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Test particle simulation is a useful method for studying both linear and nonlinear wave-particle

interactions in the magnetosphere. The gyro-averaged equations of particle motion for first-order

and other cyclotron harmonic resonances with oblique whistler-mode waves were first derived by

Bell [J. Geophys. Res. 89, 905 (1984)] and the most recent relativistic form was given by Ginet and

Albert [Phys. Fluids B 3, 2994 (1991)], and Bortnik [Ph.D. thesis (Stanford University, 2004), p.

40]. However, recently we found there was a ð�1Þl�1
term difference between their formulas of

perpendicular motion for the lth-order resonance. This article presents the detailed derivation pro-

cess of the generalized resonance formulas, and suggests a check of the signs for self-consistency,

which is independent of the choice of conventions, that is, the energy variation equation resulting

from the momentum equations should not contain any wave magnetic components, simply because

the magnetic field does not contribute to changes of particle energy. In addition, we show that the

wave centripetal force, which was considered small and was neglect in previous studies of nonlin-

ear interactions, has a profound time derivative and can significantly enhance electron phase trap-

ping especially in high frequency waves. This force can also bounce the low pitch angle particles

out of the loss cone. We justify both the sign problem and the missing wave centripetal force by

demonstrating wave-particle interaction examples, and comparing the gyro-averaged particle

motion to the full particle motion under the Lorentz force. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4914852]

I. INTRODUCTION

Relativistic electrons trapped in the Earth’s magnetic

field constitute the outer radiation belt which is highly

dynamic.4 Recent measurements from the Van Allen Probes

have shown that the 2.5 MeV electron flux increased by �4

orders of magnitude within 1 day during a geomagnetic

storm, suggesting that these electrons are heated by internal

acceleration in the heart of the outer radiation belt, i.e., reso-

nant interactions with various naturally occurring magneto-

spheric Very Low Frequency waves.5,6 Quasi-linear theory

has been widely used to study the effects of resonant interac-

tions.7–13 However, the quasilinear approach inherently

neglects nonlinear effects arising from the interactions

between radiation belt electrons and various magnetospheric

waves, and these nonlinear effects have been studied using

test-particle simulations.14–17

The motion of charged particles in an electromagnetic

field is governed by the Lorentz force, and thus can be

modeled by integrating the Lorentz equation directly.18 But

it is often more instructive and computationally economical

to gyro-average the equations so that numerical integration

can proceed on time scales comparable to the gyro-period.

The gyro-averaged formulas for Landau resonant interac-

tions between non-relativistic electrons and obliquely propa-

gating whistler-mode waves were first given by Inan and

Tkalcevic.19 Then, this approach was applied by Bell1 to

model first-order cyclotron resonant interactions, and was

generalized to arbitrary harmonic resonance in a phase trap-

ping study.1 The relativistic interaction formulas for arbitrary

harmonic resonances with oblique waves were derived by

Ginet and Albert2 and Bortnik,3 and have been applied to

many studies using test particle simulations.20–22

Recently, however, we found that a ð�1Þl�1
factor dif-

ference in the perpendicular motion for the lth order har-

monic resonance between the formulas given by Bortnik3,20

and by Ginet and Albert,2 and the resultant particle perpen-

dicular motions calculated by their formulas behave differ-

ently for Landau and other even-order resonances. We point

out that Bortnik’s formulas are not self-consistent because

they do not meet the simple criteria that the consequent
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energy equation should not contain the contribution of the

wave magnetic components.

In addition, we suggest that the interaction phase varia-

tion should include a centripetal acceleration force term

caused by the wave. Although it is a small term, it possesses

a profound time derivative and offers an additional “driving

force” for phase trapping motion, causing much more elec-

trons stably trapped in resonance. With a p? factor in the de-

nominator, the centripetal force can also bounce the small

pitch angle particles out of the loss cone.

