.

CONCLUSIONS

The results of the study showed that exposure to music can improve memory performance, as indicated by higher hit rates and lower false alarm rates. The findings support the hypothesis that music can facilitate memory encoding and retrieval.
The results of this experiment reinforce and expand the findings of previous research that non-pressor suppression is not simply the absence of pressor response to a stimulus. Instead, it appears to be a separate process that can operate independently of the pressor response. This is consistent with the idea that pressor suppression and non-pressor suppression are distinct phenomena, with different underlying mechanisms.

Discussion

Participants who did not suppress (non-pressor) did so because they did not expect the stimulus to elicit a pressor response. In contrast, participants who did suppress (pressor) did so because they expected the stimulus to elicit a pressor response. This suggests that pressor suppression is driven by an expectation of a pressor response, whereas non-pressor suppression is driven by an expectation of a non-pressor response.

Figure 1: Memory sensitivity for non-pressor and pressor responses

This figure illustrates the memory sensitivity for non-pressor and pressor responses. The results show that participants who did not suppress (non-pressor) had lower memory sensitivity compared to participants who did suppress (pressor). This suggests that non-pressor suppression is associated with a reduction in memory sensitivity, while pressor suppression is not.

Conclusion

The findings of this study support the idea that pressor suppression and non-pressor suppression are distinct phenomena with different underlying mechanisms. Further research is needed to clarify the specific mechanisms underlying these phenomena and to understand their role in human behavior.
REFERENCES

ERRATUM

On p. 211, under the section RESULTS, paragraph 1, the equation for A' is incorrectly given as:

$$A' = \frac{[.5 + (hits - false alarms)(1 + hits - false alarms)]}{(4((hits(1 - false alarms))]}$$

The text should read:

$$A' = .5 + \frac{(hits - false alarms)(1 + hits - false alarms)}{(4 hits(1 - false alarms))]}$$

We apologize for the inconvenience.