Graphical Abstract (for review)
• Endophytes illuminate Xylariaceae circumscription and phylogenetic structure.
• Endophytes occur in lineages previously not known for endophytism.
• Boreal and temperate lichens and non-flowering plants commonly host Xylariaceae.
• Many have endophytic and saprotrophic life stages and are widespread generalists.
Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota)

Jana M. U'Ren a,*, Jolanta Miadlikowska b, Naupaka B. Zimmerman a, François Lutzoni b, Jason E. Stajich c, and A. Elizabeth Arnold a,d

a University of Arizona, School of Plant Sciences, 1140 E. South Campus Dr., Forbes 303, Tucson, AZ 85721, USA
b Duke University, Department of Biology, Durham, NC 27708-0338, USA
c University of California-Riverside, Department of Plant Pathology and Microbiology and Institute for Integrated Genome Biology, 900 University Ave., Riverside, CA 92521, USA
d University of Arizona, Department of Ecology and Evolutionary Biology, 1041 E. Lowell St., BioSciences West 310, Tucson, AZ 85721, USA

* Corresponding author: University of Arizona, School of Plant Sciences, 1140 E. South Campus Dr., Forbes 303, Tucson, AZ 85721, USA. Telephone: +1 520 626 1035; Fax: +1 520 621 7186; Email: juren@email.arizona.edu

Keywords: Daldinia loculata; endolichenic fungi; symbiosis; systematics; Xylaria cubensis; Xylariomycetidae
Abstract

The Xylariaceae (Sordariomycetes) comprise one of the largest and most diverse families of Ascomycota, with at least 85 accepted genera and ca. 1,343 accepted species. In addition to their frequent occurrence as saprotrophs, members of the family often are found as endophytes in living tissues of phylogenetically diverse plants and lichens. Many of these endophytes remain sterile in culture, precluding identification based on morphological characters. Previous studies indicate that endophytes are highly diverse and represent many xylariaceous genera; however, phylogenetic analyses at the family level generally have not included endophytes, such that their contributions to understanding phylogenetic relationships of Xylariaceae are not well known. Here we use a multi-locus, cumulative supermatrix approach to integrate 92 putative species of fungi isolated from plants and lichens into a phylogenetic framework for Xylariaceae. Our collection spans 1,933 isolates from living and senescent tissues in five biomes across North America, and here is analyzed in the context of previously published sequence data from described species and additional taxon sampling of type specimens from culture collections. We found that the majority of strains obtained in our surveys can be classified in the hypoxyloid and xylaroid subfamilies, although many also were found outside of these lineages (as currently circumscribed). Many endophytes were placed in lineages previously not known for endophytism. Most endophytes appear to represent novel species, but inferences are limited by potential gaps in public databases. By linking our data, publicly available sequence data, and records of ascomata, we identify many geographically widespread, host-generalist clades capable of symbiotic associations with diverse photosynthetic partners. Concomitant with such cosmopolitan host use and distributions, many xylariaceous endophytes appear to have both endophytic and saprotrophic life stages. Overall, our study reveals major gaps in the availability of multi-locus datasets and metadata for this iconic family, and provides new hypotheses regarding the ecology and evolution of endophytism and other trophic modes across the family Xylariaceae.
1. Introduction

Fungi are one of the most diverse and ecologically important clades of life (Hammond, 1995; Agrios, 2005), yet only a tiny fraction of their estimated diversity has been discovered and described (i.e., < 5%; Hawksworth, 1991; Hawksworth, 2001; Mueller and Schmit, 2007). Many of the ‘missing fungi’ – species filling the gap between the number thought to exist (1.5 to 9 million species, Cannon, 1997; Hawksworth, 1991; Hawksworth, 2001; O’Brien et al., 2005) and those described to date (ca. 99,000 species; Blackwell, 2011) – are microfungi living in cryptic symbioses (Agrios, 2005; Blackwell, 2011; Hawksworth, 1991; Hyde, 2001). In particular, an enormous amount of yet-unknown diversity is thought to occur as endophytes, which inhabit apparently healthy, above-ground tissue of all major lineages of land plants (i.e., Class 3 endophytes, sensu Rodriguez et al., 2009), and as endolichenic fungi, which occur in symptomless lichen thalli in close association with the photobiont (i.e., the algal or cyanobacterial partner in lichen thalli; Arnold et al., 2009; Li et al., 2007; Suryanarayanan et al., 2005; U'Ren et al., 2012; U'Ren et al., 2014).

The majority of foliar endophytes and endolichenic fungi (hereafter, globally referred to as endophytes) are members of the Pezizomycotina (see Rodriguez et al., 2009), with particular diversity in the Dothideomycetes, Eurotiomycetes, Leotiomycetes, Pezizomycetes, and Sordariomycetes (e.g., Arnold et al., 2009; Bálint et al., 2015; Chen et al., 2015; Davey et al., 2013; Tedersoo et al., 2013; U'Ren et al., 2012; U'Ren et al., 2014; Wang et al., 2006; Zimmerman and Vitousek, 2012). These endophytes occur in ecosystems ranging from hot deserts to wet forests, to arctic tundra (e.g., Arnold et al., 2009; Davis et al., 2003; Del Olmo-Ruiz and Arnold, 2014; Gazis and Chaverri, 2010; Higgins et al., 2007; Massimo et al., 2015; Suryanarayanan et al., 2011; U'Ren et al., 2012; Zimmerman and Vitousek, 2012). Individual plants and lichen thalli can harbor phylogenetically diverse endophytes, with significant turnover across the geographic ranges of their hosts (e.g., Fisher et al., 1994; Fisher et al., 1995; Higgins et al., 2014; U'Ren et al., 2012; Vaz et al., 2014; Zimmerman and Vitousek, 2012). Endophytes in plants can play important ecological roles, mediating defense against pathogens and herbivores.
and influencing host responses to abiotic stressors such as drought (Arnold et al., 2003; Arnold and Engelbrecht, 2007; Costa Pinto et al., 2000; Estrada et al., 2013; Mejia et al., 2008). They are increasingly recognized as a major source of novel metabolic products for use in medicine, agriculture, and industry (Ding et al., 2009; Deyrup et al., 2007; Fan et al., 2014; Jiménez-Romero et al., 2008; Paranagama et al., 2007; Staniek et al., 2008; Strobel et al., 1997; Strobel and Long, 1998; Wu et al., 2011) and as an important but under-studied aspect of plant and lichen biology.

Studies over the last four decades have revealed an extremely high richness of xylariaceous endophytes (Xylariales, Sordariomycetes, Pezizomycotina) (e.g., Petrini and Petrini, 1985; Rogers, 2000). They inhabit the living tissues of phylogenetically diverse plants, including conifers, angiosperms, ferns, lycophytes, and bryophytes in a diverse range of biogeographic provinces (e.g., Arnold et al., 2009; Brunner and Petrini, 1992; Carroll and Carroll, 1978; Davey et al., 2014; Davis et al., 2003; Del Olmo-Ruiz and Arnold, 2014; Higgins et al., 2007; Okane et al., 2012; Petrini and Petrini, 1985; Petrini et al., 1995). They also occur frequently in taxonomically diverse lichens encompassing diverse growth forms (e.g., foliose, fruticose, crustose) and substrates (e.g., terricolous, saxicolous, epiphytic) (Arnold et al., 2009; Petrini and Petrini, 1985; Suryanarayanan et al., 2005; Wu et al., 2011). Some xylariaceous endophytes persist in leaf litter, reflecting abilities to decompose lignocellulose and the capacity of some species to directly infect decaying leaves, potentially circumventing the need for an endophytic life stage (Osono, 2002; 2005; 2006).

Many endophytic Xylariaceae remain sterile in culture or reproduce only asexually on standard media (Stadler et al., 2013), precluding identification based on teleomorphic characters such as stromata features and ascospore number (see Petrini and Petrini, 1985; Rogers, 1979a; 2000; Rogers et al., 2002). Anamorphic cultures can be classified based on conidiophore branching and the nature of conidiogenous cell proliferation (Ju and Rogers, 1996), as well as cultural characteristics such a growth rates and color (Petrini and Petrini, 1985). However, anamorphic characters alone often lack sufficient information for species-level identification (Petrini and Petrini, 1985; Stadler et al., 2013). As a result, estimates of species boundaries and

4
taxonomic placement of endophytes frequently are assigned on the basis of BLAST comparisons of barcode sequences (i.e., nuclear ribosomal internal transcribed spacers and 5.8S; ITS rDNA) in GenBank. This approach is often problematic due to inconsistencies in levels of interspecific ITS rDNA variation among taxonomic groups (Nilsson et al., 2008), misidentified sequences in public databases (Bridge et al., 2003; Harris, 2003; Peršoh et al., 2009; Vilgalys, 2003), and problems posed by under-representation of fungal biodiversity in public databases, such that the closest named BLASTn hit is not always the closest relative (see Gazis et al., 2012; U’Ren et al., 2009). Misassignment of unknown sequences can erroneously expand or contract the family concept over time, alter taxonomic concepts for genera and species (e.g., Xylaria hypoxylon; see Peršoh et al., 2009), and confound ecological inferences for newly discovered strains for which only ITS rDNA or other single-locus data are available.

As currently circumscribed, Xylariaceae comprise one of the largest and most diverse families of filamentous Ascomycota, with at least 85 accepted genera and an estimated 1,343 accepted species (Eriksson, 2006; Kirk et al., 2008; Stadler et al., 2013). Traditionally two subfamilies are recognized: Hypoxyloideae and Xylarioideae (Dennis, 1961). Currently recognized species include saprotrophs occurring in wood, litter, soil, and dung, and a few plant pathogens that cause canker diseases (e.g., Entoleuca mammata on Populus), root rots (e.g., Xylaria mali on Malus), and needle blight (e.g., Hypoxylon herpotrichoides on Pseudotsuga and Picea) in agricultural and natural systems (Edwards, 2003; Martin, 1967; Rogers, 1979a; 2000; Rogers and Ju, 1996; Whalley, 1985). Although several described species are close matches with endophytes in BLAST comparisons of ITS rDNA sequences, the taxonomic placement of those endophytic isolates rarely is investigated based on multi-locus phylogenetic analyses (but see Bills et al., 2012; Pažoutová et al., 2010b; Visser et al., 2009). To our knowledge, few novel species of Xylariaceae have been described solely as endophytes from anamorphic cultures (but see Worapong et al. [2001] and González et al. [2009] for description of Muscodor spp.).

Given the captivating ascomata morphologies (i.e., spore-bearing structures resulting from sexual reproduction) and ecological importance of Xylaria and related taxa, the Xylariaceae have long received attention from mycologists. A particularly rich tradition of morphological
systematics (e.g., Dennis, 1957; Hawksworth and Whalley, 1985; Ju et al., 1993; Ju and Rogers, 1996; Ju et al., 1998; Læssøe et al., 1989; Miller, 1961; Möller, 1901; Pouzar, 1985a; 1985b; Rogers, 1981; Rogers and Ju, 1996; Rogers et al., 1997a; 1997b) is increasingly complemented by chemotaxonomic (e.g., Fournier et al., 2010; Læssøe et al., 2010; 2013; Stadler and Fournier, 2006; Stadler et al., 2008; 2010) and molecular approaches (e.g., Bills et al., 2012; Hsieh et al., 2005; 2010; Jaklitsch et al., 2014; Peršoh et al., 2009; Whalley, 1996). Several genera have been updated or monographed recently (e.g., Daranagama et al., 2015; Rogers et al., 2002; Peršoh et al., 2009; Stadler et al., 2014) and NCBI contains nucleotide data for >3,000 isolates representing ca. 442 recognized species (as of August 2015). Phylogenetic analyses support monophyly of the family as presently circumscribed (Tang et al., 2009), but numerous studies suggest that many recognized genera and species may not be monophyletic (see Daranagama et al., 2015; Hsieh et al., 2005; 2010; Pažoutová et al., 2010b), and many genera require taxonomic revisions (Stadler et al., 2013). Integrating previously unknown strains into a robust phylogenetic framework for the Xylariaceae can provide insight into the taxonomic circumscription at the family and infrafamilial levels, illustrate previously unknown connections between anamorphic and teleomorphic species, and inform evolutionary relationships, host ranges, distributions, major ecological modes, and diversity of major clades, previously known taxa, newly found strains, and the family as a whole.

The goal of this study was to address the impact of a large collection of endophytic and saprotrophic fungi on the circumscription of the Xylariaceae and infrafamilial taxa. Our work takes advantage of 1,933 newly cultured isolates representing 92 putative species, which were collected from living photosynthetic tissues of angiosperms, conifers, ferns, lycophytes, bryophytes, and lichens, as well as senescent and decomposing leaves of selected woody plants in five biomes across North America (U'Ren et al., 2010; 2012). Here, we place these strains in a multi-locus phylogenetic framework in conjunction with additional sequencing of type specimens from culture collections and previously published sequence data from described species. We then address the following questions: (1) Does the inclusion of newly cultured isolates alter current phylogenetic hypotheses regarding the delimitation of Xylariaceae and the relationships and circumscription of xylariaceous taxa? (2) What is the classification of these isolates? (3) Do they
represent novel species or anamorphs of previously described teleomorph species? (4) How can these cultures expand our knowledge of the host affiliations, substrate use, geographic distribution, and phylogenetic diversity of the Xylariaceae? In addressing these questions we provide an overview of currently available metadata for members of the Xylariaceae, and highlight emergent patterns regarding ecological modes across this diverse, important, and morphologically compelling family.

2. Materials and Methods

2.1. Field surveys

As part of a larger study investigating the diversity and distributions of endophytic fungi, living leaves and healthy lichen thalli were collected systematically in five sites representing distinct environmental, biological, and biogeographic regions across North America (U'Ren et al., 2012). Sites were located in the Madrean Sky Island Archipelago of southeastern Arizona (AZC); the Appalachian Mountains of western North Carolina (NCH); sub-tropical scrub forest in Florida (FLA); Beringian tundra and boreal forest in the Seward Peninsula ecoregion of western Alaska (AKN); and inland, subalpine tundra in the Interior Highlands of east-central Alaska (AKE).