In Sec. II, we describe the whistler-mode wave model

and present the detailed derivation process of gyro-averaged

motion equations for resonant interactions of a general har-

monic between electrons and oblique whistler-mode waves.

In Sec. III, we check the generalized resonance formulas

developed by Bell1 and Bortnik3 by transforming to their

conventions, and justify the sign correction of their formulas

for test particle simulations. Finally, in Sec. IV, we show

that the wave centripetal force plays an important role in par-

ticle non-linear motions via enhancing phase trapping and

bouncing low pitch angle electrons out of loss cone, and thus

should be taken into account in the resonance formulas.

II. GYRO-AVERAGED MOTION FOR RESONANT
INTERACTION

A. Whistler-mode wave model

We choose a Cartesian coordinate system in which the z
axis is oriented along the background magnetic field line.

The magnetic and electric fields of a monochromatic

whistler-mode wave that propagates in the x–z plane at an

angle w with respect to the z axis, as shown in Fig. 1 are writ-

ten as

Bw ¼ Bw
0 eiU; Ew ¼ Ew

0 eiU; (1)

where U ¼ xt�
Ð

k � dr is the wave phase, and the wave

normal vector is given as k ¼ ðk?; 0; kkÞ, where k?
¼ k sin w and kk ¼ k cos w. The relative ratios of the wave

components can be obtained according to the cold plasma

dispersion relation,23 which is a reasonable assumption for

whistler mode waves in the Earth’s inner magnetosphere.24

In the rational form, the magnetic and electric fields of a

whistler-mode plasma wave are given by

Bw ¼ exBw
x cos Uþ eyBw

y sin Uþ ezB
w
z cos U; (2a)

Ew ¼ exEw
x sin Uþ eyEw

y cos Uþ ezE
w
z sin U: (2b)

Given the total magnetic wave amplitude Bw
tot, the compo-

nents of Ew
0 and Bw

0 are as follows:

Ew
x ¼ IwðS� l2ÞðP� l2 sin2wÞ; (3a)

Ew
y ¼ IwDðP� l2 sin2wÞ; (3b)

Ew
z ¼ �Iwl2 cos w sin wðS� l2Þ; (3c)

Bw
x ¼ �IwD cos wðP� l2 sin2wÞl=c; (3d)

Bw
y ¼ IwP cos wðS� l2Þl=c; (3e)

Bw
z ¼ IwD sin wðP� l2 sin2wÞl=c; (3f)

where

Iw ¼ Bw
tot

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 P� l2 sin2w
� �2 þ P2 cos2w S� l2ð Þ2

q : (4)

Here P, S, and D are the usual Stix parameters,23 and l
¼ kc=x is the refractive index. The wave model described

above takes a most conventional form, which is different

from related literature,1–3,19,25,26 where various kinds of con-

ventions of w and U, and positive direction of z axis, parallel

wave vector number kk, and parallel particle momentum pk
were defined.

B. Particle adiabatic motion in (ez, e?; eh) coordinates

The force experienced by an electron moving in an elec-

tromagnetic field is described by the Lorentz equation,

_p ¼ �e Ew þ p

cm
� Bþ Bwð Þ

� �
: (5)

Here, p represents the momentum of the particle, m its rest

mass, e the elementary charge, c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=m2c2

p
the rela-

tivistic factor, B the ambient magnetic field, and the electric

and magnetic waves are expressed in Eq. (2). Although we

can directly integrate the Lorentz equation using standard or-

dinary differential equation integrators, it is often more con-

venient to solve the particle motion in a gyro-averaged sense

so that numerical integration can proceed on a time scale

comparable to the gyro-period. In the rotating coordinate

system, the Lorentz force (5) can be decomposed in three or-

thogonal directions as

_pk ¼ �e Ew þ p

cm
� Bw þ Bð Þ

� �
� ez; (6a)

_p? ¼ �e Ew þ p

cm
� Bw þ Bð Þ

� �
� e?; (6b)FIG. 1. The geometry of wave propagation and electron perpendicular mo-

mentum p?.
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_ph ¼ �e Ew þ p

cm
� Bw þ Bð Þ

� �
� eh: (6c)

Here, pk and p? represents the particle parallel and perpen-

dicular momentum, respectively, and _ph represents the cen-

tripetal force that causes the particle gyro-motion. The

elementary vector e? points towards the particle momentum,

and eh points to the guiding-center, as illustrated in Figure 2.

