Title
Use of common analgesic medications and ovarian cancer survival: results from a pooled analysis in the Ovarian Cancer Association Consortium

Permalink
https://escholarship.org/uc/item/3fd4f516

Journal
BRITISH JOURNAL OF CANCER, 116(9)

ISSN
0007-0920

Authors
Dixon, SC
Nagle, CM
Wentzensen, N
et al

Publication Date
2017-04-01

DOI
10.1038/bjc.2017.68

License
CC BY 4.0

Peer reviewed
Use of common analgesic medications and ovarian cancer survival: results from a pooled analysis in the Ovarian Cancer Association Consortium

Suzanne C Dixon*,1,2, Christina M Nagle1,2, Nicolas Wentzensen3, Britton Trabert3, Alicia Beeghly-Fadiel4, Joellen M Schildkraut5,6, Kirsten B Moysich7, Anna deFazio8,9, Australian Ovarian Cancer Study Group1,10, Harvey A Risch11, Mary Anne Rossing12,13, Jennifer A Doherty14, Kristine G Wicklund12, Marc T Goodman15,16, Francesmary Modugno17,18,19, Roberta B Ness20, Robert P Edwards17,18, Allan Jensen21, Susanne K Kjær21,22, Estrid Høgdal21,23, Andrew Berchuck24, Daniel W Cramer25, Kathryn L Terry25,26, Elizabeth M Poole27, Elisa V Bandera28,29, Lisa E Paddock29,30, Hoda Anton-Culver31,32, Argyrios Ziogas31, Usha Menon33, Simon A Gayther34, Susan J Ramus35,36, Aleksandra Gentry-Maharaj33, Celeste Leigh Pearce34,37, Anna H Wu34, Malcolm C Pike38 and Penelope M Webb1,2 on behalf of the Ovarian Cancer Association Consortium

Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been associated with improved survival in some cancers, but evidence for ovarian cancer is limited.

Methods: Pooling individual-level data from 12 Ovarian Cancer Association Consortium studies, we evaluated the association between self-reported, pre-diagnosis use of common analgesics and overall/progression-free/disease-specific survival among 7694 women with invasive epithelial ovarian cancer (4273 deaths).

Results: Regular analgesic use (at least once per week) was not associated with overall survival (pooled hazard ratios, pHRs (95% confidence intervals): aspirin 0.96 (0.88–1.04); non-aspirin NSAIDs 0.97 (0.89–1.05); acetaminophen 1.01 (0.93–1.10)), nor with progression-free/disease-specific survival. There was however a survival advantage for users of any NSAIDs in studies clearly defining non-use as less than once per week (pHR = 0.89 (0.82–0.98)).

Conclusions: Although this study did not show a clear association between analgesic use and ovarian cancer survival, further investigation with clearer definitions of use and information about post-diagnosis use is warranted.

Over 238 000 women are diagnosed with ovarian cancer annually (International Agency for Research on Cancer, 2014) and 5-year survival is poor at ~45% (Howlader et al., 2015). Identifying modifiable factors that could improve survival is therefore important. One possible factor is the use of analgesics such as nonsteroidal anti-inflammatory drugs (NSAIDs). Nonsteroidal anti-inflammatory drugs, including aspirin and non-aspirin NSAIDs (NA-NSAIDs), inhibit the pro-inflammatory enzyme cyclooxygenase (COX). COX-2 is over-expressed in many cancers including ovarian (Maccio and Madeddu, 2012), and COX-inhibition can reduce angiogenesis and trigger apoptosis (Xin et al., 2007). While improved survival among NSAID users has been reported for breast (Huang et al., 2015), prostate (Liu et al., 2014), and colorectal (Ye et al., 2014) cancers, two previous

*Correspondence: SC Dixon; E-mail: Suzanne.Dixon@qimrberghofer.edu.au

Received 7 August 2016; revised 9 December 2016; accepted 4 February 2017; published online 28 March 2017

© 2017 Cancer Research UK. All rights reserved 0007 – 0920/17

www.bjcancer.com | DOI:10.1038/bjc.2017.68
observational studies of ovarian cancer found no evidence that pre-diagnosis aspirin, NA-NSAID, or acetaminophen use was associated with survival (Minikel et al., 2015; Nagle et al., 2015). However, both studies were underpowered to detect the likely modest effects. One trial reported no short-term (median follow-up of 34 months) survival advantage among women with advanced ovarian cancer when a NA-NSAID was added to standard chemotherapy, but did not examine long-term outcomes (Reyners et al., 2012). Interestingly, a preliminary report (published as a conference abstract) has suggested that NSAID use post-diagnosis may be associated with improved survival (Poole et al., 2016). We used data from a large international consortium to examine the association between pre-diagnosis use of common analgesics and survival after a diagnosis of ovarian cancer. We hypothesised that NSAID users would experience a survival benefit compared to non-users.