Endophytes were cultured from surface-sterilized tissues of living, apparently healthy plants (angiosperms, conifers, lycophytes, ferns, and bryophytes) and lichens (with diverse mycobionts, substrates, and growth forms) as described in U'Ren et al. (2012). In each site fungi also were cultured concurrently from surface-sterilized tissues of senescent leaves in the canopy of selected woody plants (i.e., dead plant leaves, DP) and leaf litter (i.e., fallen leaves of the same species, FP) (U'Ren et al., 2010; U'Ren, 2011). Classifying fungi broadly as “endophytes” or “saprotrophs” based on the condition of the tissue from which they are isolated is insufficient to adequately define their ecological roles (U'Ren, 2011). However, for the purposes of this study fungal OTU isolated from living host tissues (either plant or lichen) are referred to as endophytes (even if isolates were found in non-living tissues as well), whereas fungal OTU isolated only from
non-living plant tissues (i.e., DP and/or FP) are referred to as saprotrophs. Each isolate is maintained as an axenic voucher in sterile water at the Robert L. Gilbertson Mycological Herbarium at the University of Arizona (ARIZ) (Supplemental Table 1).

2.2. Sequencing the ITS-partial LSU rDNA of field-collected strains

Overall, the field surveys described above generated 6,784 cultures, which were screened by DNA sequencing for preliminary taxonomic placement. Methods for DNA extraction, PCR amplification, DNA sequencing and sequence editing followed U'Ren et al. (2010). Briefly, DNA was extracted from each isolate using phenol:chloroform:IAA (Arnold and Lutzoni, 2007). The nuclear ribosomal internal transcribed spacers and 5.8S (i.e., ITS rDNA) were amplified by PCR with ca. 500 bp of the adjacent nuclear ribosomal large subunit (LSU rDNA) as a single fragment using primers ITS1F/LR3 or ITS5/LR3 (Gardes and Bruns, 1993; Vilgalys and Hester, 1990; White et al., 1990). Amplicons were sequenced bidirectionally with the above primers using Applied Biosystems BigDye® Terminator v3.1 cycle sequencing kits (Applied Biosystems 3730xl DNA Analyzer; Foster City, CA, USA) at the University of Arizona Genetics Core. The software applications phred and phrap (Ewing and Green, 1998; Ewing et al., 1998) were used to call bases and assemble contigs with automation provided by the ChromaSeq package in Mesquite (Maddison and Maddison, 2011; http://mesquiteproject.org). Base calls were verified by visual inspection of chromatograms in Sequencher v. 4.5 (Gene Codes, Ann Arbor, MI).

Sequences were assembled into groups by first generating a distance matrix in ESPRIT (Sun et al., 2009) based on pairwise Needleman-Wunsch alignments for all sequence pairs with k-mer distances less than 0.5, followed by clustering using the furthest neighbor algorithm in mothur (Schloss et al., 2009). Groups were defined by 100%, 99%, and 95% sequence similarity as a proxy for delimiting genotypes (100%, 99%) and putative species (95%) following U'Ren et al. (2009) and Liggenstoffer et al. (2010). A single representative sequence for each 95% similarity group (hereafter, operational taxonomic unit, OTU) was queried against the curated ITS rDNA sequence database at the Alaska Fungal Metagenomics Project.
(http://www.borealfungi.uaf.edu/) using BLASTn (Altschul et al., 1990) to estimate taxonomic affiliation. Overall, 92 OTU and 245 unique genotypes (based on 95% and 100% sequence similarity, respectively) had top BLASTn hits to taxa identified as Xylariaceae. These OTU comprise a total of 1,933 isolates (Supplemental Table 1).

2.3. Multi-locus sequencing of field-collected strains

A single isolate from each 95% OTU (with the exception of one OTU with two isolates in different 99% OTU) was selected for morphological examination and multi-locus sequencing (Table 1). The resulting set of 92 OTU included 39 OTU (131 isolates) found only in living plant tissues or lichen thalli (i.e., endophytes), 44 OTU (1,780 isolates) found in both living tissues and dead or fallen leaves (here, treated as endophytes), and 9 OTU (22 isolates) found only in dead or fallen leaves (here treated as saprotrophs).

Based on previously published multi-locus studies of Hypoxiloideae (Hsieh et al., 2005) and Xylarioideae (Hsieh et al., 2010), we focused on three protein-coding genes (β-tubulin, α-actin and RPB2). β-tubulin and α-actin were amplified by PCR using primer pairs T1/T22 or T11/T22 (O’Donnell and Cigelnik, 1997) and ACT-512F/ACT-783R (Carbone and Kohn, 1999), respectively. Approximately 1 kb of the gene encoding the RNA polymerase II second-largest subunit (RPB2) was amplified with the primer pair fRPB2-5F/ fRPB2-7cR (Liu et al., 1999). Each 25 μl reaction contained a final concentration of 5 ng of genomic DNA, 0.6 μM forward and reverse primers, 0.08 mg/ml Bovine serum albumin (BSA), and 1X REDTaq ® ReadyMix (Sigma-Aldrich, St. Louis, MO, USA). Because the majority of samples (i.e., 63 out of 92) failed to amplify using previously published PCR protocols for RPB2 (Liu et al., 1999) we performed a two-step touchdown PCR following U’Ren et al. (2007) for the remaining isolates. After initial denaturation at 94°C for 5 min, 30 cycles of touchdown PCR were performed (denaturation at 94°C for 1 min, annealing for 1 min with a 0.5°C/cycle decrement starting at 60°C, and an extension at 72°C for 1 min), followed by 20 cycles of regular PCR (95°C for 1 min, 45°C for 1 min, 72°C for 1 min, and a final extension step for 5 min at 72°C). After an initial β-tubulin PCR with eight isolates
revealed no amplification with previously published protocols (O’Donnell and Cigelnik, 1997), the two-step touchdown protocol was used to amplify all isolates. Negative controls, which contained all components except DNA templates, were included in parallel.

PCR products were evaluated by staining with SYBR Green I (Molecular Probes, Invitrogen, Carlsbad, CA, USA) after electrophoresis on a 1% agarose gel. When positive amplicons yielded single bands, PCR products were sequenced directly as described below.

When isolates displayed multiple bands or weak amplification, PCR products were cloned using the Strataclone PCR Cloning Kit (Stratagene, La Jolla, CA, USA) according to the manufacturer’s instructions, except that one-half the recommended reagent volumes were used for each reaction. After blue/white screening, successfully transformed colonies were transferred to new plates and incubated an additional 24 h to increase colony size. Five positive clones per isolate were amplified in secondary PCR with primers M13F and M13R. Up to five amplicons per isolate were selected for sequencing. PCR products were cleaned by adding 1 μl of ExoSAP-IT (Affymetrix, Santa Clara, CA, USA) to 20 μl of PCR product and incubating for 60 min at 65°C followed by 15 min at 85°C. Following a 1:2 dilution, PCR products (either directly from initial PCR or from secondary PCR from cloning) were sequenced and edited as described above.

Bidirectional sequences were assembled and edited as described above. Edited consensus sequences were queried against NCBI using BLASTn to estimate taxonomic placement. Protein-coding sequences were subject to a BLASTx search to determine the reading frame and the start/stop positions of each exon when applicable (i.e., β-tubulin and α-actin). All sequences generated from cultures have been deposited in GenBank under accession numbers XXXXX-XXXXX.

2.4. Sampling of previously described taxa

Available sequence data (as of January 2015) for ITS rDNA, LSU rDNA, β-tubulin, α-actin, and RPB2 were downloaded from NCBI or the AFToL database (www.aftol.org) for 293 species (representing 429 accessions) of Xylariomycetidae. These species represent families of
Xylariales proposed by Smith et al. (2003) and revised by Senanayake et al. (2015), providing the basis for establishing the family boundaries of Xylariaceae: Apiosporaceae (2 species), Cainiaceae (1 species; see Jeewon, 2002), Diatrypaceae (32 species), Graphostromataceae (1 species), Hyponectriaceae (4 species), Lopadostomaceae (1 species), Pseudomassariaceae (1 species), Xylariaceae (208 species), as well as Xylariales incertae sedis isolates (6 species) (Supplemental Table 2). Several putative members of Xylariales were not included due to a lack of sequence data for protein-coding genes: Coniocessiaceae (García et al., 2006), Vialaeaceae (Shoemaker et al., 2013), Melogrammataceae (see Senanayake et al., 2015), and Iodosphaeriaceae (see Senanayake et al., 2015). Families previously classified within Xylariales, but recently proposed for placement in the Amphisphaeriales, also were included (Amphisphaericiaceae [33 species] and Clypeosphaeriaceae [4 species]; Supplemental Table 2; see Senanayake et al., 2015). Ophiostoma ulmi, O. piliferum, and O. stenoceras were used to root the tree following Huhndorf et al. (2004) and Tang et al. (2007).

In addition, 26 putative species of Xylariaceae were obtained from the Centraalbureau voor Schimmelcultures (CBS) Fungal Biodiversity Centre (Utrecht, Netherlands; Supplemental Table 2). Cultures were chosen to represent genera and species that were lacking molecular data in public databases at the time (June 2011), focusing on major clades of Xylariaceae. On receipt, cultures were immediately plated on 2% malt extract agar and grown at room temperature for 1-2 weeks. Once sufficient mycelium was present, DNA was extracted and ITS rDNA-partial LSU rDNA, β-tubulin, α-actin, and RPB2 were PCR-amplified and sequenced as described above. Sequence data for these CBS isolates have been deposited in GenBank under accession numbers XXXX-XXXX (Supplemental Table 2).

2.5. Sequence alignment and topological incongruence tests

ITS rDNA and ITS-partial LSU rDNA sequences were analyzed using Fungal ITS extractor (Nilsson et al., 2010) to create separate fasta files for ITS1, 5.8S, ITS2, and LSU rDNA. LSU rDNA sequences were aligned according to the secondary structure of Saccharomyces.
cerevisiae as described in Miadlikowska et al. (2006). 5.8S sequences were aligned with MUSCLE 3.8.31 (Edgar, 2004) using default parameters and then edited manually. Alignments for protein-coding genes were first done at the amino acid level using MUSCLE as implemented in Mesquite (Maddison and Maddison, 2011). Aligned amino acids for β-tubulin, α-actin and RPB2 were then back-translated to obtain nucleotide alignments and manually adjusted using the “Nucleotide with AA color” option in Mesquite. For LSU and RPB2, ambiguously aligned nucleotides (sensu Lutzoni et al., 2000) were delimited manually and excluded from subsequent analyses (Supplemental Table 3). ITS1 rDNA, ITS2 rDNA, and introns from β-tubulin were too divergent to be reliably aligned at such a broad taxonomic level; therefore, we tested the impact of excluding these regions vs. including them in analyses after recoding as non-DNA characters using Principal Coordinates Analysis (PCoA) as implemented in PICS-Ord (Lücking et al., 2011).

Preliminary maximum likelihood (ML) analyses were performed on a total of six single-locus datasets (recoded ITS1, 5.8S, and recoded ITS2 rDNA; 5.8S rDNA; LSU rDNA; RPB2; β-tubulin exons; and β-tubulin exons plus recoded introns) at the nucleotide level using RAxMLHPC-MPI-SSE3 version 7.7.6 (Stamatakis, 2006) on the Mobyle SNAP Workbench version 1.0.5 (Monacell and Carbone, 2014). Optimal tree and bootstrap searches were conducted with the default rapid hill-climbing algorithm for 1000 replicates with GTR substitution model (Rodríguez et al., 1990) and gamma distribution approximated with four categories in all analyses. Recoded ITS1 rDNA, ITS2 rDNA, and introns from PICS-Ord were analyzed as unordered characters with the GTR substitution model following recommendations in Lücking et al. (2011). For each protein-coding gene, subsets of partitions were defined with the program PartitionFinder v.1.1.0 (Lanfear et al., 2012), the greedy search option, and the Bayesian information criterion (BIC) for model selection.

To identify topological incongruence among the resulting single-locus trees, a reciprocal 70% ML bootstrap support criterion was applied (Mason-Gamer and Kellogg, 1996). Briefly, a conflict was considered significant if taxa in a strongly-supported monophyletic clade (i.e., with ≥70% bootstrap value) based on one locus were strongly supported as non-monophyletic (i.e., ≥70% bootstrap value) in another single-locus tree. No significant conflict was detected between
single-locus tree topologies with and without recoded data (i.e., β-tubulin exons vs. β-tubulin exons plus recoded introns; ITS1 rDNA, ITS2 rDNA recoded plus 5.8S rDNA vs. 5.8S rDNA only), thus the single-locus alignments including the recoded data were concatenated into a single supermatrix for phylogenetic analyses.

2.6. Phylogenetic analyses to delimit Xylariaceae and place newly cultured strains within Xylariomycetidae

The following seven subsets (obtained with PartitionFinder) were analysed with RAxML as described above to infer relationships within Xylariomycetidae: (1) 5.8S, β-tubulin first codon position, and LSU rDNA; (2) RPB2 first codon position; (3) RPB2 second codon position; (4) RPB2 third codon position; (5) β-tubulin second codon position; (6) β-tubulin third codon position; and (7) recoded ITS1 rDNA, ITS2 rDNA, and β-tubulin introns. The final concatenated dataset for Xylariomycetidae containing 520 terminal taxa (including three Ophiostoma spp. as the outgroup) has been deposited in TreeBASE (XXXXX). Sequences for α-actin were not included in these analyses because they were not available in GenBank for Xylariomycetidae representatives other than Xylariaceae.

Once the taxonomic boundaries for Xylariaceae were estimated using this concatenated supermatrix for Xylariomycetidae (Supplemental Fig. 1), non-Xylariaceae taxa were removed from each alignment (except Diatraceae disciformis and Eutypa lata, which were chosen to root subsequent trees based on the topology of the Xylariomycetidae phylogeny and the availability of multi-locus data; Supplemental Fig. 1; Supplemental Table 2). Although preliminary analyses placed Graphostroma platystoma (the sole species in Graphostromataceae; Barr et al., 1993) in a well-supported clade with Biscogniauxia arima, B. marginata, B. granmo, and B. simplicior (a placement that agrees with morphological similarity between anamorphs of G. platystoma and hypoxylloid Xylariaceae), it was removed due to uncertainty regarding its affinities to Xylariaceae (see Senanayake et al., 2015) and low quality sequence data for non-ribosomal loci (see Supplemental Table 2). Additionally, isolates considered previously to be within the Xylariaceae,
but which appeared outside of the monophyletic Xylariaceae in these analyses, also were removed (i.e., *Anthostomella torosa*, *Dicyma funiculosa*, *D. pulvinata*, and 13 newly isolated OTU tentatively identified as Xylariaceae based on BLASTn; Supplemental Tables 1-2; Table 1).

Because analyses were performed prior to the reclassification of *Seynesia* in the Cainaceae (see Senanayake et al., 2015), these analyses included *Seynesia erupens* as well as two endophyte OTU (clades E1-E2) that are potentially outside Xylariaceae. As described below, their resulting placement is not in conflict with recent studies (see Senanayake et al., 2015).