Applying the identities ez � p ¼ p?eh, e? � p ¼ �pkeh, and

eh � p ¼ pke? � p?ez, together with ðA� BÞ � C ¼ ðC� AÞ
�B, the electron motion in each direction can be expressed as

_pk ¼ �eEw � ez �
ep?
cm

Bw þ Bð Þ � eh; (7a)

_p? ¼ �eEw � e? þ
epk
cm

Bw þ Bð Þ � eh; (7b)

_ph ¼ �eEw � eh �
epk
cm

Bw þ Bð Þ � e? þ
ep?
cm

Bw þ Bð Þ � ez:

(7c)

We first gyro-average the particle adiabatic motions caused

by the “mirror” force of the ambient magnetic field B, which

can be decomposed as B ¼ Bez þ B? to first order. Here, B
represents the magnetic magnitude, and the perpendicular

component B? can be Taylor expanded as

B? ¼ ex
@B

@x
q sin h� ey

@B

@y
q cos h; (8)

where the particle gyro-phase h is defined as the angle

between the x axis and the perpendicular momentum p?,

and q ¼ p?=eB represents the particle gyro-radius. Here,

we have dropped the second order term of � � q=RE, where

RE is the radius of the Earth. This approach neglects the

curvature and perpendicular gradient of the background

magnetic field, and therefore the particle drifting motion is

also neglected. Using Eq. (8) and the fact that eh

¼ ð�sin hex þ cos heyÞ, we obtain

B � eh ¼ �
@B

@x
q sin2h� @B

@y
q cos2h: (9)

Gyro-averaging the above expression and applying Gauss’s

theorem r � B ¼ 0 yields

hB � ehi ¼
q
2

@B

@z
; (10)

where the angle bracket hi represents the averaging operation

over the gyro-motion. Similarly, the fact that e?
¼ ðcos hex þ sin heyÞ yields

hB � e?i ¼ 0:

The resultant components of the adiabatic motion in three

directions are

_pad
k ¼ �

1

2B

p2
?

cm

@B

@z
; (11a)

_pad
? ¼

1

2B

p?pk
cm

@B

@z
; (11b)

_pad
h ¼

eB

cm
p?: (11c)

C. Particle motion under resonant interactions

To apply gyro-averaging, the perpendicular electric and

magnetic waves are decomposed into two circularly polar-

ized components with opposite senses of rotation, and the

wave components are expressed as

BR ¼ BR½ex cos Uþ ey sin U�; (12a)

BL ¼ BL½ex cos U� ey sin U�; (12b)

Bz ¼ Bw
z ez cos U; (12c)

ER ¼ ER½ex sin U� ey cos U�; (12d)

EL ¼ EL½ex sin Uþ ey cos U�; (12e)

Ez ¼ Ew
z ez sin U; (12f)

where BR¼ðBw
x þBw

y Þ=2, BL¼ðBw
x �Bw

y Þ=2;ER¼ðEw
x �Ew

y Þ=2,

and EL¼ðEw
x þEw

y Þ=2. The particle motion modulated by the

wave is

_pw
k ¼ �eEz � ez �

ep?
cm

BR þ BLð Þ � eh; (13a)

_pw
? ¼ �e ER þ ELð Þ � e? þ

epk
cm

BR þ BLð Þ � eh; (13b)