Study population
We pooled data from 12 case–control studies, which included 7694 women with invasive epithelial ovarian tumours, aged <85 years at diagnosis (Supplementary Table 1). Cancers of unknown behaviour (n = 93 high grade; n = 25 low grade) were assumed to be invasive (Trabert et al., 2014). Most women (59%) had serous cancers; 5%, 15%, and 8% had mucinous, endometrioid, and clear cell cancers, respectively. Most cancers (63%) had distant spread.

Exposure, outcome, and covariates
Studies provided data on self-reported pre-diagnosis analgesic use (Supplementary Table 2; studies provided data on exposure, outcome, and covariates. Site-specific HRs for OS were combined using random-effects meta-analysis. I² and P-values for heterogeneity (from chi-square tests) were inspected to assess inter-study heterogeneity. Associations between analgesic use and progression-free (PFS) and disease-specific survival (DSS) were estimated from single models, stratified by study, to maximise power. In the same manner we included in ‘aspirin’ and ‘any NSAIDs’ (aspirin plus non-aspirin) analyses. Regular use was defined as at least once per week vs less often. Frequency, dose, and duration information was available for seven, three, and nine studies, respectively (Table 1). Studies provided data on vital status and time from diagnosis to death or end of follow-up. Disease recurrence/progression (from 3 studies) and cause of death (two studies) was known for 28% and 12% of women, respectively. Ethnicity, smoking status, education, body mass index (BMI), tumour stage, and residual disease was known for 99.8%, 89%, 87%, 92%, 99%, and 24% of women, respectively.

Statistical analysis
Using Cox proportional hazards regression, we obtained hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between analgesic use and overall survival (OS) in each study. Potential confounders were selected a priori. We did not adjust for treatment type because treatment cannot influence pre-diagnosis analgesic use (as treatment occurs later) and these data were only available for 25% of the cohort. Main models were adjusted for age, education, and ethnicity. Survival time was left-truncated at recruitment to minimise potential bias from eligible women dying before they could be enrolled. Following proportional hazards assumption checking (inspecting covariate associations with survival over time), we re-ran models including covariate*time interactions where these interactions were statistically significant (two studies). As the resulting estimates were virtually unchanged, final models did not include these interactions. Site-specific HRs for OS were combined using random-effects meta-analysis. I² and P-values for heterogeneity (from chi-square tests) were inspected to assess inter-study heterogeneity. Associations between analgesic use and progression-free (PFS) and disease-specific survival (DSS) were estimated from single models, stratified by study, to maximise power. In the same manner we
conducted analyses stratified by characteristics likely to modify the association (age, BMI, and disease stage).

This analysis and each contributing study received approval from the appropriate institutional review board/ethics committee. All participants provided written informed consent.

RESULTS

Population characteristics. Mean age at diagnosis was 58 years, 88% of women were non-Hispanic white, and 27% were tertiary-educated. Of the 7694 women, 17%, 23%, and 18% had regularly used aspirin, NA-NSAIDs, and acetaminophen, respectively (Supplementary Table 1). Median follow-up (using reverse Kaplan-Meier (Schemper and Smith, 1996)) was 8.0 years. Over half the women (n = 4273, 56%) died and 5-year survival was 55% (Supplementary Table 1), yielding 90% power to detect a HR = 0.90 for NSAID users. Among studies with progression/cause-of-death information, 73% of women experienced progression and 95% of deaths were from ovarian cancer.