2.7. Phylogenetic analyses of Xylariaceae using a cumulative supermatrix approach

When taxon sampling was narrowed to focus on putative Xylariaceae, a total of 79 putative species defined at 95% ITS-partial LSU rDNA sequence similarity from our collections (representing 1,815 isolates total) remained in the analysis. The family-level focus decreased the prevalence of ambiguous regions in the *RPB2* and LSU rDNA alignments, and alignments were adjusted to gain additional phylogenetically informative characters (Supplemental Table 3). For each individual locus, ML analyses and assessment of topological incongruence were performed as described above. No significant conflict was detected between single locus tree topologies with and without recoded data, such that all recoded data were kept in the concatenated dataset. However, conflict among different loci resulted in the removal of seven taxa (FL0975, NC1612, *Nemania diffusa* AT-113, *N. aenea* JF02118, *N. serpens* AT-114, *N. chestersii* JF04024, and *Xylaria* sp. XT09003). For four additional taxa, single sequences that were in conflict with other loci were removed (*RPB2* FL0933; β-tubulin FL0016, FL0804, and *Xylaria escharoidea* 658; Supplemental Table 4). Conflicting sequences potentially represent alternative copies of β-tubulin (see Keeling et al., 2000; Landvik et al., 2001) or contaminants. After removing conflicting sequences single-locus analyses were repeated to assess congruence. Following the assessment of congruence, the single-locus alignments were concatenated into a single supermatrix for subsequent ML analysis. The supermatrix contained 77 putative species (representing 1,778 isolates total and 78 terminal taxa) from our collections as well as
209 previously described taxa. DNA partitions for the five-locus supermatrix were analyzed in PartitionFinder using the parameters described above. The following seven subsets were specified for the RAxML analysis: (1) α-actin first codon position, α-actin second codon position, and β-tubulin second codon position; (2) third codon position for both α-actin and β-tubulin; (3) 5.8S rDNA, α-actin introns (for which 15 bp could be reliably aligned), β-tubulin first codon position, and LSU rDNA; (4) RPB2 first codon position; (5) RPB2 second codon position; (6) RPB2 third codon position; and (7) recoded β-tubulin introns, α-actin introns, ITS1 rDNA and ITS2 rDNA. The final concatenated alignment containing 367 terminal taxa has been deposited in TreeBASE (XXXXX).

Because only a subset of taxa within Xylariaceae were represented by all five loci (Table 1; Supplemental Table 2), we examined the effect of adding taxa with an increasing amount of missing data using a cumulative supermatrix approach (following Miadlikowska et al. 2006; 2014; and Gaya et al., 2012). Four individual datasets were analyzed: (1) taxa containing a minimum of four loci (i.e., taxa with 5 loci sequenced + taxa with 4 loci sequenced, i.e., hereafter refer to as 5 + 4); (2) taxa containing a minimum of three loci (i.e., 5 + 4 + 3); (3) taxa containing a minimum of two loci (i.e., 5 + 4 + 3 + 2); and (4) all taxa (5 + 4 + 3 + 2 + 1). For each dataset, the appropriate partition subsets were defined with PartitionFinder using the parameters described previously. The subsets for the first and third datasets were the same seven as used for the supermatrix containing all taxa (i.e., 5 + 4 + 3 + 2 + 1 dataset; see above). The 5 + 4 + 3 data set had an additional subset for the third codon position of β-tubulin (Supplemental Table 5).

ML analyses for all four datasets were conducted with RAxML as described above. Majority-rule consensus trees (70%) were built in Mesquite based on sets of 1,000 bootstrap trees generated with RAxML for the four concatenated datasets. The Mesquite module Hypha (Oliver et al., 2013; see also Miadlikowska et al., 2014) was used to integrate support values derived from all applicable consensus trees onto each internode of the best tree derived from the complete concatenated dataset (i.e., 5 + 4 + 3 + 2 + 1) (Fig. 1). No significant conflict was detected among these trees except at the very tip of the H1 clade (Fig. 1).
Phylogenetic diversity (i.e., the sum of all the edge lengths in the subtree given by the tip subset; PD) of Xylariaceae taxa was calculated in R (R Core Team) with the package caper (Orme et al., 2013) and the topology generated from ML analysis of the $5 + 4 + 3 + 2 + 1$ supermatrix. To assess whether newly collected isolates significantly increased the phylogenetic diversity of the Xylariaceae, PD was calculated 1,000 times for subsets of 286 taxa (77 newly collected OTU plus a random selection of 209 previously named Xylariaceae taxa), which is equal to the total number of previously named Xylariaceae taxa in the tree. The observed PD of all previously named Xylariaceae taxa was compared to this distribution to generate a distribution-independent p-value (Supplemental Fig. 2). The R code is available at XXXX.

2.8. Comparison of newly collected strains with known taxa

To assess the potential novelty of newly cultured isolates when the topology of the tree alone is inconclusive, we compared ITS rDNA sequences of taxa present in the Xylariaceae tree (when available) to ITS rDNA sequence data for 205 Xylariaceae taxa identified to species but not represented in the multi-locus dataset due to lack of sequences for non-ITS rDNA loci in NCBI (Supplemental Table 6). Sequences were clustered into OTU at 95%, 97%, 99% and 100% using ESPRIT and mothur following methods described above (see also U'Ren et al. 2012 for methods). These data were used to assess the number of cases in which a newly cultured taxon was found within the same 95% OTU as a named taxon (see Table 1; Fig. 2).

2.9. Examining host breadth, substrate diversity, and geographic distribution of Xylariaceae

We next identified taxa from previously published studies that are closely related to taxa in our final data set. Most Xylariaceae are not represented by multiple loci in GenBank; instead, they are represented (when present) by ITS rDNA sequences. We accessed this larger sampling to address questions with regard to host breadth, substrate diversity, and geographic distribution across the multi-locus phylogenetic framework developed here.
ITS rDNA sequences for newly cultured isolates from our continental surveys, as well as reference taxa, were queried against NCBI's nr database using an e-value cutoff of 1×10^{-3}. The output was filtered to remove self hits, accessions from U'Ren et al. (2010; 2012), and hits with percent identity <99%. If the same accession was a hit for multiple taxa, the hit with the highest bit score was selected and the duplicate removed. A small fraction of BLASTn hits representing sequences from uncultured isolates (i.e., clones or next-generation sequences) also were excluded ($n = 24$; 1.9% of filtered hits).

From the list of filtered accession numbers, the geographic origin, host lineage (e.g., Angiosperm), and substrate information (e.g., surface sterilized leaf) for each isolate were extracted from the respective metadata in GenBank and parsed using custom scripts (XXXX) (Supplemental Tables 7-8). In the cases of missing metadata, information was gathered (when possible) from manuscripts in which the sequences were published. Information on geographic distribution, host, and substrate for reference taxa also was collected from published species descriptions and online resources (Supplemental Table 9).

To visualize metadata in a phylogenetic framework, information for each terminal taxon was classified into broadly defined categories (Fig. 2). Categories for provenance included (1) U.S., Canada; (2) Mexico, South/Central America, Caribbean; (3) Europe, Russia; (4) Asia; and (5) "Other" (e.g., Hawaii, Australia, New Zealand, Papua New Guinea, Africa, the Middle East, and Antarctica, grouped as "other" due to a paucity of metadata from those sites). Isolates from the Hawaiian Islands were included in "other" rather than U.S./Canada due to their geographical isolation from the continental U.S. Categories for host breadth included (1) angiosperm; (2) "gymnosperm" (i.e., Pinophyta and Ginkgo biloba); (3) spore-bearing vascular plant (i.e., lycophytes and ferns); (4) bryophyte (i.e., mosses and liverworts) and (5) lichen (LT). Substrate categories included (1) living plant leaves or non-woody stems (LP); (2) dead plant leaves in canopy (DP); (3) fallen plant leaves in leaf litter (FP); (4) wood/bark; (5) root; (6) seed; (7) soil; (8) insect-associated; and (9) fallen fruits/inflorescences (Fig. 2). Data for each isolate were added to the phylogenetic tree using a custom R script (XXXX).

17
2.10. Macromorphological characterization of newly collected strains

Newly collected isolates representing each putative species were subcultured from water vouchers onto 2% MEA (20 g/L of malt extract [Amresco, Solon, OH, USA] and 15 g/L of agar [Fisher Scientific, Pittsburgh, PA, USA]) and grown at room temperature under ambient light conditions. To verify the identity of each isolate prior to macromorphological characterization, DNA was extracted from each culture using the RedExtract-N-Amp Plant Kit (Sigma-Aldrich) following a modified protocol. Under sterile conditions a small piece of mycelium was placed in a 1.5 ml tube with 100 μl of extraction buffer and 100 μl of 0.5 mm zirconium oxide beads (Next Advance, Averill Park, NY, USA). After bead-beating for 1 min, the mycelium was incubated for 10 min at 95°C, after which 100 μl of dilution solution was added and the solution was vortexed briefly. DNA was stored at -20°C until used for PCR. The ITS-partial LSU rDNA was amplified by PCR with the primer pair ITS1F/LR3 using RedExtract-N-Amp PCR Ready Mix (Sigma-Aldrich, St. Louis, MO, USA) following the manufacturer's recommendations and the PCR protocol described in Arnold et al. (2007). PCR products were visualized and sequenced as described above. Sequences were verified as 100% identical to expected sequences for each strain. After verification, a 5 mm wide plug of each culture was transferred to 2% oatmeal agar (OA) plates to induce sporulation (Ju et al., 2005). Cultures were grown under ambient light/dark condition at room temperature (ca. 21.5°C) for up to six months before colony morphology was photographed (Supplemental Fig. 3).

3. Results and Discussion

In addition to well-known saprotrophs, previous studies have revealed numerous endophytic Xylariaceae in biomes ranging from high latitudes to the tropics (e.g., Arnold et al., 2009; Brunner and Petrini, 1992; Carroll and Carroll, 1978; Davey et al., 2014; Davis et al., 2003; Del Olmo-Ruiz and Arnold 2014; Higgins et al., 2007; Okane et al., 2012; Osono 2006; Petrini and Petrini, 1985; Petrini et al., 1995). Although tropical Xylariaceae occurring in living and dead plants and lichens...
are considered to be particularly diverse, our surveys captured many species of xylariaceous fungi in subtropical, temperate, and boreal hosts (U'Ren, 2011; U'Ren et al., 2012). Incorporating this large collection of plant- and lichen-associated strains from diverse sites in North America into multi-locus phylogenetic analyses with previously described taxa significantly increases the known phylogenetic diversity of Xylariaceae and provides an enriched perspective on relationships proximate to, and within, this ecologically diverse family (Fig. 1, Fig. 2, Supplemental Fig. 1, Supplemental Fig. 2).

3.1. Phylogenetic delimitation of Xylariaceae within Xylariomycetidae

Most taxa currently recognized as Xylariaceae formed a single clade in our single-locus (phylogenies not shown) and multi-locus analyses (Supplemental Fig. 1). However, several taxa previously described as Xylariaceae (Anthostomella torosa AFTOL-ID 732, Dicyma funiculosa, and D. pulvinata; Ju et al., 1993; Kohlmeyer and Volkmann-Kohlmeyer, 2002; Peláez et al., 2008; Stchigel and Guarro, 1998; Udagawa et al., 1994) appeared outside of this family in single-locus and four-locus analyses (Supplemental Fig. 1). Although placement of these taxa is uncertain due to low support, both Dicyma and Anthostomella are known to be problematic with regard to phylogenetic placement (Peláez et al., 2008; also see Daranagama et al., 2015).

Xylariaceae and Diatrypaceae have been proposed previously as sister families due to shared morphological features (Parguey-Leduc, 1972; Schrantz, 1960; Rogers, 1979a). However, a recent analysis suggests Xylariaceae may be more closely related to Cainiaceae (Senanayake et al., 2015; see also Maharachchikumbura et al., 2015). In our phylogenetic analysis of the subclass Xylariomycetidae the Cainaceae (represented here by Seynesia erumpens, was more closely related to Xylariaceae than the Diatrypaceae (with moderate support, Supplemental Fig. 1). When members of Diatrypaceae were used as the outgroup in our analysis focusing on Xylariaceae, Seynesia erumpens was nested within the ingroup but outside known Xylariaceae (Fig. 1). Seynesia was classified previously in Amphisphaeriaceae (Eriksson and Hawksworth, 1991a; 1993), but was moved to Xylariaceae based on ascospore morphology (see Barr, 1990;
Eriksson and Hawksworth, 1991b; Hyde, 1995). A recent phylogenetic analysis based on ITS + LSU rDNA placed the genus in Cainiaceae (Senanayake et al., 2015). Our analysis is not in conflict with that placement of *Seynesia*, but uncertainty regarding its family-level placement precludes confident delimitation of the Xylariaceae and family-level placement of the endophyte clades E1 and E2 (Fig. 1, Fig. 2). In future work, multi-locus data for members of the Cainiaceae, Lopadosomaceae, and Coniocessiaceae will be important to clarify the precise delimitation of Xylariaceae.

More generally, the placement of many taxa within Xylariomycetidae was challenging due to low support values at many deep internodes. This speaks to a general challenge in the systematics and taxonomy of the subclass and its member families (e.g., Senanayake et al., 2015), leading us to examine the contributions of the loci included in phylogenetic analyses. The final Xylariomycetidae dataset consisted of four loci (ITS rDNA, LSU rDNA, *RPB2*, and β-tubulin) and contained a total of 4,700 characters (Supplemental Table 3). In agreement with previous studies of other Ascomycota (e.g., Miadlikowska et al., 2014), alignments of protein coding genes yielded a greater proportion of alignable nucleotides than did the ribosomal genes (Supplemental Table 3). Although the alignment of LSU rDNA was slightly longer than that for *RPB2* (1,272 bp vs. 999 bp, respectively), 97% of nucleotides were unambiguously aligned for *RPB2*, whereas nearly half (46%) of nucleotides in the LSU rDNA alignment could not be aligned unequivocally due largely to the presence of introns (Supplemental Table 3). For the β-tubulin alignment, only exons could be aligned with confidence, but exons contain limited variation (618 distinct alignment patterns). Thus, introns for β-tubulin were recoded using PICS-Ord (Lücking et al., 2011), yielding an alignment with 1,664 distinct alignment patterns. No significant conflict was observed between β-tubulin gene trees with and without the recoded characters, and the percent of nodes with bootstrap support ≥70% increased from 38.8% to 60.9%. A similar strategy was used to recode ITS1 rDNA and ITS2 rDNA, as these hypervariable regions could not be aligned reliably across such distantly related taxa (see Bruns, 2001). Inclusion of recoded ITS rDNA increased the number of alignment patterns for this region from 58 to 305, and the number of well-supported nodes increased from 1.5% to 25.4% in the single locus tree. Accordingly,
additional sequences of phylogenetically informative loci from extended taxon sampling will be necessary to clarify the ordinal- and family-level relationships within the Xylariomycetidae.