_pw
h ¼ �e ER þ ELð Þ � eh �

epk
cm

BR þ BLð Þ � e? þ
ep?
cm

Bw
z � ez:

(13c)

Through Figure 2, which shows the phase geometry of wave

electric and magnetic components, and of electron perpen-

dicular momentum as well, we can obtain

_pw
k ¼ �eEw

z sin U� ep?
cm

BR sin U� hð Þ � BL sin Uþ hð Þ
� �

;

(14a)

FIG. 2. The geometry of oblique whistler-mode wave phase and electron

momentum phase. The wave phase for BR; BL; ER, and EL are

U; �U; U� p=2, and p=2� U, respectively.
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_pw
? ¼ �eER sin U� hð Þ � eEL sin Uþ hð Þ

þ
epk
cm

BR sin U� hð Þ � BL sin Uþ hð Þ
� �

; (14b)

_pw
h ¼ eER cos U� hð Þ � eEL cos Uþ hð Þ

�
epk
cm

BR cos U� hð Þ þ BL cos Uþ hð Þ
� �

þ ep?
cm

Bw
z cos U: (14c)

The wave phase at the position of the electron can be

expressed as

U ¼ xt�
ð

kkvkdt� b sin h; (15)

where b ¼ k?p?=eB, and the b sin h term comes from k?x in

our definition of U in Eq. (1). Using the well-known Bessel

function identity,

eib sin h ¼
X1

l¼�1
JlðbÞeilh; (16)

where Jl represents the Bessel function of the first type with

the argument b, we obtain

sin U ¼ <e
n
�iei

�
xt�
Ð

kkvkdt�b sin h
�o

¼ <e
n
�iei

�
xt�
Ð

kkvkdt
� X1

l¼�1
JlðbÞe�ilh

o

¼
X1

l¼�1
JlðbÞ sin gl; (17)

where <e represents the real part, and

gl ¼ xt�
ð

kkvkdt� lh (18)

represent a wave-particle interaction phase. Similarly, we

have

sinðU� nhÞ ¼
X1

l¼�1
Jl�nðbÞ sin gl; (19a)

cosðU� nhÞ ¼
X1

l¼�1
Jl�nðbÞ cos gl: (19b)

Usually, the integration of sin gl and cos gl over time aver-

ages to zero, except in the case of dgl=dt ¼ 0 or

x� kkvk ¼ lxce=c; (20)

where xce ¼ eB=m is the non-relativistic electron gyro-

frequency in the background magnetic field, c ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp=mcÞ2

q
the relativistic factor. The above equation

describes the lth-order cyclotron resonance condition, indi-

cating that the Doppler shifted wave frequency observed by

the particle is equal to the lth harmonic of the electron gyro-

frequency, where l¼ 0 represents Landau resonance.

The wave modulation on particle motion near the lth-

order resonance becomes

_pw
k ¼ Fw

k sin g; _pw
? ¼ Fw

? sin g; _pw
h ¼ �Fw

h cos g; (21a)

where

Fw
k ¼ �e Ew

z Jl þ
p?
cm

BRJl�1 �
p?
cm

BLJlþ1

� �
; (22a)

Fw
? ¼ �e ERJl�1 þ ELJlþ1 �

pk
cm

BRJl�1 þ
pk
cm

BLJlþ1

� �
;

(22b)

Fw
h ¼ �e ERJl�1 � ELJlþ1 �

pk
cm

BRJl�1

�

�
pk
cm

BLJlþ1 þ
p?
cm

Bw
z Jl

�
:

(22c)

The relation between Fw
k and Fw

? is simplified in the

Appendix with details, and is expressed as

Fw
? ¼ Fw

k
lxce

ckkv?
¼ Fw

k
lxce

cx� lxce
cot a; (23)

where the pitch angle a is defined as a ¼ tan�1ðp?=pkÞ. This

relation is equivalent to the resonant diffusion curve equation

in the (pk; p?) plane.27

The interaction phase variation is

_g ¼ x� kkvk � l _h: (24)