Primary results. Regular use of analgesics was not associated with OS (pHRs (95% CI): aspirin 0.96 (0.88–1.04); NA-NSAIDs 0.97 (0.89–1.05); any NSAIDs 0.94 (0.86–1.03); acetaminophen 1.01 (0.93–1.10)), nor were frequency, dose, or duration of use (Table 1; Figure 1). There was no significant inter-study heterogeneity (Figure 1). Additional adjustment for tumour stage and grade, residual disease, BMI and smoking status did not appreciably alter effect estimates. Cross-classifying frequency by dosage (among five studies with data) did not demonstrate consistent associations, and long-term (≥5 years) daily use was not associated with survival. Truncating follow-up at five years (when most deaths would be cancer-related) did not affect results. No significant associations were observed with PFS (any NSAIDs, HR = 0.96; 95% CI 0.80–1.14) or DSS (HR = 0.98; 95% CI 0.82–1.17). There was no significant variation by tumour histology (Table 2; P-interaction = 0.3–0.7). Excluding the two studies which had previously examined this association (Minlikeeva et al, 2015; Nagle et al, 2015) (whose participants comprised 25% of this analysis), two studies with high survival rates (these studies recruited a number of prevalent cases), or two studies who asked only about recent use (past 5 years), did not substantially alter effect estimates.

To minimise exposure misclassification due to heterogeneous questions between studies, we repeated analyses restricted to six studies clearly defining non-use as less than once per week (Supplementary Table 3). This showed a significant survival advantage among regular users of any NSAIDs (pHR = 0.89; 95% CI 0.85–0.93).

![Figure 1](https://www.bjcancer.com/doi:10.1038/bjc.2017.68)
Figure 1. The association between regular pre-diagnosis use of common analgesic medications and overall survival following a diagnosis of invasive ovarian cancer, adjusted for age, ethnicity (if <95% of participants are of the same ethnicity), and education. (A) Aspirin, (B) non-aspirin NSAIDs, (C) any NSAIDs, (D) acetaminophen.
CI 0.82–0.98). When we excluded studies with low exposure prevalence (<10%), a similar association was seen among the eight remaining studies (including the six above; any NSAIDs HR = 0.92; 95% CI 0.85–0.99).

In stratified analyses, an inverse association between any NSAID use and survival was seen among women aged ≥60 at diagnosis (pHR = 0.90; 95% CI 0.82–0.99) or with BMI <25 kg m⁻² (0.86; 0.77–0.95). A non-significant inverse association was seen among women with early-stage (localised/regional) tumours (pHR = 0.87; 95% CI 0.74–1.04; Supplementary Table 4).

DISCUSSION

Overall, we did not find convincing evidence to support an association between use of aspirin, NA-NSAIDs, or acetaminophen prior to diagnosis and ovarian cancer survival. Although most HRs for aspirin and NA-NSAIDs were <1.0, none was statistically significant. Our results are consistent with the two previous observational studies (Minlikeeva et al, 2015; Nagle et al, 2015) examining pre-diagnosis use of NSAIDs. The relationship did not vary by histologic subtype.

Questions used to define regular use differed between studies. When we restricted analyses to a subset of studies clearly defining non-use as less than once per week (depending on the question used by each study to collect information on medication use).