3.2. Placement of several newly cultured isolates outside Xylariaceae illustrates conflicts with BLASTn results

Overall, 13 of 92 putative species from our surveys were tentatively identified as Xylariaceae based on BLASTn hits for ITS-partial LSU rDNA, but were placed outside of the Xylariaceae in our four-locus analysis (Table 1, Supplemental Fig. 1). These 13 OTU represent endophytes (nine OTU) and saprotrophs (four OTU) and comprise 118 isolates overall (Table 1; Supplemental Table 1). They were placed in clades containing species from four different families of Xylariomycetidae or in clades containing no closely related reference taxa; however, their phylogenetic placements are inconclusive due to low bootstrap support and insufficient taxon sampling (Supplemental Fig. 1).

Discrepancies between BLASTn and phylogenetic analyses could occur because of (1) a lack of closely related isolates in GenBank (especially problematic when analyses were restricted only to named sequences), (2) high sequence similarity to species previously thought to be in the Xylariaceae but of uncertain placement under current systematics frameworks (i.e., top BLASTn hit to Creosphaeria sassafras; see also Supplemental Fig. 1), or (3) misidentified sequences in GenBank (Peršoh et al., 2009; Vilgalys, 2003). Examination of BLAST results illustrates that seven of the 13 OTU had top BLASTn hits to Anthostomella conorum CBS 119333 (EU552099). The remaining five OTU had top BLASTn hits to unknown fungi with the closest named taxa in the Xylariaceae. These results reiterate that assigning taxonomy (even at the family level) for unknown isolates based solely on the top ITS BLASTn hit can be problematic (see also Stadler et al., 2013; Gazis et al., 2012; U'Ren et al., 2009; but see Kõljalg et al., 2013 regarding the UNITE ITS rDNA database).

3.3. Subfamily structure within Xylariaceae
We used five loci (ITS rDNA, LSU rDNA, RPB2, β-tubulin, and α-actin) to examine the relationships of 298 taxa classified as Xylariaceae (>200 species) from 24 genera representing two recognized subfamilies (Hypoxyloideae and Xylarioideae; Supplemental Table 1), in conjunction with 79 potentially novel species representing 1,815 isolates of endophytic and saprotrophic Xylariaceae from sites across North America (Table 1; Fig. 1, Fig. 2). Two putative species from our surveys were removed from final analyses due to conflict among loci, resulting in the inclusion of 77 putative species (OTU) from our collections.

Genera within the Xylariaceae generally are organized into the subfamilies based on geniculosporium- or nodulisporium-like conidiophores in the anamorphic state (Ju and Rogers, 1996). However, the family currently contains numerous genera of uncertain placement due to anamorphs that differ from those above (e.g., libertella-like conidiophores) or have unknown conidial states (Ju and Rogers, 1996; Stadler et al., 2013). Previous analyses of the Xylariaceae focused only on select taxa (e.g., Peršoh et al., 2009; Tang et al., 2009), were based on single loci (e.g., ITS rDNA; Peláez et al., 2008; Sánchez-Ballesteros et al., 2000), or were restricted to one subfamily (Hypoxyloideae, Hsieh et al., 2005; Xylarioideae, Hsieh et al., 2010), such that the phylogenetic relationships of the two subfamilies and the placement of numerous genera incertae sedis could not be addressed.

Although the clades containing currently recognized Hypoxyloideae and Xylarioideae (sensu Stadler et al., 2013) were highly supported in our analyses, the two subfamilies were not recovered here as sister clades (Fig. 1). Instead, our analyses suggest that the Xylariaceae may be divided into three main lineages: (1) Hypoxylon, Daldinia, Annulohypoxylon, and closely related genera; (2) a clade comprised of Durotheca and Biscogniauxia (Biscogniauxia, Camillea, and Obolarina); and (3) Xylarioideae and related taxa. However, additional data is needed to confirm these relationships with high support values. Our analysis places four endophyte-only clades (E4-E7) as a grade preceding the origin of the Xylarioideae as currently delimited (see 3.5, below; see also Fig. 1). These clades contained 12 of 77 putative species of Xylariaceae from our collections (Fig. 1). Overall, early divergences of endophyte clades associated with each
subfamily and the Xylariaceae as a whole suggest an early origin of endophytic and/or endolichenic fungi associated with diverse photosynthetic partners.

3.4. Phylogenetic perspectives on Hypoxyloideae

Overall, 28 of 77 putative species from our collection (i.e., 26 endophytic and two saprotrophic OTU) were placed within the Hypoxyloideae in our multi-locus analyses, or in affiliation with Whalleya, here treated as within Hypoxyloideae (see below). These strains were placed in all genera of Xylariaceae included in the analysis with the exception of Durotheca and Obolarina. Results of our analyses are largely congruent with the study of Hypoxyloideae by Ju et al. (2007). However, in our topology Whalleya microplaca was placed in a clade outside of species currently classified as Hypoxyloideae, whereas Ju et al. (2007) suggested a close relationship of Whalleya with species of Biscogniauxia and Theissenia (renamed Durotheca; see Læssøe et al., 2013). Developmentally, Whalleya microplaca resembles Biscogniauxia (i.e., the presence of bipartite stromata), but stromata and anamorphs are morphologically similar to diatrypaceous fungi (e.g., anamorphic isolates of Whalleya have libertella-like conidiogeneous structures; Rogers et al., 1997b; Stadler et al., 2014; see also Glawe and Rogers, 1986). Our analyses placed three endophyte OTU with W. microplaca (clade E3, Fig. 1) and placed E3 as sister to the known Hypoxyloideae, with strong support from two bootstrap analyses. Pending morphological examination, we suggest that the Hypoxyloideae may be expanded to include clade E3 (Fig. 1). Within Hypoxyloideae, Hsieh et al. (2005) recognized three major clades based on ML and Bayesian analyses of β-tubulin and α-actin genes: the Biscogniauxia clade, the Annulohypoxylon clade, and the Hypoxylon/Daldinia clade. Our analyses recovered a well-supported clade containing all of the Hypoxylon, Daldinia, and Annulohypoxylon taxa, as well as an isolate of Rostrohypoxylon terebratum (see Fournier et al., 2010 for a description of the genus and its paraphyly) (Fig. 1). Within this clade, Daldinia and Annulohypoxylon form well supported clades in our analyses (Fig. 1). However, species of Hypoxylon were found in multiple clades and
relationships among the previously defined subclades H1, H2, and H3 (sensu Hsieh et al., 2005) were not confirmed (Fig. 1).

Additionally, the position of *Biscogniauxia* as sister to the clade containing *Hypoxylon*, *Annulohypoxylon*, and *Daldinia* (see Hsieh et al., 2005; see also Læssøe et al., 2013) was not recovered here. Our topology suggests that *Biscogniauxia* and *Durotheca* (see Læssøe et al., 2013 for genus description) are sister to one another, but the relationship is not well supported and the placement of this two-genus clade relative to other genera in the Hypoxyloidae is uncertain in our analysis. A sister relationship between these genera would agree with results of high performance liquid chromatography (HPLC) illustrating that the chemical profiles of *Biscogniauxia* and *Durotheca* are closer to each other than to *Hypoxylon* and *Daldinia* (Læssøe et al., 2013). In turn, the highly supported *Biscogniauxia* clade contained isolates of *Camillea tinctor* and *Obolarina dryophila* (see Pažoutová et al., 2010b for discussion of *Biscogniauxia* paraphyly).

3.5. Phylogenetic perspectives on Xylarioideae

Overall, 34 of 77 putative species from our collection (i.e., 32 endophytic and two saprotrophic OTU) were placed within the Xylarioideae as currently circumscribed. Although endophyte OTU were found within all major lineages of the subfamily, they were most abundant in the “NR” and “HY” clades (sensu Hsieh et al., 2010; Figs. 1, and 2D).

Hsieh et al. (2010) grouped members of the Xylarioideae into four major clades: (1) the clade containing *Xylaria* spp. associated with termite nests (i.e., subgenus *Pseudoxylaria*; TE); (2) the clade containing *Xylaria hypoxylon* and closely related species (HY); (3) the clade containing *Nemania*, *Rosellinia*, *Entoleuca*, and *Euepixylon* (NR); and (4) the clade containing *Xylaria polymorpha* and closely related species (PO). Our analyses strongly support the monophyly of these clades and relationships among them, with the exception of the node encompassing all four clades, which was recovered in all four analyses but never with support values ≥ 70% (Fig. 1).

Overall, relationships among terminal branches were highly similar to those reported for
described species, and our analyses confirm the early divergence of the *Poronia-Podosordaria* clade within the Xylarioideae (see Hsieh et al., 2010).

Our results further suggest a potential expansion of the current circumscription of Xylarioideae. Clades E4-E7, which subtend the currently recognized subfamily, include 12 endophyte OTU as well as an *Anthostomella* sp. from Puerto Rico (Fig. 1, Fig. 2C). The phyllogenetic placement of two of these three lineages is well supported in our analyses. Two OTU have highly similar ITS rDNA sequences to *Anthostomella* spp. that were not represented in the tree due to lack of multi-locus data (NC1622 with *Anthostomella sepelibilis* strain F-160, 797; AZ1047 with *Anthostomella pinea* CBS 128205) (Table 1, Fig. 2C). However, FL1105, which is placed among isolates with hits to *Anthostomella*, has >95% ITS rDNA sequence identity to *Muscodor vitigenus* in NCBI (Table 1, Fig. 2C). The genus *Muscodor* initially was proposed to include an endophytic fungus that produces antimicrobial volatiles (Worapong et al., 2001), but its taxonomic placement in the Xylariaceae was uncertain (see Stadler et al., 2013). Placement of FL1105 in clade E5 and the monophyly of this clade is highly supported in our Xylariaceae tree (Figs. 1, 2C). Overall, our results suggest that *Anthostomella* is polyphyletic based on the positions of AK1471, FL1651, AZ1047, and NC1622, which are placed in different clades despite high sequence similarity to previously described species of *Anthostomella* (Table 1; Fig. 1; also see Lu et al., 2000; Daranagama et al., 2015). Based on the strong phylogenetic support reported here (Fig. 1, Fig. 2C) and pending morphological examination, we suggest that the Xylarioideae may be expanded to include clades E5-E7.

3.6. Limitations of current data sets

As noted in previous studies, ribosomal genes alone do not provide enough phylogenetic information to confidently resolve infrafamilial relationships in Xylariomycetidae (Duong et al., 2004) or the evolutionary history among genera of Xylariaceae (Peláez et al., 2008; Tang et al., 2009). In these circumstances, protein-coding genes such as *RPB2* can provide additional, phylogenetic signal that result in more resolved phylogenies of Xylariaceae with higher statistical
support for clades (Tang et al., 2007; see also Reeb et al., 2004). Other protein-coding genes, such as β-tubulin and α-actin, also have been used to reconstruct evolutionary relationships for *Hypoxylon* and closely related genera of Xylariaceae (Hsieh et al., 2005). However, in the present study we found that the protein coding genes β-tubulin and *RPB2* were insufficient to resolve infrafamilial relationships in the Xylariomycetidae even when combined with ribosomal loci (ITS rDNA, 5.8S rDNA, LSU rDNA). Analyses of the Xylariaceae using five loci (β-tubulin, α-actin, *RPB2*, ITS plus 5.8S rDNA, and LSU rDNA) also failed to provide high statistical support for many clades within the family.

ITS1 and ITS2 rDNA and introns of β-tubulin and α-actin were too divergent to be aligned unambiguously at the ordinal or familial level. However, we used a non-alignment based method (PICS-ord; Lücking et al., 2011) to extract phylogenetic information from these regions that were excluded from the alignments subjected to phylogenetic searches. This method recovered a substantial amount phylogenetic signal and greatly reduced phylogenetic uncertainty.

Overall, our results indicate that resolving evolutionary relationships in the Xylariaceae and Xylariomycetidae with high confidence will require sequence data from additional protein-coding genes that can be aligned unambiguously at broad taxonomic levels. Data from the gene for RNA polymerase II largest subunit (*RPB1*), the gene for the minichromosome maintenance complex component 7 (*MCM7*) (Chen et al., 2015; Miadlikowska et al., 2014), and/or additional new molecular markers derived from the AFTol 2 project (aftol.org) are likely to be useful. Our results also argue for increased taxon sampling of both endophytes and morphologically delimited species not currently represented in public sequence databases.

3.7. Phylogenetic perspectives on the potential novelty of newly collected strains

Putatively novel species of Xylariaceae isolated from plants and lichens across North America were frequently placed in previously described, major clades of Xylariaceae in both subfamilies, including clades containing well-known plant pathogens (i.e., *Biscogniauxia, Kretzschmaria*), saprotrophs (i.e., *Xylaria*), and clades thought to be specific to insects or animal dung (i.e.,...
Although we recovered endophyte-only clades distinct from known or previously sequenced isolates (e.g., E1, 2, 4, 5, 7, 8, and 9), each of which included one or more putative species, numerous OTU were resolved as closely related to previously described taxa. For example, nine endophyte and saprotroph OTU were placed within a well-supported monophyletic clade with multiple representatives of representative species (Fig. 1, Fig. 2; FL1408 within the *Daldinia eschscholzii* clade; AK1016, AZ0526, AK0128, AK0995 within the *D. loculata* clade; FL1170 within the *Hypoxylon rubiginosum* clade; AZ0703 within the *Biscogniauxia Mediterranea* clade; AK0226 within the *Nemania serpens* clade; and NC1011 within the *Xylaria cubensis* clade).

However, in cases where endophytic fungi are sister to a single representative of a described species, the topology of the tree alone does not help us determine whether unknown isolates represent the asexual or anamorphic life stage of a described teleomorphic species or a potentially novel closely related species. To address this uncertainty we analyzed the similarity of our isolates to described species in the tree using ITS rDNA clustering. Despite the fact that undescribed isolates are often found in the same clade or are sister to described species, only 14 of 77 Xylariaceae OTU isolated in our surveys (i.e., 18.2%) were part of the same 95% OTU as a described species present in the tree (Fig. 2).