The derivative of gyro-phase can be expressed as

_h ¼ _ph

p?
¼ _pad

h þ _pw
h

p?
¼ xce

c
� Fw

h

p?
cos g: (25)

Finally, we got the gyro-averaged particle motion for lth-

order cyclotron resonance in (pk; p?, g) coordinates as

_pk ¼ Fw
k sin g� 1

2B

p2
?

cm

@B

@z
; (26a)

_p? ¼ Fw
? sin gþ 1

2B

p?pk
cm

@B

@z
; (26b)

_g ¼ lFw
h

p?
cos gþ x�

kkpk
cm
� lxce

c
: (26c)

D. Variation of energy, pitch angle, and magnetic
momentum

The gyro-averaged rate of energy change for an electron

traveling through a whistler wave-field can be directly

obtained by

dEk

dt
¼ 1

cm
pk

dpk
dt
þ p?

dp?
dt

	 

; (27)

and is expressed as

dEk

dt
¼ � e

cm
Ew

z pkJl bð Þ þ ERp?Jl�1 bð Þ þ ELp?Jlþ1 bð Þ
� �

sin g:

(28)
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Here, Ek represents the kinetic energy of the electron, the

three terms of Eq. (28) in the right hand side represent the

energy variation contributed by Ew
z ; ER, and EL, respec-

tively. All the magnetic wave components vanish in Eq.

(28). The energy variation equation (27) can be simplified

using the diffusion curve equation (23) as

dEk

dt
¼ 1

cm
pkF

w
k sin gþ p?Fw

k
x� kkvk

kkv?
sin g

 !
;

which is simply

dEk

dt
¼ Fw

k
x
kk

sin g: (29)

This equation implies that a low frequency (x� xce) wave,

such as the magnetospheric electromagnetic ion cyclotron

(EMIC) wave, can scatter the electron pitch angles via cyclo-

tron resonance by converting particle energy from parallel to

perpendicular direction, or vice versa, but the net gain of the

particle energy is quite little.

It is useful to derive the motion of particle magnetic mo-

mentum l, which is the first invariant in a static magnetic

field. From the definition l ¼ p2
?=2mB, we obtain

dl
dt
¼ p? _p?

mB
� p2

?
2mB2

@B

@z

pk
cm

: (30)

Substituting the expression of _p? to the above equation

yields

dl
dt
¼ p?

mB
Fw
? sin g; (31)

and applying the diffusion curve equation (23) produces

dl
dt
¼ lm

ekk
Fw
k sin g: (32)

The general relations

dpw
k

dEk
¼

kk
x
;

dl
dEk
¼ m

e

l

x
(33)

apply to any cyclotron harmonic resonant interactions

between an electron and a monochromatic wave, and are

consistent with the relation given by Walker28 and Albert

et al.29

Using the relation of a ¼ tan�1ðp?=pkÞ; the rate of pitch

angle change of a particle moving through an oblique whis-

tler wave can be easily obtained as

da
dt
¼ m

p2kk
sin g pkF

w
? � p?Fw

k
� �þ p?

2cmB

@B

@z
: (34)

Applying Eqs. (20) and (23) to the above equation yields

da
dt
¼ �

Fw
k

p?
1þ cos2a

lY � 1

	 

sin gþ p?

2cmB

@B

@z
; (35)

where Y ¼ xce=cx. This equation is the same as that given

by Bortnik et al.22 in terms of his conventions.