<table>
<thead>
<tr>
<th>Histologic Subtype</th>
<th>Aspirin (Regular vs no regular use) (12 studies)</th>
<th>Non-aspirin NSAIDs (Regular vs no regular use) (10 studies)</th>
<th>Any NSAIDs (Regular vs no regular use) (12 studies)</th>
<th>Acetaminophen (Regular vs no regular use) (11 studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serous High-grade</td>
<td>4366 1.04 0.89–1.19 31.9 4034 0.99 0.85–1.17 26.9 4394 0.99 0.91–1.08 27.9 2425 1.01 0.90–1.13 1.5</td>
<td>605 (Regular vs no regular use) (12 studies)</td>
<td>4065 0.94 0.90–1.00 11.0 3728 1.00 0.88–1.13 30.6 4067 0.99 0.91–1.09 9.5 3933 1.01 0.91–1.12 1.8</td>
<td>1.02 0.93–1.13 1.3</td>
</tr>
<tr>
<td>Low-grade</td>
<td>625 0.71 0.68–0.77 31.2 252 1.08 0.88–1.33 12.6 277 0.99 0.85–1.15 25.6 246 1.01 0.87–2.6 34.6</td>
<td>248 0.92 0.71–1.19 0.0 287 0.88 0.77–1.02 0.0 353 0.86 0.78–0.96 0.0 209 2.17 0.82–5.74 34.2</td>
<td>1126 0.87 0.63–1.21 0.0 1000 0.93 0.69–1.27 0.0 1118 0.94 0.66–1.33 37.5 982 0.96 0.60–1.53 29.2</td>
<td>1.02 0.93–1.13 1.3</td>
</tr>
<tr>
<td>Mucinous</td>
<td>248 0.92 0.64–1.50 0.0 287 0.92 0.67–1.27 0.0 353 0.85 0.63–1.16 0.0 209 2.17 0.82–5.74 34.2</td>
<td>1126 0.87 0.63–1.21 0.0 1000 0.93 0.69–1.27 0.0 1118 0.94 0.66–1.33 37.5 982 0.96 0.60–1.53 29.2</td>
<td>248 0.92 0.42–2.01 0.0 287 1.50 0.80–2.80 0.0 353 0.86 0.49–1.48 0.0 209 2.17 0.82–5.74 34.2</td>
<td>1126 0.87 0.63–1.21 0.0 1000 0.93 0.69–1.27 0.0 1118 0.94 0.66–1.33 37.5 982 0.96 0.60–1.53 29.2</td>
</tr>
<tr>
<td>Endometrioid</td>
<td>1126 0.87 0.63–1.21 0.0 1000 0.93 0.69–1.27 0.0 1118 0.94 0.66–1.33 37.5 982 0.96 0.60–1.53 29.2</td>
<td>248 0.92 0.42–2.01 0.0 287 1.50 0.80–2.80 0.0 353 0.86 0.49–1.48 0.0 209 2.17 0.82–5.74 34.2</td>
<td>1126 0.87 0.63–1.21 0.0 1000 0.93 0.69–1.27 0.0 1118 0.94 0.66–1.33 37.5 982 0.96 0.60–1.53 29.2</td>
<td>248 0.92 0.42–2.01 0.0 287 1.50 0.80–2.80 0.0 353 0.86 0.49–1.48 0.0 209 2.17 0.82–5.74 34.2</td>
</tr>
<tr>
<td>Clear cell</td>
<td>474 1.22 0.74–2.02 14.2 452 0.87 0.50–1.53 36.2 548 1.03 0.61–1.37 43.6 392 0.93 0.37–2.33 61.6</td>
<td>1126 0.87 0.63–1.21 0.0 1000 0.93 0.69–1.27 0.0 1118 0.94 0.66–1.33 37.5 982 0.96 0.60–1.53 29.2</td>
<td>1126 0.87 0.63–1.21 0.0 1000 0.93 0.69–1.27 0.0 1118 0.94 0.66–1.33 37.5 982 0.96 0.60–1.53 29.2</td>
<td>1126 0.87 0.63–1.21 0.0 1000 0.93 0.69–1.27 0.0 1118 0.94 0.66–1.33 37.5 982 0.96 0.60–1.53 29.2</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; NSAID = nonsteroidal anti-inflammatory drug; pHR = pooled hazard ratio.

Overall, our results are consistent with two previous observational studies (Minlikeeva et al, 2015; Nagle et al, 2015) examining pre-diagnosis use of NSAIDs. The relationship did not vary by histologic subtype.

ACKNOWLEDGEMENTS

This work was supported by: the National Cancer Institute at the U.S. National Institutes of Health (K07-CA095666, K07-CA80668, K22-CA138563, N01-CN025403, N01-CN55424, N01-PC67001, N01-PC67010, P01-CA17054, P30-CA072720, P30-CA14089, P50-CA10509, P50-CA159981, R01-CA058860, R01-CA074850, R01-CA080742, R01-CA092044, R01-CA095023, R01-CA54419, R01-CA58598, R01-CA61107, R01-CA61132, R01-CA76016, R01-CA87538, R01-CA112523, R01-CA126841, R03-CA113148, and R03-CA115195); the U.S. Army Medical Research and Materiel Command (DAMD17–01–1-0729, DAMD17-02-1-0666, DAMD 17-02-1-0666, and W81XWH-10-1-0280); the National Health and Command (DAMD17–01–1–0729, DAMD17-02-1-0666, DAMD 17-02-1-0666, and W81XWH-10-1-0280); the National Health and Research Councils of Queensland, Victoria, New South Wales, South Australia and Tasmania and the Cancer Foundation of Western Australia (Multi-State Grant Applications).
Conflict of Interest

The authors declare no conflict of interest.

References