We further analyzed the ITS rDNA similarity of endophytic and saprotrophic fungi with 205 named Xylariaceae taxa (n = 85 species) represented in GenBank by ITS rDNA sequences, but not by β-tubulin, α-actin, *RPB2*, or LSU rDNA (and thus not included in the phylogenetic analyses; Supplemental Table 6). This information, presented within a phylogenetic framework, accesses a large pool of publicly available sequences that exceeds the taxonomic representation available based on other loci or multiple loci. Based on ITS rDNA OTU clustering at 95% similarity, 10 additional OTU found in the multi-locus analysis are highly similar to named sequences in NCBI (see Table 1). Two additional OTU also are similar to sequences in NCBI based on ITS rDNA clustering, but were removed from the concatenated supermatrix due to
conflict (Table 1). Combining ITS rDNA similarity in a phylogenetic framework identified several GenBank sequences with taxonomic names in apparent conflict with tree topology (e.g., *Xylaria mellissii* F-048,697 found within *Nemania + Rosellinia* clade, Fig. 2D; also see above for discussion of *Anthostomella* spp). Only five of the 12 taxa whose ITS rDNA sequences match our isolates are vouchered in easily accessed culture collections (e.g., Centraalbureau voor Schimmelcultures [CBS], American Type Culture Collection [ATTC], Agricultural Research Service Culture Collection [NRRL]) (Table 1; Supplemental Table 6), thus precluding additional morphological and molecular characterization. Overall, 44 of 79 (55.7%) xylariaceous species collected in our surveys (representing 42 endophyte and two saprotroph OTU) appear to lack closely related, described species (Table 1; Fig. 2). Of these apparently novel OTU, 34 also lacked closely related BLASTn hits (≥99% ID) to other unnamed fungi in GenBank (Fig. 2). Importantly, these results are based only on the species diversity represented in public databases, and thus do not assess novelty with respect to those species of Xylariaceae known only from their teleomorphs or from drawings, or otherwise not represented in public databases (discussed by Stadler et al., 2013).

Such conclusions are dependent on a defined level of ITS rDNA sequence similarity; however, the degree of intraspecific ITS rDNA variability differs among taxonomic groups (see Nilsson et al., 2008). For five *Xylaria* spp., U'Ren et al. (2009) reported low intraspecific variation in ITS rDNA (1.43% ± 2.94%), and variation between sister taxa averaged 4.18% ± 2.18%. However, Stadler et al. (2013) noted that different morphological species can have identical ITS rDNA sequences (e.g., *Daldinia concentrica* and *D. steglichii*). Across both subfamilies, we found 12 cases where different morphological species shared the same 95% OTU designation (e.g., *Xylaria plebeja*, *X. luteostromata* var. *macrospora*, and *X. intracolorata* designated OTU 265; Fig. 2). This appears more common for species of Xylarioideae than Hypoxiloideae (Fig. 2).

Accordingly, endophyte isolates putatively identified as previously described species may in fact represent novel species. Indeed, we found cases where a comparison of the culture morphology on oatmeal agar for described species (when available) differed from our observations for endophytic isolates. For example, *Hypoxylon submonticulatum* (Ju and Rogers, 1996) is
described as a fast-growing isolate with pale-mouse grey, cinnamon, to grayish sepia color, with sporulating regions scattered over the colony surface. However, an endophyte representing the same OTU (NC0708) remained as sterile, white mycelia after six months in culture on the same media (Supplemental Fig. 3).

Conversely, we found seven cases where isolates of the same putative species occurred in different 95% OTU (Xylaria cubensis, X. curta, Hypoxylon dieckmannii, H. crocopeplum, H. fendleri, H. haematostroma, and Nemania serpens). Assuming these isolates are correctly identified and represent a single species rather than a species complex (e.g., as for Fusarium solani; O’Donnell, 2000), we may overestimate the novelty of unknown fungi. For example, ITS-partial LSU rDNA clustering of isolates collected in our surveys identified multiple endophyte OTU at 95% sequence similarity (i.e., AK0995, AK0128, AZ0526, AK0222, and AK1016). However, representatives of these isolates were placed within a well-supported clade containing two isolates of Daldinia loculata, suggesting that these OTU are all D. loculata rather than multiple species (Fig. 2). Interestingly, these isolates represent different macromorphologies on 2% MEA and OA and will need additional morphological characterization (Supplemental Fig. 3). Thus, incorporating representative isolates into a multi-locus phylogenetic framework is only the first step in assessing the potential novelty of endophytic and saprotrophic fungi.

3.8. Metadata availability, host breadth, substrate diversity, and geographic distribution of Xylariaceae

Many Xylariaceae species have broad distributions in forests across both the Northern and Southern Hemispheres (e.g., Daldinia spp. Stadler et al., 2014), whereas other species appear to be restricted geographically (e.g., Xylotumulus gibbisporus endemic to Hawai’i; Rogers and Ju, 2012). However, distribution data based on ascomata are likely to be incomplete due to the fact that Xylariaceae species typically only form ascomata on a “preferred” host (e.g., Obolarina dryophila on Quercus; Pažoutová et al., 2010b), despite the potential to live asymptotically on a wide diversity of plant species and substrates (e.g., Petrini and Petrini, 1985). Additionally,
species of Xylariaceae reported to have cosmopolitan distributions may potentially represent complexes of cryptic species revealed only by detailed morphological, chemical, or molecular analyses (e.g., *Daldinia eschscholzii*; see Stadler et al., 2004). Therefore, incorporating publicly available sequence data (many representing cryptic microfungi, including endophytes) coupled with records of ascomata can provide further information to estimate the geographic distribution, host breadth, and substrate diversity of xylariaceous species.

Our sampling of endophytes from diverse plant and lichen species in five sites across North America emphasizes that lichen thalli are a very common habitat for Xylariaceae (see also Arnold et al., 2009). The interiors of apparently healthy lichen thalli yielded 1,259 isolates representing 67 putative species (84.8% of the 79 xylariaceous OTU from our surveys considered here; see Table 1). These fungi were isolated from 46 lichen species representing 10 major lineages of mycobionts (7 orders and 3 families *incertae sedis* in Lecanoromycetes) (Supplemental Table 1). Although the highly diverse nature of xylariaceous endophytes from angiosperms has been previously reported, especially in tropical forests (Bayman et al., 1998; Govinda Rajulu et al., 2013; Linnakoski et al., 2012; Okane et al., 2008; Whalley, 1996), our data illustrate that in temperate and boreal communities, Xylariaceae are especially diverse in conifers, lycophytes, and bryophytes (Supplemental Table 2; see also Davis et al., 2003).

Although these hosts harbored a high diversity of endophytes, we observed no clear phylogenetic pattern with regard to host phylogeny (Fig. 2). The vast majority of endophytic Xylariaceae appear to be host generalists: 91 of 124 terminal taxa (73.4%) capable of living endophytically (i.e., reported at least once from living leaves, lichen thalli, or asymptomatic inner bark, cortex, sapwood, or branches of a living host) occurred on more than one host lineage (e.g., angiosperm, “gymnosperm”, spore-bearing vascular plant, bryophyte, or lichen; Fig. 2). There was no apparent clade or species-level specificity with regard to lichen photobiont or mycobiont (e.g., OTU found in cyanolichens also occurred in lichens with green algal symbionts; Supplemental Table 1). At the community level, previous work suggested a unique connection among fungi occurring in lichens and bryophytes (U'Ren et al., 2010; 2012), but 77.8% of 27 OTU cultured in our surveys from both lichens and bryophytes also occurred in living tissues of...
vascular plant hosts. Thus, non-xylariaceous taxa seem to account for the patterns observed by U'Ren et al. (2010; 2012).

The majority of terminal taxa in the tree with an endophytic life stage also were recovered from senescent leaves or decomposing leaves, wood, bark, fruits, or flowers (74.2%; n = 92 of 124 terminal taxa; Fig. 2), suggesting that for many species endophytism is only one stage of a complex lifecycle that can involve interactions with diverse host lineages. For example, early-diverging endophyte OTU (i.e., FL0915, FL2044, and FL0641) were cultured from living tissues of both lichens and angiosperms, as well as dead leaves of a conifer host (Table 1; Fig. 2). In contrast, only 33 of 241 (13.7%) terminal taxa not found as endophytes were collected from multiple host lineages and substrates, a pattern that may reflect greater ecological specialization. Indeed, a few more recently diverged clades appear to have evolved more specific host ranges (e.g., *Xylaria hypoxylon* aggregate on angiosperms; see also Læssøe and Lodge, 1994; Rogers, 1979b; Whalley, 1985). However, additional sampling of endophytes of tropical lichens and non-angiosperm lineages is needed to confirm the pattern. Additionally, inferences can be limited due to missing or incomplete metadata in public databases. For example, 32.8% and 46.7% of 1,264 filtered BLASTn hits lacked information for host lineage and substrate, respectively (Supplemental Tables 7-8), revealing a pressing need for standardized formats and requirements for metadata submission with sequences.

After incorporating both morphological records and GenBank metadata, we found that 155 of 365 terminal taxa (42.5%) were reported only in a single geographic region. Importantly, geographic regions were broadly defined, such that a taxon reported from a single region might still be geographically widespread within a region (e.g., *Xylaria tuberoides* in southern Mexico, Venezuela, French Guiana, and Guyana). Over a third of terminal taxa (n = 137; 37.5%) were found in ≥3 regions (e.g., US/Canada, S. Mexico/C. and S. America/Caribbean, Europe, Asia, or "Other"; Fig. 2). When analyzed in a phylogenetic context, taxa with widespread geographic ranges were distributed throughout the Xylariaceae. However, *Obolarina, Durotheca, Pseudoxylaria, Podosordaria* and *Poronia*, and endophyte-only clades appear more geographically limited (Fig. 2). The apparent localization of certain taxa or clades may be due to
the limited range of their host (e.g., *Pseudoxylaria* on *Macrotermiteinae* termite nests; see above), dispersal limitation, climate, or habitat restrictions (see Whalley, 1985), and/or missing metadata (Supplemental Tables 6-7). Additional sampling from diverse locations and hosts, using both culturing and culture-free next generation sequencing, will help clarify the biogeographic patterns of xylariaceous fungi.

3.9. Contributions of endophytes to understanding the ecology of described species: *Daldinia loculata*

Our analyses revealed a monophyletic clade containing five endophytic OTU interspersed with two isolates of *Daldinia loculata* (Fig. 2B). Ascomata of *D. loculata* usually are recovered from burnt or damaged Betulaceae in temperate, boreal, and montane forests of the Northern Hemisphere, although the species also has been observed on wood of Salicaceae, Fagaceae, and Rosaceae (Stadler et al., 2014). It has been reported previously as a foliar endophyte of non-angiosperm hosts (see Pažoutová et al., 2010a). In our surveys, members of the *D. loculata* clade were frequently isolated as endophytes of diverse plants and lichens in boreal and subarctic Alaska. For example, in Eagle Summit, Alaska, we isolated *D. loculata* from asymptomatic, living photosynthetic tissue of evergreen angiosperms, conifers, lycophytes, and bryophytes and long-lived thalli of nine lichen species representing different growth forms, substrates, and photobionts. ITS rDNA analyses suggest that closely related isolates occur in Nome, Alaska, as well as Arizona, Florida, Jamaica, Europe, and New Zealand in a range of biomes from subarctic tundra to tropical high-elevation forest (Fig. 2; Supplemental Tables 1, 6-7). Although previously thought to be rare or absent from subtropical and tropical forests, these data illustrate that the species has a wider geographic and host range than reported previously. Additionally, our data may help illuminate aspects of the lifecycle of *D. loculata*.

Previously, the species was proposed to inhabit asymptomatic, living wood of *Betula* until fire kills the host (Guidot et al., 2003; Johannesson et al., 2001a; 2001b; see also Rayner and Boddy, 1988). The fungus then grows rapidly within host tissue, forming conidia beneath the bark that are
dispersed by insects among burnt trees. When conidia of different mating types interact, the
sexual cycle is initiated, producing ascospores that are wind-dispersed to infect the unburned
wood of young saplings, where the fungus presumably is endophytic in woody tissues of the host
until another fire begins the cycle again (Guidot et al., 2003). Our data illustrate that *D. loculata*
was abundant in the photosynthetic tissues of living lichens and evergreen plants in Eagle
Summit (Alaska), as well as present in lower abundances in senescent leaves still attached in the
canopy and fallen leaves in leaf litter from the previous year (i.e., DL, FP; Table 1; Supplemental
Table 1). However, we did not detect *D. loculata* in newly flushed leaves of *Salix* and *Betula,*
which suggests that leaves of these hosts may be colonized from airborne inoculum each
season. Whether inoculum is from wind-dispersed ascospores or asexual conidia produced on
senescent evergreen plants or lichens in the same site remains to be elucidated, but it implies
that the fungus is reproducing during intervals between fires (ca. 50-150 years in this area;
Johannesson et al., 2000).

3.10. Contributions of endophytes to understanding the ecology of described species: Xylaria
cubensis

Ascomata of *Xylaria cubensis* are commonly encountered on decomposing angiosperm wood in
tropical, subtropical, and temperate forests across the globe, degrading both lignin and cellulose
thereby causing a physiological white rot (Rogers, 1984). However, closely related isolates are
frequently cultured in endophyte surveys, especially of tropical angiosperms, ferns, and
lycophytes (e.g., Fan et al., 2014; Fröhlich et al, 2000; Okane et al., 2008; 2012; Rodrigues,
1994; Rodrigues et al., 1995; Rodrigues and Samuels, 1990; 1999; Rodrigues and Petrini, 1997)
(Fig. 2E). Our results indicate that *X. cubensis* (represented by NC1011) is a frequent inhabitant
of temperate and subtropical lichens (Fig. 2E; Table 1; Supplemental Table 1). Of the 193 *X.
cubensis* isolates in a single 95% ITS rDNA OTU, 154 were cultured from lichens, whereas the
remaining were found from angiosperms, conifers, and bryophytes (Supplemental Table 1; Fig.
2E). Even at a finer scale there was no evidence for host specificity: numerous unique ITS rDNA
genotypes (based on 100% sequence similarity) were shared among different host species, substrates (lichens, living, and dead plant tissues), as well as geographic locations (see also Okane et al., 2012; Supplemental Table 2). The species was collected from 22 species of lichens in Arizona, North Carolina, and Florida, representing five mycobiont orders (Lecanorales, Teloschistales, Ostropales, Peltigerales, and Umbilicariales) and diverse substrates, growth forms, and photobionts (e.g., various Trebouxiales and Nostoc species) (Supplemental Table 1). All investigated lichen genera in North Carolina and Florida (>10 spp. per site) yielded X. cubensis with the exception of the epiphytic crustose lichen Herpothallon rubrocintum, the only representative from the class Arthoniomycetes. However, isolates of X. cubensis are reported to have high morphological, genetic, and chemical diversity (Casella et al., 2013; Rodrigues et al., 1993; Rodriguez et al., 1995; also see above for discussion of intraspecific ITS rDNA variation) and additional studies are necessary to elucidate whether X. cubensis, as currently defined, represents a complex of several species, each with potentially different host and substrate preferences.