III. COMPARISON WITH BELL’S EQUATION: SIGN
PROBLEM

We carefully transformed the gyro-averaged particle

motion equations (26) to Bell and Bortnik’s conventions

(the final relativistic form given by Bortnik et al.3,20), and

found a ð�1Þl�1
term in difference between our results and

their formulas in the perpendicular motion equation for the

lth-order resonance. Since different conventions have been

used in various literature, making the sign checking rather

complicated, we suggest a easy test for self-consistency in-

dependent of the choice of convention, that is, no matter

what convention is used, the energy variation equation

given by Eq. (27) should not contain any wave magnetic

components, because the magnetic field does not contribute

to changes in particle energy. However, the energy varia-

tion equation from Bortnik’s formulas3,20 contains contribu-

tions from wave magnetic components, which will be

canceled after adding ð�1Þl�1
term in the perpendicular

motion.

In order to investigate the impact of the sign problem in

the motion equation, we simulated the Landau resonance

between an electron and a magnetosonic wave in the magne-

tosphere using both Bortnik’s solver and corrected gyro-

averaged solver, and compared the results to that by Lorentz

solver. Following the work by Bortnik et al.,20 we modeled a

whistler-mode magnetosonic wave with frequency

f¼ 33.3 Hz, amplitude Bw ¼ 250 pT, and wave normal angle

89	. We set the ambient electron density ne0 ¼ 10:3 cm–3,

and chose a background magnetic field with intensity B0

¼ 342 nT to represent the geomagnetic field at L¼ 4.5,

where the McIlwain’s L-value describes the set magnetic

field lines crossing the Earth’s magnetic equator at a geocen-

tric distance L in units of the Earth’s radius RE. The Landau

resonance interaction between such a wave and an electron

with energy Ek¼ 300 keV and pitch angle a ¼ 30	 is then

simulated, and the variation of particle energy, parallel mo-

mentum, and perpendicular momentum are illustrated in Fig.

3. With the ð�1Þl�1
term missing, Bortnik’s formulas pro-

duce an opposite behavior of perpendicular motion, while

the corrected formulas produce a result that agrees well with

full particle simulation using Lorentz solver. Using the cor-

rected formulas, Li et al.30 recently showed that the test par-

ticle simulation of interactions between magnetosonic waves

and energetic electrons is in good agreement with quasi-

linear theory when the waves propagate enough wavelengths

along the ambient magnetic field lines.

IV. EFFECT OF WAVE CENTRIPETAL FORCE IN
PHASE TRAPPING

The effect of the wave centripetal acceleration force Fw
h

(the first term on the right-hand side of Eq. (26c)) was often

neglected in the generalized resonance formulas.1–3,26

Usually, this centripetal acceleration term is a small term on

the right hand side of Eq. (26) except for loss cone particles,

which possess very small p?.25,31–33 But in the second-order

resonance given by d2g=dt2 ¼ 0, which enables the stable

trapping of a resonant electrons,34 this centripetal accelera-

tion force plays an important role. Although this centripetal
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term had already been included in some numerical stud-

ies,14,16 but was usually not taken into account in theoretical

analysis.1,26,29,34–38

The motion of phase trapped electrons is dominated not

by the ambient magnetic field, but by the wave field,26,39

which enables the particle parallel velocity to follow the res-

onant velocity all the way in the wave field.36 This nonlinear

interaction has been proposed to be accountable for nonlin-

ear excitation of chorus waves in the Earth’s radiation

belt.34–38 To make the physics brief, we use a simple exam-

ple of first-order cyclotron resonant interaction between a

non-relativistic electron and a parallel-propagating wave

with constant x and kk to show the compact of Fw
h on phase

trapping. The gyro-averaged electron motion equations are

simplified as

_vk ¼ �
eBR

m
v? sin g� 1

2B
v2
?
@B

@z
; (36a)

_v? ¼ �
eBR

m

xce

kk
sin gþ 1

2B
v?vk

@B

@z
; (36b)

_g ¼ �eBR

m

xce

kkv?
cos gþ x� kkvk � xce: (36c)

Here, we have used the Faraday’s law and the resonance

condition Eq. (20). When Fw
h is omitted, the phase trapping

condition has the form of a driving pendulum,

€g þ R sin g ¼ D; (37)

where

FIG. 3. The test particle simulation of Landau resonance between an electron and a magnetosonic wave using the Lorentz solver, Bell’s solver, and corrected

solver in this paper. The comparison of (a) the particle energy change, (b) the parallel momentum change, and (c) the perpendicular momentum change clearly

reveals the sign mistake of perpendicular motion of Bell’s solver, and its consequence in particle energy variation.

