Lawrence Berkeley National Laboratory

Recent Work

Title
Microbial Dark Matter Phase II: Stepping deeper into unknown territory

Permalink
https://escholarship.org/uc/item/3fs016dg

Authors
Jarett, Jessica
Dunfield, Peter
Peura, Sari
et al.

Publication Date
2014-10-28
Microbial Dark Matter Phase II: Stepping deeper into unknown territory

Authors: Jessica Jarett\(^1\), Peter Dunfield\(^2\), Sari Peura\(^3\), Paul van der Wielen\(^4\), Brian Hedlund\(^5\), Mostafa Elshahed\(^6\), Konstantinos Kormas\(^7\), Andreas Teske\(^8\), Matt Stott\(^9\), Nils-Kåre Birkeland\(^10\), Chuanlun Zhang\(^11\), Karin Rengefors\(^12\), Stephen Lindemann\(^13\), Nikolai V. Ravin\(^14\), John Spear\(^15\), Steven Hallam\(^16\), Sean Crowe\(^16\), Jillian Steele\(^1\), Danielle Goudeau\(^1\), Rex Malmstrom\(^1\), Nikos Kyripides\(^1\), Ramunas Stepanauskas\(^17\) and Tanja Woyke\(^1\)

\(^1\) DOE Joint Genome Institute, Walnut Creek, CA, USA
\(^2\) University of Calgary, Calgary, AB, Canada
\(^3\) Uppsala University, Uppsala, Sweden
\(^4\) KWR Watercycle Research Institute, Nieuwegein, The Netherlands
\(^5\) University of Nevada, Las Vegas, NV, USA
\(^6\) Oklahoma State University, Stillwater, OK, USA
\(^7\) University of Thessaly, Nea Ionia, Greece
\(^8\) University of North Carolina, Chapel Hill, NC, USA
\(^9\) GNS Science, Taupo, New Zealand
\(^10\) University of Bergen, Bergen, Norway
\(^11\) Tongji University, Shanghai, China
\(^12\) Lund University, Lund, Sweden
\(^13\) Pacific Northwest National Laboratory
\(^14\) Russian Academy of Sciences, Moscow, Russia
\(^15\) Colorado School of Mines, Golden, CO, USA
\(^16\) University of British Columbia, Vancouver, BC, Canada
\(^17\) Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, US

* To whom correspondence may be addressed. Jessica Jarett, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA – JKJarett@lbl.gov

October, 2014
Microbial Dark Matter Phase II: Stepping deeper into unknown territory

ACKNOWLEDGMENTS:

Work by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported by the Office of Biological and Environmental Research, Life Sciences Division, U.S. Department of Energy (Contract No. [DE-AC02-05CH11231]). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy (Contract No. [DE-AC02-05CH11231]). We also wish to thank the IMG team, Nanichi Ramos-Roldan, and Christopher Wright

DISCLAIMER:

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.
Microbial Dark Matter Phase II: Stepping deeper into unknown territory

Jessica Jarett1, Peter Dunfield2, Sari Peura3, Paul van der Wielen4, Brian Hedlund5, Mostafa Elshahed6, Konstantinos Kormas7, Andreas Teske8, Matt Stott9, Nils-Kärre Birkeland10, Chuanlun Zhang11, Karin Rengefors12, Stephen Lindemann13, Nikolai V. Ravin14, John Spear15, Steven Hallam16, Sean Crowe16, Jillian Steele1, Danielle Goudeau1, Rex Malmstrom1, Nikos Kyrpides1, Ramunas Stepanauskas17 and Tanja Woyke1

Abstract

Currently available microbial genomes are of limited phylogenetic breadth due to our historical inability to cultivate most microorganisms in the laboratory. The first phase of the Microbial Dark Matter project used single-cell genomics to sequence 201 single cells from unincultivated lineages, and was able to resolve new superphyla and reveal novel metabolic features in bacteria and archaea. However, many fundamental questions about the evolution and function of microbes remain unanswered, and many candidate phyla remain uncharacterized. Phase II of the Microbial Dark Matter project will target candidate phyla with no sequenced representatives at a variety of new sites using a combination of single-cell sequencing and shotgun metagenomics approaches.

Key Questions

• How did bacterial and archaeal domains evolve?
• Is the early evolution and diversification of bacteria and archaea linked to adaptations to novel environments?
• What functional roles are candidate phyla playing in the environment?
• Are there detectable co-occurrence patterns of micro-organisms?
• What is the phylogenetic distribution of key metabolic functions?
• How variable is the use of genetic codes by bacteria and archaea?
• Are there novel phylum-level branches not present in reference databases?

Next Steps

• Continue 16S rRNA itag screening and single cell sequencing
• Shotgun metagenomics on replicates of sorted samples, with multiple samples sequenced to enable binning by differential coverage (where available)

Acknowledgements and Affiliations

Author Affiliations: 1JGI (Joint Genome Institute, Walnut Creek, CA, USA); 2University of Calgary, Calgary, AB, Canada; 3Uppsala University, Uppsala, Sweden; 4KWR Watercycle Research Institute, Neuweeg, The Netherlands; 5University of Nevada, Las Vegas, NV, USA; 6Oklahoma State University, Stillwater, OK, USA; 7University of Thessaly, Greece; 8University of North Carolina, Chapel Hill, NC, USA; 9GNS Science, Taupo, NZ; 10University of Bergen, Bergen, Norway; 11Tohoku University, Sendai, Japan; 12Lund University, Lund, Sweden; 13Pacific Northwest National Laboratory; 14Russian Academy of Sciences, Moscow, Russia; 15Colorado School of Mines, Golden, CO, USA; 16University of British Columbia, Vancouver, BC, Canada; 17Björkholmen Laboratory for Ocean Sciences, East Boothbay, ME, USA.