3.11. Conclusions

The goal of this study was to address the impact of a large collection of plant- and lichen-associated strains on the circumscription and phylogenetic structure of the Xylariaceae, and to evaluate their evolutionary history and ecology in a multi-locus phylogenetic context. Our results, coupled with previous molecular phylogenetic studies, reiterate the need for taxonomic revision at several levels within the Xylariaceae (Hsieh et al., 2005; 2010; Pažoutová et al., 2010b). Such revisionary work is hindered by the sheer diversity of xylariaceous fungi, a shortage of trained mycologists, the lack of reproductive structures in culture for many strains, biases in existing data, the lack of molecular data from type specimens (especially non-ITS rDNA sequence data) and the need for additional phylogenetic molecular markers (see Stadler et al., 2013; Stadler et al., 2014 for discussion of revision; also see Daranagama et al., 2015; Senanayake et al., 2015). Given the current situation, it is premature to assign taxonomic names to the majority of our
endophytic and saprotrophic OTU. Importantly, representative cultures have been deposited in the Gilbertson Mycological Herbarium (ARIZ), where they are available on request for additional characterization. Additionally, this work detects potentially misidentified specimens and sequences in public databases, illuminates large gaps in available metadata for sequences deposited in NCBI, and identifies the need for novel methods to integrate ITS rDNA sequences into robust, multi-locus phylogenetic analyses.

More generally, our study expands current knowledge regarding the ecology, host use, and geographic distributions of well-known Xylariaceae. We found that the majority of xylariaceous endophytes obtained in large surveys in North America can be classified in the hypoxyloid and xylaroid subfamilies, although numerous endophytes also were found outside of these lineages (as currently circumscribed). Most newly cultured strains appear to represent novel species rather than previously described species, but inferences are limited by the potential for previously known Xylariaceae to be absent from public databases. Representatives of the lineages associated with the origin of Xylariaceae were found in living, asymptomatic leaves of angiosperms, gymnosperms, and bryophytes, consistent with the purported origin of endophytism early in the evolution of the Pezizomycotina (Lutzoni et al., in review). Our data suggest that in general, temperate and boreal xylariaceous endophytes have both endophytic (in both plants and lichens) and saprotrophic life stages (i.e., many endophyte OTU also contained isolates found inside non-living leaves (consistent with observations by Osono, 2002; 2005; 2006). However, additional work is necessary to determine the saprotrophic capabilities of endophytic OTU presented here, and the genomic, transcriptomic, and metabolic base of endophytic, saprotrophic, and pathogenic modes in this compelling and diverse family.

Acknowledgements

For funding we thank the National Science Foundation (DEB-0640996 and DEB-1045766 to AEA; DEB-0640956 and DEB-1046065 to FL; an NSF Doctoral Dissertation Improvement Grant by U'Ren, to AEA: DEB-1010675); NSF for fostering discussion that informed this work through the Fungal Environmental Sampling and Informatics Network (FESIN, DEB-0639048 to T. Bruns, K.
Hughes, and AEA); the College of Agriculture and Life Sciences and the School of Plant Sciences at The University of Arizona; and the IGERT program for funding JMU during her dissertation work. The Mycological Society of America’s Clark T. Rogerson student research award and MSA Graduate Fellowship to JMU also supported this work. NBZ was funded by the Gordon and Betty Moore Foundation through Grant GBMF 2550.03 to the Life Sciences Research Foundation. The authors thank J. Rogers, C. Davis, M. McMahon, and M. Beilstein for helpful discussion and advice on the project; E. Gaya, K. Molnár, B. Hodkinson, V. Wong, T. Truong, T. Abbey, T. Gleason, A. Ndobegang, J. Riddle, F. Santos, M. Gunatilaka, M. Hoffman, M. del Olmo-Ruiz, D. Sandberg, and D. L. Taylor for field and laboratory assistance; D.R. Maddison for sharing pre-release versions of Mesquite and ChromaSeq; I. Carbone, F. Kauff, and B. Hurwitz for computational assistance; and J. Lendemer, R. Harris, B. Hodkinson, E. Gaya, B. McCune, and S. Heidmarsson for assistance with lichen identification.

References

Lutzoni, F., Nowak, M.D., Alfaro, M.E., Reeb, V., Swofford, D., Miadlikowska, J., Arnold, A.E., Hibbett, D., Hilu, K., James, T.Y., Quandt, D., Magallón, S., In review. Synchronized radiations of fungi and plants linked to symbiosis.

Möller, A. 1901 – Phycomyceten und Ascomyceten, Untersuchungen aus Brasilien. (Botanische Mittheilungen aus den Tropen, Heft 9) Fischer, Jena.

Rogers, J.D., 1979a. The Xylariaceae: systematic, biological and evolutionary aspects. Mycologia 71, 1–42.

Rogers, J.D., 1979b. *Xylopora magnolia* sp. nov. and comments on several other fruit-inhabiting species. Can. J. Bot. 57, 941–945.

Senanayake, I.C., Maharachchikumbura, S.S.N., Hyde, K.D., Bhat, J.D., Jones, E.B.G.,
McKenzie, E.H.C., Dai, D-Q., Daranagama, D.A., Dayarathne, M.C., Goonasekara, I.D.,
Xu, J.C., Camporesi, E., 2015. Towards unraveling relationships in Xylariomycetidae
(Sordariomycetes). Fungal Divers. 73, 73–144.

Fungal Divers. 13, 185–218.

Stadler, M., Fournier, J. 2006. Pigment chemistry, taxonomy and phylogeny of the Hypoxyloideae

Chemotaxonomic and phylogenetic studies of Thamnomyces (Xylariaceae). Mycoscience 51, 189–207.

Stadler, M., Kuhnert, E., Peršoh, D., Fournier, J., 2013. The Xylariaeae as model example for a
unified nomenclature following the “One Fungus-One Name” (1F1N) concept. Mycology 4, 5–21.

Stadler, M., Laessoe, T., Fournier, J., Decock, C., Schmieschek, B., Tichy, H.-V., Peršoh, D.,

Stadler, M., Wollweber, H., Jäger, W., Briegert, M., Venturella, G., Castro, J.M., Tichy, H.-V.,
2004. Cryptic species related to Daldinia concentrica and D. eschscholzii, with notes on D. bakeri.

Stamatakis, A., 2006. RAxML-VI-HPC: Maximum Likelihood-based phylogenetic analyses with

Staniek, A., Woerdenbag, H., Kayser, O., 2008. Endophytes: exploiting biodiversity for the

510–512.

Pestalotiopsis guepinii, a taxol-producing endophyte of the Wollemi pine, Wollemia nobilis.

News 64, 263–268.

species richness using large collections of 16S rRNA pyrosequences. Nucleic Acids Res. 37, e76.

non-obligate microfungi inside lichen thalli. Sydowia 57, 120–130.

Figure Legends

Figure 1. Phylogenetic relationships among 365 Xylariaceae representatives, including 77 newly collected endophyte and saprotroph putative species (representing 78 isolates) from field surveys of plants and lichens in five sites across North America and 287 previously named taxa. The tree was inferred by maximum likelihood based on a combined five-locus dataset (i.e., ITS rDNA, LSU rDNA, RPB2, α-actin, and β-tubulin sequences, described in the text as the 5 + 4 + 3 + 2 + 1 dataset). Two species of Diatrypaceae (Diatrype disciformis and Eutypa lata) were used to root the tree based on the results of a four-locus supermatrix analysis of the Xylariomycetidae (Supplemental Fig. 1) and the availability of multi-locus sequence data (Supplemental Table 2). The four-box grid at each internode indicates maximum likelihood bootstrap support values derived from our cumulative supermatrix approach (see legend and Materials and Methods).

Major clades of Hypoxyloideae (Hypoxylon clades “H1”, “H2”, and “H3”, Daldinia clade, Annulohyphoxylon clade, Durotheca, and Biscogniauxia clade) are defined according to Hsieh et al. (2005) and Laessøe et al. (2013). Major clades of Xylarioideae are defined according to Hsieh et al. (2010): subgenus Pseudoxylaria (Pseudoxylaria “TE” clade); Xylaria hypoxylon and closely related taxa (Xylaria “HY” clade); the clade containing Nemania spp., Rosellinia spp. and Entoleuca mammata (Nemania + Rosellinia “NR” clade); and the clade containing Xylaria polymorpha and closely related taxa (Xylaria “PO” clade). Red and dark-blue fonts indicate taxa
included in analyses by Hsieh et al. (2005) and Hsieh et al. (2010), respectively. Black font indicates isolates from studies listed in Supplemental Table 2 (with the exception of Obolarina and Durotheca, none of the genera listed in black has been described formally using both morphological and molecular data). Light blue strain- and species names indicate specimens sequenced for the present study. Representative isolates from our surveys are shown as a two-letter code (AZ, NC, FL, AK) followed by the isolate number, the host and substrate information for the 95% ITSrDNA-partial LSU OTU represented by that isolate (LT, lichen thallus; LP, living plant tissue; DP, dead leaves in the canopy; and FP, dead plant leaves in leaf litter), and the total number of isolates in the OTU (Table 1). Subfamily classifications (i.e., Hypoxyloideae or Xylarioideae) are based on Stadler et al. (2013). Genera currently unclassified at the subfamily level (i.e., Whalleya and Anthostomella; see Stadler et al., 2013), as well as endophyte clades E3-E7 are indicated on the tree as incertae subfamiliae. Two endophyte OTU (clades E1-E2) as well as Selynsea erumpens are labeled as incertae familiae reflecting the recent proposal of Selynsea as a member of the Cainaceae rather than Xylariaceae (see Senanayake et al., 2015). The blue star denotes Hypoxylon argillaceum CBS 527.63, a potentially misidentified isolate for which taxonomic revision may be warranted.

Figure 2. Phylogenetic integration of geographic and ecological metadata in the evolutionary context of the Xylariaceae (Fig. 1). Tree topology and clade definitions follow Fig. 1. Thickened branches indicate maximum likelihood bootstrap values ≥70% from all four bootstrap analyses of the cumulative supermatrix approach. An asterisk (*) denotes nodes with ≥70% support from at least one of the bootstrap analyses from the cumulative supermatrix approach (e.g., 5 + 4) (see Fig. 1). Major clades are shaded according to the ecological mode of the majority of taxa used in the multilocus analysis: green shading, endophyte clade (numbered E1-E9); grey, saprotroph; white, pathogen; brown, dung-associated; peach, termite-associated; and purple, equivocal. Within clades, terminals are labeled with colored fonts to indicate ecological mode of the terminal taxon based on review of the literature (see Supplemental Table 9 and legend). Within taxon names, numbers after the dash indicate the 95% OTU designation based on clustering analysis.
of ITS rDNA sequences for all isolates (when available) included in the phylogenetic analyses (e.g., *Daldinia vernicosa* 121—139 belongs to OTU 139). In cases where an isolate recovered in our surveys was within the same 95% ITS rDNA group as a named taxon not present in the tree due to lack of multi-locus data, the species name follows the OTU designation (e.g., FL1857 – 83 – *Hypoxylon pulicicidum*; see also Table 1). Columns of numbers after taxon names indicate (1) the total number of isolates recovered in our surveys represented per 95% ITS rDNA group (see also Table 1) and (2) the number of BLASTn hits with ≥99% identity (isolates lacking numbers did not have ITS rDNA sequences in NCBI) (Supplemental Tables 7-8). The geographic locations of collection, photobiont host lineage, and substrate type are indicated for each terminal taxon. Solid black circles represent metadata from our field surveys (Supplemental Table 1; Table 1) or reference taxa (Supplemental Table 2). Solid grey circles represent metadata gathered from filtered BLASTn hits at ≥99% similarity (Supplemental Tables 6-7). Solid blue circles represent information associated with fruiting bodies, gathered by reviewing recent species monographs, species descriptions, and public databases (Supplemental Table 9). For substrate metadata, the color of outer circles indicates the condition of the host tissue at the time of collection (e.g., asymptomatic living tissue (green), diseased living tissue (red), dead or decomposed tissue (brown), N/A or unknown (black); see substrate legend). The “Other” category for geographic location denotes isolates from Australia, New Zealand, Papua New Guinea, Africa, the Middle East, and Antarctica, which were rarely represented across the dataset.

Supplemental Information

Supplemental Figure 1. Phylogenetic relationships among 517 putative members of the Xylariomycetidae (92 endophytic and saprotrophic OTU [representing 93 total isolates] collected in our surveys and 424 previously named taxa) inferred with maximum likelihood analysis of combined ITS rDNA, LSU rDNA, *RPB2*, and β-tubulin sequences. Three species of *Ophiostoma* (Ophiostomatales, Sordariomycetes) were used to root the tree based on Huhndorf et al. (2004) and the availability of multi-locus data (Supplemental Table 2). Isolates are color-coded based on...
recently proposed family designations (see Senanayake et al., 2015). The main clade representing Xylariaceae plus *Graphostroma platystoma* (Graphostromataceae) and *Seynesia erumpens* (Cainaceae), as well as 79 endophyte and saptrotroph OTU from our surveys is collapsed for readability. See main text for discussion of *Graphostroma* and *Seynesia*. Several taxa previously classified as Xylariaceae (*Anthostomella torosa*, *Dicyma funiculosa*, and *D. pulvinata*) were found outside Xylariaceae. Support values are based on 1,000 maximum likelihood bootstrap replicates. Bootstrap values <50% are not shown.

Supplemental Figure 2. Probability density of phylogenetic diversity (PD; the sum of all the edge lengths in the subtree given by a subset of tips) calculated for 77 endophytic taxa and 1,000 random subsets of 209 previously named Xylariaceae taxa (for a total of 286 taxa, which matches the total number of named Xylariaceae taxa used in the phylogenetic analyses; mean PD ± SD = 29.5 ± 0.41). The dotted line represents the observed PD of all previously named Xylariaceae taxa without the OTU gathered in our surveys (PD = 27.91; P<0.001).