FIG. 4. (a)–(c) The energy variation of 12 representative electrons with Ek¼ 1 keV and aeq ¼ 20	 undergoing a chorus wave, calculated by gyro-averaged

solver omitting the wave centripetal force, that including it, and the Lorentz solver, respectively. (d)–(f) The final electron energy as a function of initial inter-

action phases by three methods.
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R ¼ � eBR

m
� kkv?;

D ¼ kk
1

2B
v2
? �

evk
m

	 

@B

@z

(38)

represent the “restoring force” and “driving force,” respec-

tively. However, considering the Fw
h effect would bring a

couple of extra terms in the “restoring force,” including a

major term

R1 ¼
�eBR

m

xce

kkv?
x: (39)

When R1 > R or equivalently

xcex > k2
kv

2
?; (40)

this extra “restoring force” can greatly enhance the phase

trapping, making more electrons being stably phase-trapped.

The Fw
h effect also yields extra “driving forces,” which are

small compared to D.

Equation (40) implies that the Fw
h effect is most evident

for electrons with small v? undergoing phase trapping in a high

frequency wave. Here, we demonstrate this fact by simulations

of the interactions between a chorus wave with x ¼ 0:7 xce

and a bunch of electrons in the dipole geomagnetosphere at

L¼ 5. The monochromatic chorus wave was assumed to be

generated at the magnetic equator and propagates towards the

southern hemisphere along the magnetic field line with an am-

plitude of 70 pT. The ambient electron density was set to be

ne0 ¼ 10 cm–3. A group of 360 electrons were simulated travel-

ing northward with an identical initial energy Ek¼ 1 keV, an

equatorial pitch angle aeq ¼ 20	, and initial interaction phases

g0 from 0	 to 359	, respectively. The gyro-averaged energy

motion along latitude of 12 representative electrons (g0 ¼ 0	,
30	;…330	) calculated omitting the Fw

h effect (Figure 4(a)),

that including the Fw
h effect (Figure 4(b)) is compared to the

motion under Lorentz force (Figure 4(c)). The full information

of electron final energy after resonance as a function of g0 cal-

culated by three methods is plotted in Figures 4(d)–4(f), respec-

tively. Only 68 out of 360 electrons undergo phase trapping if

the Fw
h effect is omitted (Figure 4(d)), while a simulation

including this effect (Figure 4(e)) produces 212 phase trapped

electrons (g0 ¼ 76	 � 287	Þ, in excellent agreement with that

obtained by Lorentz solver (Figure 4(f)).

The gyro-averaging solver omitting Fw
h may even pro-

duce negative pitch angles, as shown in Figure 5(a), which

present the dynamics of electrons with an initial pitch angle

of 5	 and an energy of 1 keV. However, with the inclusion of

Fw
h , the gyro-averaged solver produce a result in excellent

agreement with that obtained by Lorentz solver (Figures 5(b)

and 5(c)). Here, we point out that a p? factor in the denomi-

nator of wave centripetal acceleration term in Eq. (26c)

ensures the p? and the pitch angle a ¼ a tanðp?=pkÞ always

be positive. This wave centripetal force not only “reflects”

the particles when they hit the loss cone but also cause all

electrons undergoing phase trapping in the present case.