Supplemental Figure 3. Macromorphological characterization of 70 xylariaceous isolates (representing 69 OTU based on 95% ITS-partial LSU rDNA similarity) collected in our surveys from five North American sites. Cultures were grown on 2% malt extract agar (MEA) and 2% oatmeal agar (OA) under ambient light/dark condition at room temperature (ca. 21.5°C) for up to six months.

Supplemental Table 1. Geographic and host information for xylariaceous isolates collected in our surveys from five North American sites.

Supplemental Table 2. Reference taxa included in the present study.

Supplemental Table 3. Description of the single locus datasets used for analyses of the Xylariomycetidae and Xylariaceae.
Supplemental Table 4. Taxa with significant conflict (as defined in Materials and Methods) detected among single-locus phylogenies.

Supplemental Table 5. Characteristics of datasets used for the cumulative supermatrix analyses of the Xylariaceae.

Supplemental Table 6. Accession numbers for ITS rDNA sequences from 205 previously named Xylariaceae taxa not present in phylogenetic analyses due to lack of multi-locus data.

Supplemental Table 7. Metadata from ITS rDNA BLASTn hits with ≥99% identity to endophytic, endolichenic, and saprotrophic OTU collected in our surveys from five North American sites. Data reported as listed in NCBI.

Supplemental Table 8. Metadata from ITS rDNA BLASTn hits with ≥99% identity to previously named Xylariaceae taxa. Data reported as listed in NCBI.

Supplemental Table 9. Geographic, host, and substrate information for previously identified Xylariaceae taxa based on published monographs, species descriptions, or online resources.
<table>
<thead>
<tr>
<th>Representative Isolate</th>
<th>Origin*</th>
<th>Host species</th>
<th>Tissue type**</th>
<th>OTU (95, 100%)</th>
<th>Total # isolates in 95% OTU</th>
<th># Isolates per tissue type (LT, LP, DP, FP)**</th>
<th># Isolates per site (AZC, NCH, FLA, AK)***</th>
<th>Putative taxonomic classification *</th>
<th>GenBank accession numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK1199</td>
<td>AKN</td>
<td>Equisetum arvense</td>
<td>LP</td>
<td>10, 14</td>
<td>6</td>
<td>0, 4, 0, 2</td>
<td>0, 2, 0, 4</td>
<td>Xylariomycetidae incertae sedis</td>
<td>JQ759542 submit* submit* submit*</td>
</tr>
<tr>
<td>AZ0196</td>
<td>AZC</td>
<td>Quercus rugosa</td>
<td>DP</td>
<td>16, 25</td>
<td>69</td>
<td>0, 14, 35, 20</td>
<td>42, 18, 9, 0</td>
<td>Xylariomycetidae incertae sedis</td>
<td>HM122945 submit* submit* submit*</td>
</tr>
<tr>
<td>AZ0339</td>
<td>AZC</td>
<td>Quercus rugosa</td>
<td>FP</td>
<td>19, 28</td>
<td>13</td>
<td>0, 0, 1, 12</td>
<td>2, 7, 4, 0</td>
<td>Xylariomycetidae incertae sedis</td>
<td>HM123082 submit* submit* submit*</td>
</tr>
<tr>
<td>FL0674</td>
<td>FLA</td>
<td>Pinus elliottii</td>
<td>LP</td>
<td>33, 55</td>
<td>6</td>
<td>0, 3, 2, 1</td>
<td>0, 0, 6, 0</td>
<td>Xylariomycetidae incertae sedis</td>
<td>JQ760367 submit* submit* submit*</td>
</tr>
<tr>
<td>FL0456</td>
<td>FLA</td>
<td>Cladonia didyma</td>
<td>LT</td>
<td>46, 86</td>
<td>1</td>
<td>0, 1, 0, 0</td>
<td>0, 0, 1, 0</td>
<td>Xylariomycetidae incertae sedis</td>
<td>JQ760182 submit* submit* submit*</td>
</tr>
<tr>
<td>FL0650</td>
<td>FLA</td>
<td>Pinus elliottii</td>
<td>LP</td>
<td>61, 248</td>
<td>2</td>
<td>0, 2, 0, 0</td>
<td>0, 0, 2, 0</td>
<td>Xylariomycetidae incertae sedis</td>
<td>JQ760354 submit* submit* submit*</td>
</tr>
<tr>
<td>FL0677</td>
<td>FLA</td>
<td>Pinus elliottii</td>
<td>LP</td>
<td>64, 123</td>
<td>1</td>
<td>0, 1, 0, 0</td>
<td>0, 0, 1, 0</td>
<td>Xylariomycetidae incertae sedis</td>
<td>JQ760370 submit* submit* NA</td>
</tr>
<tr>
<td>FL0850</td>
<td>FLA</td>
<td>Hymenothallium rubrocinquum</td>
<td>LT</td>
<td>69, 133</td>
<td>1</td>
<td>0, 0, 0</td>
<td>0, 0, 1</td>
<td>Xylariomycetidae incertae sedis</td>
<td>JQ760489 submit* submit* NA</td>
</tr>
<tr>
<td>FL1681</td>
<td>FLA</td>
<td>Pinus clausia</td>
<td>FP</td>
<td>80, 185</td>
<td>1</td>
<td>0, 0, 0, 1</td>
<td>0, 0, 1, 0</td>
<td>Xylariomycetidae incertae sedis</td>
<td>submit* submit* NA</td>
</tr>
<tr>
<td>FL1780</td>
<td>FLA</td>
<td>Quercus inopina</td>
<td>FP</td>
<td>82, 188</td>
<td>1</td>
<td>0, 0, 0, 1</td>
<td>0, 0, 1, 0</td>
<td>Xylariomycetidae incertae sedis</td>
<td>submit* submit* submit* submit*</td>
</tr>
<tr>
<td>FL2152</td>
<td>FLA</td>
<td>Pinus clausia</td>
<td>DP</td>
<td>85, 191</td>
<td>2</td>
<td>0, 0, 2, 0</td>
<td>0, 0, 2, 0</td>
<td>Xylariomycetidae incertae sedis</td>
<td>submit* submit* submit* submit*</td>
</tr>
<tr>
<td>NC0532</td>
<td>NCH</td>
<td>Pseudovinca sp.</td>
<td>LP</td>
<td>87, 205</td>
<td>14</td>
<td>3, 11, 0, 0</td>
<td>0, 14, 0, 0</td>
<td>Xylariomycetidae incertae sedis</td>
<td>JQ761527 submit* NA submit*</td>
</tr>
<tr>
<td>NC1491</td>
<td>NCH</td>
<td>Pseudoevernia consocians</td>
<td>LT</td>
<td>92, 236</td>
<td>1</td>
<td>0, 1, 0</td>
<td>0, 1, 0</td>
<td>Xylariomycetidae incertae sedis</td>
<td>JQ761899 submit* submit* submit*</td>
</tr>
<tr>
<td>FL2044</td>
<td>FLA</td>
<td>Serenoa repens</td>
<td>DP</td>
<td>43, 95</td>
<td>24</td>
<td>17, 1, 6, 0</td>
<td>0, 0, 24, 0</td>
<td>Xylariomycetidae incertae sedis</td>
<td>submit* submit* submit* submit*</td>
</tr>
<tr>
<td>FL0915</td>
<td>FLA</td>
<td>Cladonia subradiata</td>
<td>LT</td>
<td>71, 137</td>
<td>2</td>
<td>0, 1, 0</td>
<td>0, 0, 2</td>
<td>Xylariomycetidae sp. nov.</td>
<td>JQ760548 submit* submit* NA</td>
</tr>
<tr>
<td>FL0641</td>
<td>FLA</td>
<td>Pinus elliottii</td>
<td>LP</td>
<td>60, 120</td>
<td>1</td>
<td>0, 1, 0, 0</td>
<td>0, 0, 1, 0</td>
<td>Xylariomycetidae sp. nov.</td>
<td>JQ760347 submit* NA submit*</td>
</tr>
<tr>
<td>FL0662</td>
<td>FLA</td>
<td>Pinus elliottii</td>
<td>LP</td>
<td>63, 122</td>
<td>1</td>
<td>0, 1, 0, 0</td>
<td>0, 0, 1, 0</td>
<td>Xylariomycetidae sp. nov.</td>
<td>JQ760360 submit* submit* submit*</td>
</tr>
<tr>
<td>FL0638</td>
<td>FLA</td>
<td>Pinus elliottii</td>
<td>LP</td>
<td>58, 118</td>
<td>1</td>
<td>0, 1, 0, 0</td>
<td>0, 0, 1, 0</td>
<td>Xylariomycetidae sp. nov.</td>
<td>JQ760345 submit* NA submit*</td>
</tr>
<tr>
<td>AK1116</td>
<td>AKN</td>
<td>Cassiope tetragona</td>
<td>LP</td>
<td>11, 15</td>
<td>2</td>
<td>0, 2, 0</td>
<td>0, 0, 2</td>
<td>Xylariaceae sp. nov.</td>
<td>JQ759464 submit* submit* NA</td>
</tr>
<tr>
<td>FL0602</td>
<td>FLA</td>
<td>Cladonia evansii</td>
<td>LT</td>
<td>55, 113</td>
<td>6</td>
<td>0, 0, 0, 0</td>
<td>0, 0, 6, 0</td>
<td>Hypoxylon sp. nov.</td>
<td>JQ760314 submit* submit* NA</td>
</tr>
<tr>
<td>FL1179</td>
<td>FLA</td>
<td>Pseudomechasea</td>
<td>LT</td>
<td>75, 161</td>
<td>4</td>
<td>0, 0, 0, 0</td>
<td>0, 0, 4, 0</td>
<td>Hypoxylon sp. nov.</td>
<td>JQ760795 submit* submit* submit*</td>
</tr>
<tr>
<td>FL1170</td>
<td>FLA</td>
<td>Parmotrema rampodense</td>
<td>LT</td>
<td>76, 159</td>
<td>1</td>
<td>0, 0, 0</td>
<td>0, 0, 1</td>
<td>Hypoxylon rubiginosum</td>
<td>JQ760786 submit* submit* submit*</td>
</tr>
<tr>
<td>NC1633</td>
<td>NCH</td>
<td>Diplolochites scrobipus</td>
<td>LT</td>
<td>94, 242</td>
<td>1</td>
<td>0, 1, 0</td>
<td>0, 0, 1</td>
<td>Hypoxylon sp. nov.</td>
<td>JQ761992 NA NA submit*</td>
</tr>
<tr>
<td>NC0708</td>
<td>NCH</td>
<td>Pinus strobus</td>
<td>FP</td>
<td>88, 214</td>
<td>1</td>
<td>0, 0, 0, 1</td>
<td>0, 0, 1, 0</td>
<td>Hypoxylon submuculentosum</td>
<td>submit* submit* submit* submit*</td>
</tr>
<tr>
<td>FL0542</td>
<td>FLA</td>
<td>Cladonia leporina</td>
<td>LT</td>
<td>52, 104</td>
<td>1</td>
<td>0, 1, 0, 0</td>
<td>0, 0, 1, 0</td>
<td>Hypoxylon monticulosum</td>
<td>JQ760257 submit* submit* submit*</td>
</tr>
<tr>
<td>FL1289</td>
<td>FLA</td>
<td>Cladonia leporina</td>
<td>LT</td>
<td>77, 169</td>
<td>1</td>
<td>0, 1, 0, 0</td>
<td>0, 0, 1, 0</td>
<td>Hypoxylon polyborus</td>
<td>JQ760904 submit* submit* submit*</td>
</tr>
<tr>
<td>FL1608</td>
<td>FLA</td>
<td>Parmotrema tinctorum</td>
<td>LT</td>
<td>53, 111</td>
<td>6</td>
<td>0, 0, 0</td>
<td>0, 0, 6</td>
<td>Daldinia eschscholzii</td>
<td>JQ761025 submit* submit* NA</td>
</tr>
<tr>
<td>FL1419</td>
<td>FLA</td>
<td>Parmotrema tinctorum</td>
<td>LT</td>
<td>78, 179</td>
<td>1</td>
<td>0, 1, 0</td>
<td>0, 0, 1</td>
<td>Daldinia sp. nov.</td>
<td>JQ761035 submit* submit* submit*</td>
</tr>
<tr>
<td>AK1016</td>
<td>AKE</td>
<td>Arctoparmelia separata</td>
<td>LT</td>
<td>2, 2</td>
<td>86</td>
<td>53, 25, 2, 6</td>
<td>0, 0, 8, 6</td>
<td>Daldinia loculata</td>
<td>JQ759383 submit* submit* submit*</td>
</tr>
<tr>
<td>AZ0526</td>
<td>AZC</td>
<td>Physcia caesia</td>
<td>LP</td>
<td>6, 7</td>
<td>111</td>
<td>48, 38, 11, 14</td>
<td>1, 0, 0, 110</td>
<td>Daldinia loculata</td>
<td>HM123248 submit* submit* submit*</td>
</tr>
<tr>
<td>AK0222</td>
<td>AKE</td>
<td>Pheurozium schreberi</td>
<td>LP</td>
<td>7, 8</td>
<td>29</td>
<td>16, 11, 1</td>
<td>1, 0, 0, 110</td>
<td>Daldinia loculata</td>
<td>JQ758703 submit* submit* submit*</td>
</tr>
<tr>
<td>AK0128</td>
<td>AKE</td>
<td>Pheurozium schreberi</td>
<td>LP</td>
<td>3, 3</td>
<td>36</td>
<td>17, 11, 1</td>
<td>0, 0, 36</td>
<td>Daldinia loculata</td>
<td>JQ758621 submit* submit* submit*</td>
</tr>
</tbody>
</table>
AK0995 AKE Flavocetraria cucullata LT 4, 4 90 47, 37, 1, 5 0, 0, 0, 90 Daldinia loculata JQ759362 submit* submit* submit*
FL1857 FLA Pinus elliottii DP 83, 189 1 0, 0, 1, 0 0, 0, 1, 0 Hypoxylon pulicidicum (matches JX183075) submit* submit* submit*
NC0597 NCH Pseudevernia consocians LT 56, 114 40 33, 5, 1, 1 0, 0, 1, 0 Hypoxylon sp. nov. JQ761586 submit* submit* submit*
FL1377 FLA Parmotrema tinctorum LT 47, 105 26 17, 4, 2, 3 0, 0, 1, 0 Hypoxylon sp. nov. JQ760995 submit* submit* submit*
NC1073 NCH Selaginella tortilpa LP 70, 206 9 1, 6, 2, 0 0, 0, 1, 0 Hypoxylon sp. nov. JQ761719 submit* submit* submit*
FL1043 FLA Cladonia evansii LT 27, 46 39 26, 10, 3, 0 0, 0, 1, 0 Hypoxylon sp. nov. JQ760666 submit* submit* submit*
FL0890 FLA Pyxine eschweileri LT 25, 41 98 65, 15, 7, 11 0, 0, 1, 0 Hypoxylon sp. nov. JQ760526 submit* submit* submit*
FL0455 FLA Cladonia didyma LT 44, 246 19 18, 0, 0, 1 0, 0, 1, 0 Annulohypoxylon sp. nov. JQ760181 submit* submit* submit*
FL0470 FLA Cladonia didyma LT 48, 89 4 4, 0, 0, 0 0, 0, 1, 0 Annulohypoxylon stygium Biscogniauxia atrapunctata var. intermedia (matches AJ390412) JQ760192 submit* submit* submit*
FL1025 FLA Cladonia evansii LT 45, 85 19 15, 2, 1, 1 0, 0, 1, 0 Xylariaceae sp. nov. JQ760650 submit* submit* submit*
AZ0048 AZC Flavoparmelia praeignis LT 17, 23 128 109, 10, 5, 4 89, 30, 9, 0 Biscogniauxia mediterranea HM122805 NA NA submit*
AZ0703 AZC Pseudevernia intensa LT 20, 31 10 8, 1, 0, 1 2, 7, 1, 0 Biscogniauxia mediterranea HM123416 NA NA submit*
AZ1047 AZC Woodsia plummerae LP 23, 39 2 0, 1, 0, 1 2, 0, 0, 0 Xylariaceae sp. nov. JQ760457 submit* submit* submit*
FL0804 FLA Cladonia subtenuis LT 59, 119 5 2, 1, 0, 2 0, 0, 0, 0 Xylariaceae sp. nov. JQ759892 submit* submit* submit*
FL0016 FLA Aristida stricta LP 24, 40 1 1, 0, 0, 0 0, 0, 1, 0 Xylariaceae sp. nov. JQ760728 submit* submit* submit*
FL1105 FLA Cladonia subtenuis LT 42, 74 17 12, 3, 1, 3 0, 0, 1, 0 Xylariaceae sp. nov. JQ760887 submit* submit* submit*
FL1272 FLA Usnea subscabrosa LT 51, 125 10 6, 1, 1, 2 0, 0, 1, 0 Xylariaceae sp. nov. JQ760870 submit* submit* submit*
FL12558 FLA Usnea subscabrosa LT 34, 83 7 6, 0, 0, 0 0, 0, 1, 0 Xylariaceae sp. nov. JQ760644 submit* submit* submit*
FL10198 FLA Parmotrema perforatum LT 34, 66 9 6, 3, 0, 0 0, 0, 1, 0 Xylariaceae sp. nov. JQ760358 submit* submit* submit*
FL0660 FLA Pinus elliottii LP 62, 121 9 2, 1, 0, 6 0, 0, 1, 0 Xylariaceae sp. nov. JQ760469 submit* submit* NA
NC1622 NCH Tsuga canadensis LP 91, 241 3 1, 2, 0, 0 0, 0, 1, 0 Xylariaceae sp. nov. JQ761984 submit* submit* NA
FL0255 FLA Pinus elliottii LP 26, 43 67 36, 19, 2, 10 0, 0, 6, 0 Xylariaceae sp. nov. JQ760030 NA NA submit*
FL1015 FLA Parmotrema perforatum LT 41, 81 17 16, 1, 0, 0 0, 0, 1, 0 Xylariaceae sp. nov. JQ760030 NA NA submit*
FL1651 FLA Quercus inopina FP 79, 184 1 0, 0, 0, 1 0, 0, 1, 0 Xylariaceae sp. nov. JQ759768 submit* submit* submit*
NC1498 NCH Xanthoparmelia conspersa LT 30, 237 12 7, 3, 1, 1 0, 0, 1, 0 Xylariaceae sp. nov. JQ761906 NA NA submit*
FL0594 FLA Cladonia evansii LT 54, 112 4 3, 1, 0, 0 0, 0, 1, 0 Xylariaceae sp. nov. JQ759870 NA NA submit*
AK15958 AKE Salix pulchra DP 15, 21 1 0, 0, 0, 1 0, 0, 1, 0 Xylariaceae sp. nov. JQ759768 submit* submit* submit*
AK14718 AKN Peltigera aphthosa LP 14, 19 7 7, 0, 0, 0 0, 0, 1, 0 Xylariaceae sp. nov. JQ760210 submit* submit* submit*
FL0491 FLA Cladonia didyma LT 50, 94 1 0, 0, 0, 0 0, 0, 1, 0 Xylaria sp. nov. JQ760210 submit* submit* submit*
FL1030 FLA Cladonia evansii LT 66, 146 6 5, 0, 0, 1 0, 0, 1, 0 Xylaria sp. nov. JQ760526 submit* submit* submit*
FL1777 FLA Quercus inopina FP 81, 187 1 0, 0, 0, 1 0, 0, 1, 0 Xylaria sp. nov. JQ760654 submit* submit* submit*
NC1654 NCH Flavoparmelia caperata LT 95, 244 1 1, 0, 0, 0 0, 0, 1, 0 Xylaria sp. nov. JQ760666 submit* submit* submit*
FL0490 FLA Cladonia didyma LT 49, 93 1 1, 0, 0, 0 0, 0, 1, 0 Xylaria venustula JQ760209 NA NA submit*
FL1042 FLA Cladonia evansii LT 74, 147 2 1, 0, 0, 1 0, 0, 1, 0 Xylaria sp. nov. JQ760666 NA NA submit*
FL0609 FLA Cladonia evansii LT 57, 116 2 2, 0, 0, 0 0, 0, 1, 0 Xylaria sp. nov. JQ760320 submit* submit* submit*
<table>
<thead>
<tr>
<th>Accession</th>
<th>Species</th>
<th>Location</th>
<th>LP</th>
<th>FL</th>
<th>NC</th>
<th>LT</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL0359</td>
<td>Pinus clausa</td>
<td>FLA</td>
<td>32, 53</td>
<td>38</td>
<td>28, 6, 2, 2</td>
<td>0, 9, 29, 0</td>
<td>Xylaria sp. nov.</td>
</tr>
<tr>
<td>FL0224</td>
<td>Pinus elliotii</td>
<td>FLA</td>
<td>35, 67</td>
<td>29</td>
<td>21, 7, 1, 0</td>
<td>0, 0, 29, 0</td>
<td>Xylaria sp. nov.</td>
</tr>
<tr>
<td>FL0043</td>
<td>Pinus elliotii</td>
<td>FLA</td>
<td>29, 50</td>
<td>4</td>
<td>3, 1, 0, 0</td>
<td>0, 0, 4, 0</td>
<td>Xylaria sp. nov.</td>
</tr>
<tr>
<td>NC0985</td>
<td>Flavoparmelia caperata</td>
<td>NCH</td>
<td>68, 222</td>
<td>31</td>
<td>19, 6, 4, 2</td>
<td>0, 15, 16, 0</td>
<td>Xylaria sp. nov.</td>
</tr>
<tr>
<td>FL1254</td>
<td>Usnea subscabrosa</td>
<td>FLA</td>
<td>37, 92</td>
<td>63</td>
<td>46, 7, 4, 6</td>
<td>0, 13, 50, 0</td>
<td>Xylaria sp. nov.</td>
</tr>
<tr>
<td>FL0933</td>
<td>Cladonia subradiata</td>
<td>FLA</td>
<td>40, 72</td>
<td>15</td>
<td>13, 2, 0, 0</td>
<td>0, 4, 11, 0</td>
<td>Xylaria sp. nov.</td>
</tr>
<tr>
<td>FL1352</td>
<td>Cladonia evansi</td>
<td>FLA</td>
<td>31, 103</td>
<td>71</td>
<td>55, 5, 6, 5</td>
<td>0, 13, 58, 0</td>
<td>Xylaria sp. nov.</td>
</tr>
<tr>
<td>FL0916</td>
<td>Cladonia subradiata</td>
<td>FLA</td>
<td>72, 138</td>
<td>1</td>
<td>0, 0, 0, 1</td>
<td>0, 0, 1, 0</td>
<td>Nemania sp. nov.</td>
</tr>
<tr>
<td>NC1218</td>
<td>Lasalia pensylvanica</td>
<td>NCH</td>
<td>90, 226</td>
<td>2</td>
<td>2, 0, 0, 0</td>
<td>0, 2, 0, 0</td>
<td>Xylaria sp. nov.</td>
</tr>
<tr>
<td>NC0528</td>
<td>Flavoparmelia caperata</td>
<td>NCH</td>
<td>84, 210</td>
<td>3</td>
<td>2, 0, 1, 0</td>
<td>0, 2, 1, 0</td>
<td>Nemania sp. nov.</td>
</tr>
<tr>
<td>FL0031</td>
<td>Pinus elliotii</td>
<td>FLA</td>
<td>28, 47</td>
<td>36</td>
<td>29, 4, 2, 1</td>
<td>0, 0, 36, 0</td>
<td>Xylaria sp. nov.</td>
</tr>
<tr>
<td>FL1152</td>
<td>Parmotrema rampeddense</td>
<td>FLA</td>
<td>39, 71</td>
<td>15</td>
<td>10, 1, 2, 2</td>
<td>0, 0, 15, 0</td>
<td>Nemania abortiva</td>
</tr>
<tr>
<td>NC0608</td>
<td>Parmotrema reticulatum</td>
<td>NCH</td>
<td>86, 193</td>
<td>44</td>
<td>27, 6, 3, 8</td>
<td>0, 44, 0, 0</td>
<td>Nemania diffusa</td>
</tr>
<tr>
<td>AK1383</td>
<td>Hypogynia physodes</td>
<td>AKN</td>
<td>13, 18</td>
<td>1</td>
<td>0, 0, 0, 0</td>
<td>0, 0, 1, 0</td>
<td>Nemania sp. nov.</td>
</tr>
<tr>
<td>FL0980</td>
<td>Usnea mutabilis</td>
<td>FLA</td>
<td>73, 142</td>
<td>1</td>
<td>0, 0, 0, 0</td>
<td>0, 0, 1, 0</td>
<td>Nemania beamontii</td>
</tr>
<tr>
<td>FL1238</td>
<td>Usnea subscabrosa</td>
<td>FLA</td>
<td>65, 127</td>
<td>3</td>
<td>2, 0, 1, 0</td>
<td>0, 0, 3, 0</td>
<td>Xylariaeae sp. nov.</td>
</tr>
<tr>
<td>NC0429</td>
<td>Diploschistes scruposus</td>
<td>NCH</td>
<td>22, 199</td>
<td>102</td>
<td>67, 27, 3, 5</td>
<td>1, 33, 68, 0</td>
<td>Xylariaeae sp. nov.</td>
</tr>
<tr>
<td>AZ0448</td>
<td>Punctelia hypoleucites</td>
<td>AZC</td>
<td>21, 32</td>
<td>1</td>
<td>1, 0, 0, 0</td>
<td>1, 0, 0, 0</td>
<td>Xylariaeae sp. nov.</td>
</tr>
<tr>
<td>AZ0398</td>
<td>Peltigera rufescens</td>
<td>AZC</td>
<td>12, 30</td>
<td>74</td>
<td>62, 6, 2, 4</td>
<td>35, 32, 2, 5</td>
<td>Nemania serpens</td>
</tr>
<tr>
<td>NC0962</td>
<td>Sticta beamontii</td>
<td>NCH</td>
<td>89, 219</td>
<td>1</td>
<td>1, 0, 0, 0</td>
<td>0, 1, 0, 0</td>
<td>Nemania serpens</td>
</tr>
<tr>
<td>AK0226</td>
<td>Pleurozium schreberi</td>
<td>AKE</td>
<td>9, 12</td>
<td>1</td>
<td>0, 1, 0, 0</td>
<td>0, 0, 1, 0</td>
<td>Nemania serpens</td>
</tr>
<tr>
<td>NC1011</td>
<td>Lecanora oreinoides</td>
<td>NCH</td>
<td>18, 27</td>
<td>193</td>
<td>154, 30, 4, 5</td>
<td>1, 142, 50, 0</td>
<td>Xylaria cubensis</td>
</tr>
<tr>
<td>FL0961</td>
<td>Usnea mutabilis</td>
<td>FLA</td>
<td>36, 99</td>
<td>61</td>
<td>46, 7, 3, 5</td>
<td>0, 23, 38, 0</td>
<td>Xylaria cf. heliciscus</td>
</tr>
<tr>
<td>FL0975</td>
<td>Usnea mutabilis</td>
<td>FLA</td>
<td>38, 69</td>
<td>36</td>
<td>33, 1, 0, 2</td>
<td>0, 5, 31, 0</td>
<td>Hypoxylon papillatum</td>
</tr>
</tbody>
</table>

* Abbreviations for sites correspond to URen et al. (2012). Madrean Sky Island Archipelago of southeastern Arizona (AZC); the Appalachian Mountains of western North Carolina (NCH); subtropical scrub forest in Florida (FLA); Beringian tundra and boreal forest in the Seward Peninsula ecoregion of western Alaska (AKN); and inland, subalpine tundra in the Interior Highlands of eastern central Alaska (AKE).

** LT corresponds to lichen thallus; LP corresponds to living plant tissue; DP corresponds to dead leaves in the canopy; and FP corresponds to fallen plant leaves.

*** Isolates from AKN and AKF are pooled due to low isolation of endophytic fungi in these sites.

† Isolates were removed from the Xylariaceae multigene analyses due to topological conflict among single locus trees (Supplemental Table 4).

‡ Although not Xylaria spp. based on phylogenetic analyses, isolates had top BLASTn hits to Xylaria sp. NRRL 40192 (EF157664), which was identified based solely on rDNA BLAST.

Information on total isolates, isolates per tissue type, and isolates per site is based on 99% OTUs.

Taxonomic classification is based on sister relationship and/or shared 95% ITS rDNA OTU to reference taxa in phylogenetic tree (Fig. 2). If reference species are not present in the tree due to lack of multilocus data, identification is based on only 95% ITS rDNA OTU similarity to sequences in GenBank (denoted by accession numbers following taxon names; Supplemental Table 6).

Based on our phylogeny (Fig. 2), this reference strain may be misidentified (see Supplemental Table 6).
Supplementary Tables

Click here to download Supplementary Material: Supplemental_Tables_28sept2015.xlsx
Click here to download Supplementary Material: SupplementalFig2_revised_10aug205.pdf
Click here to download Supplementary Material: SupplementalFig3_plate_images_compressed.pdf