V. CONCLUSIONS

The gyro-averaged motion formulas for interactions

between whistler-mode waves and electrons for any resonance

harmonic are derived with general definitions of signs of parti-

cle and wave parameters. It is efficient to use these formulas

for test particle simulations, and convenient as well to analyze

particle energy and pitch angle change rates. By applying the

conventions of Bell and Bortnik,1,3 we find a factor of

ð�1Þl�1
missing in their perpendicular motion equation. By

simulating the gyro-averaged motion of an electron under-

going Landau resonance with a magnetosonic wave, and com-

paring to the full particle motion under the Lorentz force, we

show that the missing sign causes the particle perpendicular

motion behave oppositely. We propose a convention free cri-

teria to justify the various forms of gyro-averaged equations,

i.e., the energy variation resulting from the momentum equa-

tion should not contain the contribution of wave magnetic

components, if Maxwell’s relations are not applied. The parti-

cle motion formulas derived by Ginet and Albert2 and Albert

et al.29 are correct and agree with that criteria.

Furthermore, we point out that the wave centripetal

acceleration term should definitely be included in nonlinear

interaction studies. Although it is a small term, its profound

time derivative provide an extra “driving force” and can sig-

nificantly enhance phase trapping, making particle accelera-

tion process much more effectively. This term may also have

a potential impact on nonlinear wave excitation and damping

process. Besides, this term also numerically keeps p? and

aeq being positive, and bounces the low pitch angle electrons

out of the loss cone. Gyro-averaged resonant particle

motions simulated including the effect of this term are in

FIG. 5. (a)–(c) The pitch angle variation of 12 representative electrons with Ek¼ 1 keV and aeq ¼ 5	 undergoing a chorus wave calculated by three methods.
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excellent agreement with the full particle motions under

Lorentz force, as shown by two examples.
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APPENDIX: DERIVATION OF DIFFUSION CURVE
EQUATION

The wave electric and magnetic components applying

Faraday’s Law to Eq. (2) yield

Bx ¼ �kkEy=x; (A1)

By ¼ kkEx � k?Ez; (A2)

Bz ¼ k?Ey=x: (A3)

From the definitions of BR¼ðBw
x þBw

y Þ=2, BL¼ðBw
x �Bw

y Þ=2;
ER¼ðEw

x �Ew
y Þ=2, and EL¼ðEw

x þEw
y Þ=2, we have

BR ¼
kk
x

ER �
k?
2x

Ez; (A4)

BL ¼ �
kk
x

EL þ
k?
2x

Ez; (A5)

Bz ¼
k?
x

Ey ¼
k?
x

EL � ERð Þ: (A6)

Inserting the above expressions to Eq. (A10) we obtain

�
Fw
k

e
¼ EzJl þ v?

kk
x

ER �
k?
2x

Ez

	 

Jl�1

�v? �
kk
x

EL þ
k?
2x

Ez

	 

Jlþ1: (A7)

�Fw
?
e
¼ ERJl�1 � vk

kkER

x
� k?Ez

2x

	 

Jl�1

þELJlþ1 þ vk �
kkEL

x
þ k?Ez

2x

	 

Jlþ1: (A8)

Using the Bessel equation’s identity

Jl�1 þ Jlþ1 ¼
2l

b
Jl ¼

2lxce=c
k?v?

Jl; (A9)

as well as the resonance condition Eq. (20) we get

�
Fw
k

e
¼

kkvk
x

EzJl þ
kkv?
x

ERJl�1 þ
kkv?
x

ELJlþ1; (A10)

�Fw
?
e
¼ lxce

cx

vk
v?

EzJl þ
lxce

cx
ERJl�1 þ

lxce

cx
ELJlþ1: (A11)

Finally, by comparing the above two equations, we obtain

the following relation:

Fw
? ¼ Fw

k
lxce

ckkv?
¼ Fw

k
lxce

cx� lxce
cot a; (A12)

which is equivalent to

p?dpw
? ¼

lxce

cx� lxce
pkdpw

k : (A13)

This equation represents the resonant diffusion curve in the

(pk; p?) space, along which particles should diffuse under

the influence of an electromagnetic wave.27
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